
Witness Encryption for

 Succinct Functional Commitments

and Applications

PKC 2024 — April 15, 2024

Dario Fiore
IMDEA Software Institute

Madrid, Spain

Hamidreza Khoshaklagh
Matter Labs

Matteo Campanelli
Concordium

Aarhus, Denmark

Correctness

Security

Witness Encryption (WE) [GGSW13]

2

x ∈ L

WEnc WDec

m
c

w

m′￼

 If (x, w) ∈ RL, m′￼ = m

Main idea: encrypt a message w.r.t. NP statement x so that it can be decrypted by who holds a witness of x

If then leaks no information on x ∉ RL c m

WE: constructions vs. applications

3

To o l s

A
p

p
li

c
a

ti
o

n
s

iO / Mmaps

WE for all NP

WE: constructions vs. applications

3

To o l s

A
p

p
li

c
a

ti
o

n
s

iO / Mmaps

WE for all NPSophisticated

PKE

IBE/ABE

2-round MPC

…

WE: constructions vs. applications

3

prime-order
groups

To o l s

A
p

p
li

c
a

ti
o

n
s

iO / Mmaps

WE for linear
languages (SPHF)

WE for all NPSophisticated

Simple

PKE

IBE/ABE

2-round MPC

…

CCA-PKE

PAKE

…

WE: constructions vs. applications

3

prime-order
groups

To o l s

A
p

p
li

c
a

ti
o

n
s

iO / Mmaps

WE for linear
languages (SPHF)

WE for all NPSophisticated

Simple

“Sophisticated” application
from “WE for __” ?

PKE

IBE/ABE

2-round MPC

…

CCA-PKE

PAKE

…

Our motivating application: 2-round MPC

4

prime-order
groups

2-
ro

un
d

M
P

C

iO / Mmaps

WE for all NP
[GLS15]

To o l s

Our motivating application: 2-round MPC

4

prime-order
groups

2-
ro

un
d

M
P

C

iO / Mmaps

WE for all NP
[GLS15]

WE for NIZK
of commitments

[BL20]

bilinear groups
DLIN

mrNISC

To o l s

Our motivating application: 2-round MPC

4

prime-order
groups

2-
ro

un
d

M
P

C

iO / Mmaps

WE for all NP
[GLS15]

WE for NIZK
of commitments

[BL20]

bilinear groups
DLIN

mrNISC

succinct mrNISC

bilinear groups
GGM

To o l s

[this work]

WE for FC

Recap of MPC

Goals

• Preserve privacy of parties’ inputs

• Guarantee correctness of computation

5

F(x1, x2, x3, x4) = y = (y1, y2, y3, y4)

x1 x2

x3 x4

Recap of MPC

Goals

• Preserve privacy of parties’ inputs

• Guarantee correctness of computation

Round complexity can be high!

5

F(x1, x2, x3, x4) = y = (y1, y2, y3, y4)

x1 x2

x3 x4

2-round MPC

Round-collapsing (n-round)→(2-round)

using iO [GGHR14] — using WE for all NP [GLS15]

6

F(x1, x2, x3, x4) = y = (y1, y2, y3, y4)

x1 x2

x3 x4

n-round
MPC

2-round
MPC

2-round MPC

Round-collapsing (n-round)→(2-round)

using iO [GGHR14] — using WE for all NP [GLS15]

Can we reduce further?

Not really! Due to residual attacks

6

F(x1, x2, x3, x4) = y = (y1, y2, y3, y4)

x1 x2

x3 x4

n-round
MPC

1-round
MPC

2-round
MPC

2-round MPC

Round-collapsing (n-round)→(2-round)

using iO [GGHR14] — using WE for all NP [GLS15]

Can we reduce further?

