Witness Encryption for

Succinct Functional Commitments

and Applications

Matteo Campanelli
Matter Labs

Dario Fiore
IMDEA Software Institute
Madrid, Spain

Hamidreza Khoshaklagh
Concordium
Aarhus, Denmark

Witness Encryption (WE) [GGSWI3]

Main idea: encrypt a message w.r.t. NP statement \mathbf{x} so that it can be decrypted by who holds a witness of \mathbf{x}

WE: constructions vs. applications

Tools

WE: constructions vs. applications

Applications

Tools

WE: constructions vs. applications

WE: constructions vs. applications

Our motivating application: 2-round MPC

Our motivating application: 2-round MPC

Our motivating application: 2-round MPC

Recap of MPC

Goals

- Preserve privacy of parties' inputs
- Guarantee correctness of computation

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)
$$

Recap of MPC

Goals

- Preserve privacy of parties' inputs
- Guarantee correctness of computation

Round complexity can be high!

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)
$$

2-round MPC

Round-collapsing (n-round) \rightarrow (2-round)
using iO [GGHRI4] — using WE for all NP [GLSI 5]

2-round MPC

Round-collapsing (n-round) \rightarrow (2-round)
using iO [GGHRI4] — using WE for all NP [GLSI 5]
Can we reduce further?
Not really! Due to residual attacks

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)
$$

2-round MPC

Round-collapsing (n-round) \rightarrow (2-round) using iO [GGHRI4] — using WE for all NP [GLSI5]

Can we reduce further?

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)
$$

mrNISC

Round I: commit to inputs x_{i} in a bulletin board

$$
\mathrm{cm}_{i}=\operatorname{Com}\left(x_{i} ; r_{i}\right)
$$

mrNISC

Round I: commit to inputs x_{i} in a bulletin board

$$
\mathrm{cm}_{i}=\operatorname{Com}\left(x_{i} ; r_{i}\right)
$$

Round 2: to compute $F\left(\left\{x_{j}\right\}_{j \in S}\right)$ broadcast

$$
\alpha_{i}=\operatorname{Encode}\left(F,\left\{\mathrm{~cm}_{j}\right\}_{j \in S},\left(x_{i} ; r_{i}\right)\right)
$$

mrNISC

Round I: commit to inputs x_{i} in a bulletin board

$$
\mathrm{cm}_{i}=\operatorname{Com}\left(x_{i} ; r_{i}\right)
$$

Round 2: to compute $F\left(\left\{x_{j}\right\}_{j \in S}\right)$ broadcast

$$
\alpha_{i}=\operatorname{Encode}\left(F,\left\{\mathrm{~cm}_{j}\right\}_{j \in S},\left(x_{i} ; r_{i}\right)\right)
$$

Output: locally compute $y=\operatorname{Eval}\left(F,\left\{\mathrm{~cm}_{j}, \alpha_{j}\right\}_{j \in S}\right)$

x_{3}

Reusability

Fixed

Round I: commit to inputs x_{i} in a bulletin board

$$
\mathrm{cm}_{i}=\operatorname{Com}\left(x_{i} ; r_{i}\right)
$$

Round 2: to compute $F^{\prime}\left(\left\{x_{j}\right\}_{j \in S^{\prime}}\right)$ broadcast

$$
\alpha_{i}^{\prime}=\operatorname{Encode}\left(F^{\prime},\left\{\mathrm{cm}_{j}\right\}_{j \in S^{\prime}},\left(x_{i} ; r_{i}\right)\right)
$$

Output: locally compute $y^{\prime}=\operatorname{Eval}\left(F^{\prime},\left\{\mathrm{cm}_{j}, \alpha_{j}^{\prime}\right\}_{j \in S^{\prime}}\right)$

mrNISC construction of [BL20]

Use [GLSI5] round-collapsing with a weaker variant of WE

WE for NIZK of Commitments (WE-NIZK)

a WE for $L=\{(\mathrm{cm}, G, y): \exists \mathbf{x}$ and $\operatorname{NIZK} \pi$ for $" y=G(\mathbf{x}) \wedge \mathrm{cm}=\operatorname{Com}(\mathbf{x}) "\}$

mrNISC construction of [BL20]

