Witness Encryption for Succinct Functional Commitments

and Applications

Matteo Campanelli Matter Labs

Dario Fiore IMDEA Software Institute Madrid, Spain

PKC 2024 — April 15, 2024

Hamidreza Khoshaklagh

Concordium Aarhus, Denmark

Witness Encryption (WE) [GGSW13]

Main idea: encrypt a message w.r.t. NP statement \mathbf{x} so that it can be decrypted by who holds a witness of \mathbf{x}

Security

If $x \notin R_L$ then c leaks no information on m

Applications

iO / Mmaps

Applications

iO / Mmaps

iO / Mmaps

Our motivating application: 2-round MPC

2-round MPC

prime-order groups

ΤοοΙς

Our motivating application: 2-round MPC

Our motivating application: 2-round MPC

Recap of MPC

Goals

- Preserve privacy of parties' inputs
- Guarantee correctness of computation

Recap of MPC

Goals

- Preserve privacy of parties' inputs
- Guarantee correctness of computation

2-round MPC

Round-collapsing (n-round) \rightarrow (2-round) using iO [GGHR14] — using WE for all NP [GLS15]

2-round MPC

Round-collapsing (n-round) \rightarrow (2-round) using iO [GGHR14] — using WE for all NP [GLS15] Can we reduce further? Not really! Due to residual attacks

2-round MPC

Round-collapsing (n-round) \rightarrow (2-round) Can we reduce further? Not really! Due to residual attacks (mrNISC)

Round I: commit to inputs x_i in a bulletin board

$$cm_i = Com(x_i; r_i)$$

[BL20]

mrNISC

Round I: commit to inputs x_i in a bulletin board $cm_i = Com(x_i; r_i)$ **Round 2:** to compute $F({x_j}_{j\in S})$ broadcast α_1 α_2 α_3

 $\alpha_i = Encode(F, \{ cm_j \}_{j \in S}, (x_i; r_i))$

mrNISC

<u>Round I</u>: commit to inputs x_i in a bulletin board $cm_i = Com(x_i; r_i)$ **Round 2:** to compute $F({x_i}_{j\in S})$ broadcast α_1 α_2 α_3 $\alpha_i = Encode(F, \{ cm_j \}_{j \in S}, (x_i; r_i))$ <u>**Output:</u>** locally compute $y = Eval(F, \{cm_j, \alpha_j\}_{j \in S})$ </u>

Reusability

Fixed Round I: commit to inputs x_i in a bulletin board

$$\operatorname{cm}_i = \operatorname{Com}(x_i; r_i)$$

Round 2: to compute $F'(\{x_i\}_{i \in S'})$ broadcast

$\alpha'_{i} = Encode(F', \{cm_{j}\}_{j \in S'}, (x_{i}; r_{i}))$

<u>**Output:</u>** locally compute $y' = Eval(F', \{cm_j, \alpha'_j\}_{j \in S'})$ </u>

mrNISC construction of [BL20]

Use [GLS15] round-collapsing with a <u>weaker variant of WE</u>

a WE for $L = \{(\mathsf{cm}, G, y) : \exists \mathbf{x} \text{ and } \mathsf{N} | \mathsf{Z} \mathsf{K} \pi \text{ for } "y = G(\mathbf{x}) \land \mathsf{cm} = \mathsf{Com}(\mathbf{x})"\}$

WE for NIZK of Commitments (WE-NIZK)

mrNISC construction of [BL20]

Use [GLS15] round-collapsing with a weaker variant of WE

a WE for $L = \{(\mathsf{cm}, G, y) : \exists \mathbf{x} \text{ and } \mathsf{N} | \mathsf{Z} \mathsf{K} \pi \text{ for } "y = G(\mathbf{x}) \land \mathsf{cm} = \mathsf{Com}(\mathbf{x})"\}$

[BL20] realized it from DLIN over bilinear groups

- WE for NIZK of Commitments (WE-NIZK)

mrNISC construction of [BL20]

- Use [GLS15] round-collapsing with a weaker variant of WE WE for NIZK of Commitments (WE-NIZK)
 - a WE for $L = \{(\mathsf{cm}, G, y) : \exists \mathbf{x} \text{ and } \mathsf{N} | \mathsf{Z} \mathsf{K} \pi \text{ for } "y = G(\mathbf{x}) \land \mathsf{cm} = \mathsf{Com}(\mathbf{x})"\}$
- [BL20] realized it from DLIN over bilinear groups

(Variant) Groth-Sahai coms&proofs w/linear verification

Efficiency of [BL20] WE-NIZK

Requires statistically sound NIZKs \Rightarrow WE decryption time $O(|\mathbf{x}|)$

- Requires statistically binding commitments \Rightarrow commitments are large $O(|\mathbf{x}|)$

Impact of WE-NIZK in mrNISC

Bulletin board grows with data size...

$$|BB| = \sum_{i} |cm_{i}| \geq \sum_{i} |\mathbf{x}_{i}|$$

Impact of WE-NIZK in mrNISC

Bulletin board grows with data size...

$$|BB| = \sum_{i} |cm_{i}| \ge \sum_{i} |\mathbf{x}_{i}|$$

Can we have a succinct Round I (and BB)?

Impact of WE-NIZK in mrNISC

Bulletin board grows with data size...

$$|BB| = \sum_{i} |cm_{i}| \geq \sum_{i} |\mathbf{x}_{i}|$$

Can we have a succinct Round I (and BB)?