Not really! Due to residual attacks

multiparty reusable Non-Interactive Secure Computation
(mrNISC)

2-round MPC with reusable 1st round [BL20]

6

F(x1, x2, x3, x4) = y = (y1, y2, y3, y4)

x1 x2

x3 x4

n-round
MPC

1-round
MPC

2-round
MPC

mrNISC

mrNISC [BL20]
Round 1: commit to inputs in a bulletin boardxi

𝖼𝗆i = Com(xi; ri)

7

x1 x2

x3 x4

𝖼𝗆1 𝖼𝗆2 𝖼𝗆3 𝖼𝗆4

mrNISC [BL20]

Round 1: commit to inputs in a bulletin boardxi

𝖼𝗆i = Com(xi; ri)

Round 2: to compute broadcastF({xj}j∈S)

αi = Encode(F, {𝖼𝗆j}j∈S, (xi; ri))

8

x1 x2

x3 x4

𝖼𝗆1 𝖼𝗆2 𝖼𝗆3 𝖼𝗆4

α1
α2
α3

mrNISC [BL20]

Round 1: commit to inputs in a bulletin boardxi

𝖼𝗆i = Com(xi; ri)

Round 2: to compute broadcastF({xj}j∈S)

αi = Encode(F, {𝖼𝗆j}j∈S, (xi; ri))

Output: locally compute y = Eval(F, {𝖼𝗆j, αj}j∈S)

8

x1 x2

x3 x4

𝖼𝗆1 𝖼𝗆2 𝖼𝗆3 𝖼𝗆4

α1
α2
α3

Reusability

Round 1: commit to inputs in a bulletin board

Round 2: to compute broadcast

Output: locally compute

xi

𝖼𝗆i = Com(xi; ri)

F′￼({xj}j∈S′￼
)

α′￼i = Encode(F′￼, {𝖼𝗆j}j∈S′￼
, (xi; ri))

y′￼ = Eval(F′￼, {𝖼𝗆j, α′￼j}j∈S′￼
)

9

x1 x2

x3 x4

𝖼𝗆1 𝖼𝗆2 𝖼𝗆3 𝖼𝗆4

α′￼1
α′￼2
α′￼4

Fixed

mrNISC construction of [BL20]

Use [GLS15] round-collapsing with a weaker variant of WE

WE for NIZK of Commitments (WE-NIZK)

a WE for L = {(𝖼𝗆, G, y) : ∃ x and NIZK π for "y = G(x) ∧ 𝖼𝗆 = 𝖢𝗈𝗆(x)"}

10

mrNISC construction of [BL20]

Use [GLS15] round-collapsing with a weaker variant of WE

WE for NIZK of Commitments (WE-NIZK)

a WE for L = {(𝖼𝗆, G, y) : ∃ x and NIZK π for "y = G(x) ∧ 𝖼𝗆 = 𝖢𝗈𝗆(x)"}
[BL20] realized it from DLIN over bilinear groups

10

SPHF
(Variant) Groth-Sahai

coms&proofs
 w/linear verification

WE-NIZK

mrNISC construction of [BL20]

Use [GLS15] round-collapsing with a weaker variant of WE

WE for NIZK of Commitments (WE-NIZK)

a WE for L = {(𝖼𝗆, G, y) : ∃ x and NIZK π for "y = G(x) ∧ 𝖼𝗆 = 𝖢𝗈𝗆(x)"}
[BL20] realized it from DLIN over bilinear groups

Efficiency of [BL20] WE-NIZK
Requires statistically binding commitments ⇒ commitments are large

Requires statistically sound NIZKs ⇒ WE decryption time

O(|x |)

O(|x |)

10

SPHF
(Variant) Groth-Sahai

coms&proofs
 w/linear verification

WE-NIZK

⬅︎ Our focus

Impact of WE-NIZK in mrNISC

Bulletin board grows with data size…

|BB | = ∑
i

|𝖼𝗆i | ≥ ∑
i

|xi |

11

x1 x2

x3 x4

𝖼𝗆1 𝖼𝗆2 𝖼𝗆3 𝖼𝗆4

Impact of WE-NIZK in mrNISC

Bulletin board grows with data size…

|BB | = ∑
i

|𝖼𝗆i | ≥ ∑
i

|xi |

Can we have a succinct Round 1 (and BB)?

11

x1 x2

x3 x4

𝖼𝗆1 𝖼𝗆2 𝖼𝗆3 𝖼𝗆4

Impact of WE-NIZK in mrNISC

Bulletin board grows with data size…

|BB | = ∑
i

|𝖼𝗆i | ≥ ∑
i

|xi |

Can we have a succinct Round 1 (and BB)?

