Formalizing Hash-then-Sign Signatures

Bertram Poettering¹ and Simon Rastikian^{1,2}

¹ IBM Research Europe, Zurich

² ETH Zurich

Digital Signature Schemes (DSS): Syntax

For simplicity, we omit the generation algorithm

Hash-then-Sign Structure

Engineering technique: signature and verification algorithms consist of two consecutive phases

Common Digital Signature Schemes

Hash-then-Sign Signatures
PKCS#1v1.5
Full-Domain-Hash RSA
BLS signature scheme
ECDSA (American)
ECKCDSA (Korean)
GOST R 34.10-2012 (Russian)
SM2 (Chinese)

No	n-Hash-then-Sign Signatures
SD:	SA
ECS	SDSA
BIP	340
ECI	SDSA
Edl	DSA
RSA	A-PSS
SLH	1-DSA (SPHINCS+)

Hash-then-Sign Signatures: Terminology

5

Hash-then-Sign Signatures: Functionality

 Attractiveness of Hash-then-Sign Signatures: <u>separating</u> hash and core.sgn/vfy reflects different entities performing two tasks.

Separating hash and core.sgn: Relevance

- 1. Crypto libraries implementing dedicated API for separating the hashing and the core signing: Gcrypt, BoringSSL.
- 2. Standards organization support or are discussing the support of the separation of hashing and the core signing: PKCS#11, RFC8032, IETF/PQC forums

Hash-then-Sign: Application Examples

Core Routines	Message	Benefit of Separation
Provided by a Smartcard, HSM and TPM	Provided by a Host Computer	Optimizing Space and Speed

Core Routines	Message	Benefit of Separation
Complex implementation (big number arithmetic, optimized assembly instructions, side-channel attacks protection)	Provided by programs written in high level language where hash is optimized (SHA2 in Python)	No copying long messages from high-level applications to low- level core

Hash-then-Sign Signatures: Security

We look into the security of the Hash-then-Sign schemes when the hash function is separated from the core signature. More precisely when the hashing is malicious.

Hash-then-Sign Signatures	Security
PKCS#1v1.5	?
Full-Domain-Hash RSA	?
BLS signature scheme	?
ECDSA (American)	?
ECKCDSA (Korean)	?
GOST R 34.10-2012 (Russian)	?
SM2 (Chinese)	?

Hash-then-Sign Security Notion: HUF

Adversary wins if $hv^* \leftarrow hash(m^*)$ is fresh and if the forgery is valid

Hash-then-Sign Security Notion: HUF

Adversary wins if $hv^* \leftarrow hash(m^*)$ is fresh and if the forgery is valid

HUF vs. UF

- Does the hashing make a difference?
- We look into the relationship between HUF security and UF security: HUF does not imply UF.

HUF vs. UF: Real-World Example

BLS Scheme: let G:= <g> be a cyclic group, H be a hash function from $\{0,1\}^*$ to G and e be a pairing.

Insecurity of Hash-then-Sign BLS under HUF

Hash-then-Sign Signatures: Security

HtS-like Signatures	HUF security
PKCS#1v1.5	No
Full-Domain-Hash RSA	No
BLS signature scheme	No
ECDSA (American)	?
ECKCDSA (Korean)	?
GOST R 34.10-2012 (Russian)	?
SM2 (Chinese)	?

Investigating the Security of ECDSA

We reduce HUF to UF in the ECDSA case:

 $Adv^{huf}(A) \leq Adv^{uf}(B) + (6Q^2/|G|)$

Many implementations separate the hash and core.sgn in ECDSA. Good News: ECDSA is now proven to be HUF secure.

Hash-then-Sign Signatures: Security

HtS-like Signatures	HUF security
PKCS#1v1.5	No
Full-Domain-Hash RSA	No
BLS signature scheme	No
ECDSA (American)	Yes
ECKCDSA (Korean)	Yes
GOST R 34.10-2012 (Russian)	Yes
SM2 (Chinese)	Yes

A Generic Secure Method

- We propose a generic method that allows a secure separation of the hashing and signing in Hash-then-Sign signature schemes.
- This method applies to all schemes of which the hash function is a Merkle-Damgård based construction.

Refresher: Merkle-Damgård Construction

A Generic Secure Method

Usual approach: split completely the hashing phase from the core signing

A Generic Secure Method

Idea: Compute most of the hashing in hash except for the last CF. The core signing performs the last CF.

Conclusion

- We investigated the functionality of Hash-then-Sign signature.
- We introduced a new security model and studied real-world DSS in this model.

Future work: study the possibility of separation of the hashing and core signing for non-Hash-then-Sign signature schemes.

Thank you!