Use [GLSI5] round-collapsing with a weaker variant of WE

WE for NIZK of Commitments (WE-NIZK)

a WE for $L=\{(\mathrm{cm}, G, y): \exists \mathbf{x}$ and $\operatorname{NIZK} \pi$ for $" y=G(\mathbf{x}) \wedge \mathrm{cm}=\operatorname{Com}(\mathbf{x}) "\}$
[BL20] realized it from DLIN over bilinear groups

mrNISC construction of [BL20]

Use [GLS I 5] round-collapsing with a weaker variant of WE

WE for NIZK of Commitments (WE-NIZK)

aWE for $L=\left\{(\mathrm{cm}, G, y): \exists \mathbf{x}\right.$ and NIZK π for $\left." y=G(\mathbf{x}) \wedge \mathrm{cm}=\operatorname{Com}(\mathbf{x})^{n}\right\}$
[BL20] realized it from DLIN over bilinear groups

Efficiency of [BL20] WE-NIZK

\leftarrow Our focus
-
Requires statistically binding commitments \Rightarrow commitments are large $O(|\mathbf{x}|)$
Requires statistically sound $\mathrm{NIZKs} \Rightarrow$ WE decryption time $O(|\mathbf{x}|)$

Impact of WE-NIZK in mrNISC

Bulletin board grows with data size...

$$
|B B|=\sum_{i}\left|\mathrm{~cm}_{i}\right| \geq \sum_{i}\left|\mathbf{x}_{i}\right|
$$

Impact of WE-NIZK in mrNISC

Bulletin board grows with data size...

$$
|B B|=\sum_{i}\left|\mathrm{~cm}_{i}\right| \geq \sum_{i}\left|\mathbf{x}_{i}\right|
$$

Can we have a succinct Round I (and BB)?

Impact of WE-NIZK in mrNISC

Bulletin board grows with data size...

$$
|B B|=\sum_{i}\left|\mathrm{~cm}_{i}\right| \geq \sum_{i}\left|\mathbf{x}_{i}\right|
$$

Can we have a succinct Round I (and BB)?

Our solution

WE-FC: WE for succinct Functional Commitments

$$
|B B|=\sum_{i}\left|\mathrm{~cm}_{i}\right|=n \cdot p(\lambda)
$$

Functional Commitments

Functional Commitments

Commitments and openings are "short"

- - Short commitments $\left|\mathrm{cm}_{\mathbf{x}}\right| \leq p(\lambda, \log |\mathbf{x}|)$
a Short openings: $\quad\left|\pi_{f}\right| \leq p(\lambda, \log |\mathbf{x}|)$
Security (Evaluation binding): hard to open $\mathrm{cm}_{\mathbf{x}}$ to two different outputs for the same f

WE for FCs

Main idea: encrypt a message w.r.t. who holds an FC opening to $G(\mathbf{x})$
(Setup, Com, Open, Ver, Enc, Dec)

Our Contributions

- Definition of WE-FC compared to [BL20] we deal with computational binding/soundness

Our Contributions

- Definition of WE-FC compared to [BL20] we deal with computational binding/soundness
- Generic construction of WE-FC: FC with linear verification + EPHF (new notion)

Our Contributions

- Definition of WE-FC compared to [BL20] we deal with computational binding/soundness
- Generic construction ofWE-FC: FC with linear verification + EPHF (new notion)
- EPHF construction under discrete log in the AGM

Our Contributions

- Definition of WE-FC compared to [BL20] we deal with computational binding/soundness
- Generic construction ofWE-FC: FC with linear verification + EPHF (new notion)
- EPHF construction under discrete log in the AGM
- New FC for NCI with linear verification under QP-BDHE (falsifiable) assumption

Our Contributions

- Definition of WE-FC compared to [BL20] we deal with computational binding/soundness
- Generic construction ofWE-FC: FC with linear verification + EPHF (new notion)
- EPHF construction under discrete log in the AGM
- New FC for NCI with linear verification under QP-BDHE (falsifiable) assumption