Our solution

WE-FC: WE for succinct Functional Commitments

|BB | = ∑
i

|𝖼𝗆i | = n ⋅ p(λ)

11

x1 x2

x3 x4

𝖼𝗆1 𝖼𝗆2 𝖼𝗆3 𝖼𝗆4

Functional Commitments [LRY16]

12

πf

x = (x1, …, xn)
f(x)

𝖢𝗈𝗆(𝖼𝗄, x) 𝖮𝗉𝖾𝗇(𝖼𝗄, x, f)
𝖼𝗆x

𝖵𝖾𝗋(𝖼𝗆x, f, f(x), πf)
?= 1

Functional Commitments [LRY16]

12

πf

x = (x1, …, xn)
f(x)

𝖢𝗈𝗆(𝖼𝗄, x) 𝖮𝗉𝖾𝗇(𝖼𝗄, x, f)
𝖼𝗆x

𝖵𝖾𝗋(𝖼𝗆x, f, f(x), πf)
?= 1

Commitments and openings are “short”

Short commitments

Short openings:

|𝖼𝗆x | ≤ p(λ, log |x |)

|πf | ≤ p(λ, log |x |)

Security (Evaluation binding): hard to open to two different outputs for the same f𝖼𝗆x

Correctness

Security

WE for FCs

13

(G, 𝖼𝗆, y)

𝖤𝗇𝖼(𝖼𝗄, (G, 𝖼𝗆, y), m) 𝖣𝖾𝖼(𝖼𝗄, (G, 𝖼𝗆, y), π, c)

m
c

π

m′￼

 then If 𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, π) = 1 m′￼ = m

Main idea: encrypt a message w.r.t. who holds an FC opening to
()

G(x)
𝖲𝖾𝗍𝗎𝗉, 𝖢𝗈𝗆, 𝖮𝗉𝖾𝗇, 𝖵𝖾𝗋

𝖥𝖢

, 𝖤𝗇𝖼, 𝖣𝖾𝖼

If then leaks no information on 𝖼𝗆 = 𝖢𝗈𝗆(x) ∧ y ≠ G(x) c m

Our Contributions

‣ Definition of WE-FC compared to [BL20] we deal with computational binding/soundness

14

Our Contributions

‣ Definition of WE-FC compared to [BL20] we deal with computational binding/soundness

‣ Generic construction of WE-FC: FC with linear verification + EPHF (new notion)

14

Our Contributions

‣ Definition of WE-FC compared to [BL20] we deal with computational binding/soundness

‣ Generic construction of WE-FC: FC with linear verification + EPHF (new notion)

‣ EPHF construction under discrete log in the AGM

14

Our Contributions

‣ Definition of WE-FC compared to [BL20] we deal with computational binding/soundness

‣ Generic construction of WE-FC: FC with linear verification + EPHF (new notion)

‣ EPHF construction under discrete log in the AGM

‣ New FC for NC1 with linear verification under QP-BDHE (falsifiable) assumption

14

quadratic Ver CFT22 BCFL23

linear Ver LRY16, LM19 LP20 Ours

linear maps semi-sparse poly NC1 all circuits
Fu

nc
tio

ns

Verification

Our Contributions

‣ Definition of WE-FC compared to [BL20] we deal with computational binding/soundness

‣ Generic construction of WE-FC: FC with linear verification + EPHF (new notion)

‣ EPHF construction under discrete log in the AGM

‣ New FC for NC1 with linear verification under QP-BDHE (falsifiable) assumption

‣ Applications to succinct mrNISC, targeted broadcast, contingent payments

14

quadratic Ver CFT22 BCFL23

linear Ver LRY16, LM19 LP20 Ours

linear maps semi-sparse poly NC1 all circuits
Fu

nc
tio

ns

Verification

Our Contributions

‣ Definition of WE-FC compared to [BL20] we deal with computational binding/soundness

‣ Generic construction of WE-FC: FC with linear verification + EPHF (new notion)

‣ EPHF construction under discrete log in the AGM

‣ New FC for NC1 with linear verification under QP-BDHE (falsifiable) assumption

‣ Applications to succinct mrNISC, targeted broadcast, contingent payments

14

quadratic Ver CFT22 BCFL23

linear Ver LRY16, LM19 LP20 Ours

linear maps semi-sparse poly NC1 all circuits
Fu

nc
tio

ns

Verification

➡︎
This
talk

Our Generic Construction

𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, ⃗π) :

[Θ]T
?= [M]1 ⋅ ⃗π

15

FCs w/ linear verification
in bilinear groups

Our Generic Construction

𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, ⃗π) :