Our solution

WE-FC: WE for succinct Functional Commitments $|BB| = \sum |cm_i| = n \cdot p(\lambda)$

Functional Commitments

Functional Commitments

Commitments and openings are "short"

Short openings: $|\pi_f| \le p(\lambda, \log |\mathbf{x}|)$

Security (Evaluation binding): hard to open cm_x to two different outputs for the same f

Correctness

Security

If $cm = Com(\mathbf{x}) \land y \neq G(\mathbf{x})$ then c leaks no information on m

Definition of WE-FC compared to [BL20] we deal with computational binding/soundness

Definition of WE-FC compared to [BL20] we deal with computational binding/soundness

Generic construction of WE-FC: FC with linear verification + EPHF (new notion)

- Definition of WE-FC compared to [BL20] we deal with computational binding/soundness
- Generic construction of WE-FC: FC with linear verification + EPHF (new notion)
- EPHF construction under discrete log in the AGM

- Definition of WE-FC compared to [BL20] we deal with computational binding/soundness
- Generic construction of WE-FC: FC with linear verification + EPHF (new notion)
- EPHF construction under discrete log in the AGM
- New FC for NCI with linear verification under QP-BDHE (falsifiable) assumption

	CFT22	BCFL23	
20	Ours		
arse poly	NCI	all circuits	FUNCTIONS

- **Definition of WE-FC** compared to [BL20] we deal with computational binding/soundness
- **Generic construction of WE-FC:** FC with linear verification + EPHF (new notion)
- **EPHF construction** under discrete log in the AGM

linear maps

New FC for NCI with linear verification under QP-BDHE (falsifiable) assumption Verification quadratic Ver linear Ver LRY 16, LM 19 LP

	CFT22	BCFL23	
LP20	Ours		
semi-sparse poly	NCI	all circuits	FUNCTION

Applications to succinct mrNISC, targeted broadcast, contingent payments

Applications to succinct mrNISC, targeted broadcast, contingent payments

Definition of WE-FC compared to [BL20] we deal with computational binding/soundness

Generic construction of WE-FC: FC with linear verification + EPHF (new notion)

	CFT22	BCFL23	
20	Ours		
arse poly	NCI	all circuits	FUNCTION

FCs w/ linear verification in bilinear groups

Ver(ck, G, cm, y, $\vec{\pi}$) : $[\mathbf{\Theta}]_T \stackrel{?}{=} [\mathbf{M}]_1 \cdot \vec{\pi}$

FCs w/ linear verification in bilinear groups

Ver(ck, G, cm, y, $\vec{\pi}$):

 $[\mathbf{\Theta}]_T \stackrel{?}{=} [\mathbf{M}]_1 \cdot \vec{\pi}$

ProjHash(hp, stmt, $\vec{\pi}$)

Knowledge Smoothness $\forall PPT \mathscr{A}(hp)$ producing (stmt, H) s.t. H = Hash(hk, stmt) $\exists \mathscr{E}(\mathsf{hp}) \to \vec{\pi} \text{ s.t. } [\Theta]_T = [\mathbf{M}]_1 \cdot \vec{\pi}$

ProjHash(hp, stmt, $\vec{\pi}$)

Smoothness

 $\exists \mathscr{E}(\mathsf{hp}) \to \vec{\pi} \text{ s.t. } [\Theta]_T = [\mathbf{M}]_1 \cdot \vec{\pi}$

Knowledge Smoothness $\forall PPT \mathscr{A}(hp)$ producing (stmt, H) s.t. H = Hash(hk, stmt) $\exists \mathscr{E}(\mathsf{hp}) \to \vec{\pi} \text{ s.t. } [\Theta]_T = [\mathbf{M}]_1 \cdot \vec{\pi}$

WE-FC for bits

Enc(ck, (G, cm, y), m)// get $[\Theta]_T$, $[M]_1$ from (G, cm, y)hk, hp \leftarrow ProjKG ([Θ]_T, [**M**]₁) $H \leftarrow \mathsf{Hash}(\mathsf{hk}, [\Theta]_{\mathsf{T}}, [\mathbf{M}]_1)$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{|H|}$ Return $c = (hp, r, \hat{c} = \langle H, r \rangle \oplus m)$

Knowledge Smoothness $\forall PPT \mathscr{A}(hp)$ producing (stmt, H) s.t. H = Hash(hk, stmt) $\exists \mathscr{E}(\mathsf{hp}) \to \vec{\pi} \text{ s.t. } [\Theta]_T = [\mathbf{M}]_1 \cdot \vec{\pi}$

WE-FC for bits

Enc(ck, (G, cm, y), m)// get $[\Theta]_T$, $[M]_1$ from (G, cm, y)hk, hp \leftarrow ProjKG ([Θ]_T, [**M**]₁) $H \leftarrow \mathsf{Hash}(\mathsf{hk}, [\Theta]_{\mathsf{T}}, [\mathbf{M}]_1)$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{|H|}$ Return $c = (hp, r, \hat{c} = \langle H, r \rangle \oplus m)$ $Dec(ck, (G, cm, y), c, \vec{\pi})$ $H \leftarrow \text{ProjHash}(\text{hp}, [\Theta]_T, [M]_1, \vec{\pi})$ $m' \leftarrow \langle H, r \rangle \oplus \hat{c}$

Conclusion and open problems

- **New WE notion:** realization from simple tools + applications (w/succinctness)
- **Open problems:**
 - Avoiding Goldreich-Levin technique \implies efficiency + algebraic reduction
 - WE-FC for circuits
 - Standard assumptions
 - **More applications** e.g., [FKdP23] use special case (WE for VC) to build RBE

Conclusion and open problems

- New WE notion: realization from simple tools + applications (w/succinctness)
- **Open problems:**
 - Avoiding Goldreich-Levin technique \implies efficiency + algebraic reduction
 - WE-FC for circuits
 - Standard assumptions
 - **More applications** e.g., [FKdP23] use special case (WE for VC) to build RBE

Thank you! Questions?