- Applications to succinct mrNISC, targeted broadcast, contingent payments

Our Contributions

- Definition ofWE-FC compared to [BL20] we deal with computational binding/soundness
\Rightarrow Generic construction of WE-FC: FC with linear verification + EPHF (new notion)

This

 talkEPHF construction under discrete log in the AGM

- New FC for NCI with linear verification under QP-BDHE (falsifiable) assumption

- Applications to succinct mrNISC, targeted broadcast, contingent payments

Our Generic Construction

FCs w/ linear verification in bilinear groups
$\operatorname{Ver}(c k, G, c m, y, \vec{\pi}):$
$[\boldsymbol{\Theta}]_{T} \stackrel{?}{=}[\mathbf{M}]_{1} \cdot \vec{\pi}$

Our Generic Construction

$\operatorname{Ver}(c k, G, c m, y, \vec{\pi}):$
$[\boldsymbol{\Theta}]_{T} \stackrel{?}{=}[\mathbf{M}]_{1} \cdot \vec{\pi}$

Our Generic Construction

$\operatorname{Ver}(c k, G, c m, y, \vec{\pi}):$

$$
[\boldsymbol{\Theta}]_{T} \stackrel{?}{=}[\mathbf{M}]_{1} \cdot \vec{\pi}
$$

$$
\operatorname{ProjKG}\left(\operatorname{stmt}=\left([\boldsymbol{\Theta}]_{T},[\mathbf{M}]_{1}\right)\right)
$$

Hash(hk, stmt)
ProjHash(hp, stmt, $\vec{\pi}$)

Our Generic Construction

$\operatorname{Ver}(c k, G, c m, y, \vec{\pi}):$

$$
[\boldsymbol{\Theta}]_{T} \stackrel{?}{=}[\mathbf{M}]_{1} \cdot \vec{\pi}
$$

Our Generic Construction

EPHF for linear eq.

 Extractable Projective Hash Functions$\operatorname{Ver}(c k, G, \mathrm{~cm}, y, \vec{\pi}):$

$$
[\boldsymbol{\Theta}]_{T} \stackrel{?}{=}[\mathbf{M}]_{1} \cdot \vec{\pi}
$$

$$
\operatorname{ProjKG}\left(\operatorname{stmt}=\left([\boldsymbol{\Theta}]_{T},[\mathbf{M}]_{1}\right)\right)
$$

Knowledge Smoothness
$\forall \mathrm{PPT} \mathscr{A}(\mathrm{hp})$ producing (stmt, H) s.t. $H=$ Hash(hk, stmt)

$$
\exists \mathscr{E}(\mathrm{hp}) \rightarrow \vec{\pi} \text { s.t. }[\boldsymbol{\Theta}]_{T}=[\mathbf{M}]_{1} \cdot \vec{\pi}
$$

Our Generic Construction

EPHF for linear eq.
EPHF for linear eq.
Extractable Projective
Extractable Projective
Hash Functions
Hash Functions
$\operatorname{Ver}(\mathrm{ck}, G, \mathrm{~cm}, y, \vec{\pi})$:

$$
[\boldsymbol{\Theta}]_{T} \stackrel{?}{=}[\mathbf{M}]_{1} \cdot \vec{\pi}
$$

WE-FC
for bits

$$
\operatorname{ProjKG}\left(\text { stmt }=\left([\boldsymbol{\Theta}]_{T},[\mathbf{M}]_{1}\right)\right)
$$

Knowledge Smoothness

$$
\begin{aligned}
& \forall P P T \mathscr{A}(\mathrm{hp}) \text { producing }(\text { stmt, } H) \text { s.t. } H=\operatorname{Hash}(\mathrm{hk} \text {, stmt }) \\
& \exists \mathscr{E}(\mathrm{hp}) \rightarrow \vec{\pi} \text { s.t. }[\boldsymbol{\Theta}]_{T}=[\mathbf{M}]_{1} \cdot \vec{\pi}
\end{aligned}
$$

Our Generic Construction

EPHF for linear eq.