[Θ]T
?= [M]1 ⋅ ⃗π

15

EPHF for linear eq.
Extractable Projective

Hash Functions

FCs w/ linear verification
in bilinear groups

Our Generic Construction

𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, ⃗π) :

[Θ]T
?= [M]1 ⋅ ⃗π

15

EPHF for linear eq.
Extractable Projective

Hash Functions

FCs w/ linear verification
in bilinear groups

𝖧𝖺𝗌𝗁(𝗁𝗄, 𝗌𝗍𝗆𝗍) 𝖯𝗋𝗈𝗃𝖧𝖺𝗌𝗁(𝗁𝗉, 𝗌𝗍𝗆𝗍, ⃗π)

𝖯𝗋𝗈𝗃𝖪𝖦 (𝗌𝗍𝗆𝗍 = ([Θ]T, [M]1))
𝗁𝗄 𝗁𝗉

Our Generic Construction

𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, ⃗π) :

[Θ]T
?= [M]1 ⋅ ⃗π

15

EPHF for linear eq.
Extractable Projective

Hash Functions

FCs w/ linear verification
in bilinear groups

𝖧𝖺𝗌𝗁(𝗁𝗄, 𝗌𝗍𝗆𝗍) 𝖯𝗋𝗈𝗃𝖧𝖺𝗌𝗁(𝗁𝗉, 𝗌𝗍𝗆𝗍, ⃗π)

𝖯𝗋𝗈𝗃𝖪𝖦 (𝗌𝗍𝗆𝗍 = ([Θ]T, [M]1))
𝗁𝗄 𝗁𝗉

Correctness
If [Θ]T = [M]1 ⋅ ⃗π

=

Our Generic Construction

𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, ⃗π) :

[Θ]T
?= [M]1 ⋅ ⃗π

15

EPHF for linear eq.
Extractable Projective

Hash Functions

FCs w/ linear verification
in bilinear groups

𝖧𝖺𝗌𝗁(𝗁𝗄, 𝗌𝗍𝗆𝗍) 𝖯𝗋𝗈𝗃𝖧𝖺𝗌𝗁(𝗁𝗉, 𝗌𝗍𝗆𝗍, ⃗π)

𝖯𝗋𝗈𝗃𝖪𝖦 (𝗌𝗍𝗆𝗍 = ([Θ]T, [M]1))
𝗁𝗄 𝗁𝗉

Correctness
If [Θ]T = [M]1 ⋅ ⃗π

=

 producing s.t.

 s.t.

∀PPT 𝒜(𝗁𝗉) (𝗌𝗍𝗆𝗍, H) H = 𝖧𝖺𝗌𝗁(𝗁𝗄, 𝗌𝗍𝗆𝗍)

∃ℰ(𝗁𝗉) → ⃗π [Θ]T = [M]1 ⋅ ⃗π

Knowledge
Smoothness

Our Generic Construction

𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, ⃗π) :

[Θ]T
?= [M]1 ⋅ ⃗π

15

EPHF for linear eq.
Extractable Projective

Hash Functions

FCs w/ linear verification
in bilinear groups

WE-FC
for bits

𝖧𝖺𝗌𝗁(𝗁𝗄, 𝗌𝗍𝗆𝗍) 𝖯𝗋𝗈𝗃𝖧𝖺𝗌𝗁(𝗁𝗉, 𝗌𝗍𝗆𝗍, ⃗π)

𝖯𝗋𝗈𝗃𝖪𝖦 (𝗌𝗍𝗆𝗍 = ([Θ]T, [M]1))
𝗁𝗄 𝗁𝗉

Correctness
If [Θ]T = [M]1 ⋅ ⃗π

=

 producing s.t.

 s.t.

∀PPT 𝒜(𝗁𝗉) (𝗌𝗍𝗆𝗍, H) H = 𝖧𝖺𝗌𝗁(𝗁𝗄, 𝗌𝗍𝗆𝗍)

∃ℰ(𝗁𝗉) → ⃗π [Θ]T = [M]1 ⋅ ⃗π

Knowledge
Smoothness

Our Generic Construction

𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, ⃗π) :

[Θ]T
?= [M]1 ⋅ ⃗π

15

EPHF for linear eq.
Extractable Projective

Hash Functions

FCs w/ linear verification
in bilinear groups

WE-FC
for bits

 // get from

Return

𝖤𝗇𝖼(𝖼𝗄, (G, 𝖼𝗆, y), m)
[Θ]T, [M]1 (G, 𝖼𝗆, y)

𝗁𝗄, 𝗁𝗉 ← 𝖯𝗋𝗈𝗃𝖪𝖦 ([Θ]T, [M]1)
H ← 𝖧𝖺𝗌𝗁(𝗁𝗄, [Θ]𝖳, [M]𝟣)

r $← {0,1}|H|

c = (𝗁𝗉, r, ̂c = ⟨H, r⟩ ⊕ m)𝖧𝖺𝗌𝗁(𝗁𝗄, 𝗌𝗍𝗆𝗍) 𝖯𝗋𝗈𝗃𝖧𝖺𝗌𝗁(𝗁𝗉, 𝗌𝗍𝗆𝗍, ⃗π)

𝖯𝗋𝗈𝗃𝖪𝖦 (𝗌𝗍𝗆𝗍 = ([Θ]T, [M]1))
𝗁𝗄 𝗁𝗉

Correctness
If [Θ]T = [M]1 ⋅ ⃗π

=

 producing s.t.

 s.t.

∀PPT 𝒜(𝗁𝗉) (𝗌𝗍𝗆𝗍, H) H = 𝖧𝖺𝗌𝗁(𝗁𝗄, 𝗌𝗍𝗆𝗍)

∃ℰ(𝗁𝗉) → ⃗π [Θ]T = [M]1 ⋅ ⃗π

Knowledge
Smoothness

Our Generic Construction

𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, ⃗π) :

[Θ]T
?= [M]1 ⋅ ⃗π

15

EPHF for linear eq.
Extractable Projective

Hash Functions

FCs w/ linear verification
in bilinear groups

WE-FC
for bits

 // get from

Return

𝖤𝗇𝖼(𝖼𝗄, (G, 𝖼𝗆, y), m)
[Θ]T, [M]1 (G, 𝖼𝗆, y)

𝗁𝗄, 𝗁𝗉 ← 𝖯𝗋𝗈𝗃𝖪𝖦 ([Θ]T, [M]1)
H ← 𝖧𝖺𝗌𝗁(𝗁𝗄, [Θ]𝖳, [M]𝟣)

r $← {0,1}|H|

c = (𝗁𝗉, r, ̂c = ⟨H, r⟩ ⊕ m)

𝖣𝖾𝖼(𝖼𝗄, (G, 𝖼𝗆, y), c, ⃗π)
H ← 𝖯𝗋𝗈𝗃𝖧𝖺𝗌𝗁(𝗁𝗉, [Θ]𝖳, [M]𝟣, ⃗π)
m′￼ ← ⟨H, r⟩ ⊕ ̂c

𝖧𝖺𝗌𝗁(𝗁𝗄, 𝗌𝗍𝗆𝗍) 𝖯𝗋𝗈𝗃𝖧𝖺𝗌𝗁(𝗁𝗉, 𝗌𝗍𝗆𝗍, ⃗π)

𝖯𝗋𝗈𝗃𝖪𝖦 (𝗌𝗍𝗆𝗍 = ([Θ]T, [M]1))
𝗁𝗄 𝗁𝗉

Correctness
If [Θ]T = [M]1 ⋅ ⃗π

=

 producing s.t.

 s.t.

∀PPT 𝒜(𝗁𝗉) (𝗌𝗍𝗆𝗍, H) H = 𝖧𝖺𝗌𝗁(𝗁𝗄, 𝗌𝗍𝗆𝗍)

∃ℰ(𝗁𝗉) → ⃗π [Θ]T = [M]1 ⋅ ⃗π

Knowledge
Smoothness

Conclusion and open problems

New WE notion: realization from simple tools + applications (w/succinctness)

Open problems:

Avoiding Goldreich-Levin technique ⟹ efficiency + algebraic reduction

WE-FC for circuits

Standard assumptions

More applications e.g., [FKdP23] use special case (WE for VC) to build RBE

16

Conclusion and open problems

New WE notion: realization from simple tools + applications (w/succinctness)

Open problems:

Avoiding Goldreich-Levin technique ⟹ efficiency + algebraic reduction

WE-FC for circuits

Standard assumptions

More applications e.g., [FKdP23] use special case (WE for VC) to build RBE

Thank you!
Questions?

16

ePrint
ia.cr/2022/1510

https://ia.cr/2022/1510