 Extractable Projective Hash Functions
WE-FC

for bits
$\operatorname{Enc}(\mathrm{ck},(G, \mathrm{~cm}, y), m)$

$$
/ / \text { get }[\boldsymbol{\Theta}]_{\mathbf{T}},[\mathbf{M}]_{1} \text { from }(G, \mathrm{~cm}, y)
$$

$$
\mathrm{hk}, \mathrm{hp} \leftarrow \operatorname{ProjKG}\left([\boldsymbol{\Theta}]_{T},[\mathbf{M}]_{1}\right)
$$

$$
H \leftarrow \operatorname{Hash}\left(h k,[\boldsymbol{\Theta}]_{\mathrm{T}},[\mathbf{M}]_{1}\right)
$$

$$
r \stackrel{\$}{\leftarrow}\{0,1\}^{|H|}
$$

Return $c=(\mathrm{hp}, r, \hat{c}=\langle H, r\rangle \oplus m)$

Knowledge Smoothness
\forall PPT $\mathscr{A}(\mathrm{hp})$ producing (stmt, H) s.t. $H=\operatorname{Hash}(\mathrm{hk}$, stmt)
$\exists \mathscr{E}(\mathrm{hp}) \rightarrow \vec{\pi}$ s.t. $[\boldsymbol{\Theta}]_{T}=[\mathbf{M}]_{1} \cdot \vec{\pi}$

Our Generic Construction

$\operatorname{Ver}(\mathrm{ck}, G, \mathrm{~cm}, y, \vec{\pi})$:

$$
[\boldsymbol{\Theta}]_{T} \stackrel{?}{=}[\mathbf{M}]_{1} \cdot \vec{\pi}
$$

EPHF for linear eq.

 Extractable Projective Hash Functions
WE-FC

for bits

$$
\begin{aligned}
& \text { Enc }(\mathrm{ck},(G, \mathrm{~cm}, y), m) \\
& \quad / / \text { get }[\boldsymbol{\Theta}]_{\mathrm{T}},[\mathbf{M}]_{1} \text { from }(G, \mathrm{~cm}, y) \\
& \mathrm{hk}, \mathrm{hp} \leftarrow \operatorname{ProjKG}\left([\boldsymbol{\Theta}]_{T},[\mathbf{M}]_{1}\right) \\
& H \leftarrow \operatorname{Hash}\left(\mathrm{hk},[\boldsymbol{\Theta}]_{\mathrm{T}},[\mathbf{M}]_{1}\right) \\
& r \stackrel{\$}{\leftarrow}\{0,1\}^{|H|} \\
& \operatorname{Return} c=(\mathrm{hp}, r, \hat{c}=\langle H, r\rangle \oplus m) \\
& \operatorname{Dec}(\mathrm{ck},(G, \mathrm{~cm}, y), c, \vec{\pi}) \\
& H \leftarrow \operatorname{ProjHash}\left(\mathrm{hp},[\boldsymbol{\Theta}]_{\mathrm{T}},[\mathbf{M}]_{1}, \vec{\pi}\right) \\
& m^{\prime} \leftarrow\langle H, r\rangle \oplus \hat{c}
\end{aligned}
$$

Conclusion and open problems

New WE notion: realization from simple tools + applications (w/succinctness)
Open problems:
Avoiding Goldreich-Levin technique \Rightarrow efficiency + algebraic reduction
WE-FC for circuits
Standard assumptions
More applications e.g., [FKdP23] use special case (WE forVC) to build RBE

Conclusion and open problems

NewWE notion: realization from simple tools + applications (w/succinctness)
Open problems:
Avoiding Goldreich-Levin technique \Longrightarrow efficiency + algebraic reduction
WE-FC for circuits
Standard assumptions
More applications e.g., [FKdP23] use special case (WE forVC) to build RBE

Thank you!
 Questions?

ePrint
ia.cr/2022/l5/0

