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Correctness

Security

Witness Encryption (WE)       [GGSW13]
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x ∈ L

WEnc WDec

m
c

w

m′￼

 If (x, w) ∈ RL, m′￼ = m

Main idea: encrypt a message w.r.t. NP statement x so that it can be decrypted by who holds a witness of x

If  then  leaks no information on x ∉ RL c m



WE: constructions vs. applications
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Our motivating application: 2-round MPC

4

prime-order
groups

2-
ro

un
d 

M
P

C

iO / Mmaps

WE for all NP 
[GLS15]

To o l s



Our motivating application: 2-round MPC

4

prime-order
groups

2-
ro

un
d 

M
P

C

iO / Mmaps

WE for all NP 
[GLS15]

WE for NIZK 
of commitments 

[BL20]

bilinear groups
DLIN

mrNISC

To o l s



Our motivating application: 2-round MPC

4

prime-order
groups

2-
ro

un
d 

M
P

C

iO / Mmaps

WE for all NP 
[GLS15]

WE for NIZK 
of commitments 

[BL20]

bilinear groups
DLIN

mrNISC

succinct mrNISC

bilinear groups
GGM

To o l s

[this work]
 

WE for FC



Recap of MPC

Goals

• Preserve privacy of parties’ inputs 

• Guarantee correctness of computation
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Recap of MPC

Goals

• Preserve privacy of parties’ inputs 

• Guarantee correctness of computation

Round complexity can be high!
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F(x1, x2, x3, x4) = y = (y1, y2, y3, y4)

x1 x2

x3 x4



2-round MPC

Round-collapsing (n-round)→(2-round)

using iO [GGHR14] — using WE for all NP [GLS15]
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Can we reduce further?

Not really! Due to residual attacks
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2-round MPC

Round-collapsing (n-round)→(2-round)

using iO [GGHR14] — using WE for all NP [GLS15]

Can we reduce further?

Not really! Due to residual attacks

multiparty reusable Non-Interactive Secure Computation
(mrNISC)

2-round MPC with reusable 1st round [BL20]

6

F(x1, x2, x3, x4) = y = (y1, y2, y3, y4)
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mrNISC                                                        [BL20]
Round 1: commit to inputs  in a bulletin boardxi

𝖼𝗆i = Com(xi; ri)
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Round 1: commit to inputs  in a bulletin boardxi

𝖼𝗆i = Com(xi; ri)

Round 2: to compute  broadcastF({xj}j∈S)

αi = Encode(F, {𝖼𝗆j}j∈S, (xi; ri) )
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mrNISC                                                        [BL20]

Round 1: commit to inputs  in a bulletin boardxi

𝖼𝗆i = Com(xi; ri)

Round 2: to compute  broadcastF({xj}j∈S)

αi = Encode(F, {𝖼𝗆j}j∈S, (xi; ri) )

Output: locally compute  y = Eval(F, {𝖼𝗆j, αj}j∈S)
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Reusability

Round 1: commit to inputs  in a bulletin board

Round 2: to compute  broadcast

Output: locally compute  

xi

𝖼𝗆i = Com(xi; ri)

F′￼({xj}j∈S′￼
)

α′￼i = Encode(F′￼, {𝖼𝗆j}j∈S′￼
, (xi; ri) )

y′￼ = Eval(F′￼, {𝖼𝗆j, α′￼j}j∈S′￼
)
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mrNISC construction of [BL20]

Use [GLS15] round-collapsing with a weaker variant of WE

WE for NIZK of Commitments (WE-NIZK)

a WE for   L = {(𝖼𝗆, G, y) : ∃ x and NIZK π for "y = G(x) ∧ 𝖼𝗆 = 𝖢𝗈𝗆(x)"}
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mrNISC construction of [BL20]

Use [GLS15] round-collapsing with a weaker variant of WE

WE for NIZK of Commitments (WE-NIZK)

a WE for   L = {(𝖼𝗆, G, y) : ∃ x and NIZK π for "y = G(x) ∧ 𝖼𝗆 = 𝖢𝗈𝗆(x)"}
[BL20] realized it from DLIN over bilinear groups

Efficiency of [BL20] WE-NIZK
Requires statistically binding commitments ⇒ commitments are large 

Requires statistically sound NIZKs ⇒ WE decryption time 

O( |x | )

O( |x | )
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SPHF
(Variant) Groth-Sahai 

coms&proofs 
 w/linear verification

WE-NIZK

⬅︎ Our focus 



Impact of WE-NIZK in mrNISC

Bulletin board grows with data size…

|BB | = ∑
i

|𝖼𝗆i | ≥ ∑
i

|xi |
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Impact of WE-NIZK in mrNISC

Bulletin board grows with data size…

|BB | = ∑
i

|𝖼𝗆i | ≥ ∑
i

|xi |

Can we have a succinct Round 1 (and BB)?

Our solution

WE-FC: WE for succinct Functional Commitments

|BB | = ∑
i

|𝖼𝗆i | = n ⋅ p(λ)
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Functional Commitments                            [LRY16]
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πf

x = (x1, …, xn)
f(x)

𝖢𝗈𝗆(𝖼𝗄, x) 𝖮𝗉𝖾𝗇(𝖼𝗄, x, f )
𝖼𝗆x

𝖵𝖾𝗋(𝖼𝗆x, f, f(x), πf)
?= 1

Commitments and openings are “short” 

Short commitments 

Short openings:         

|𝖼𝗆x | ≤ p(λ, log |x | )

|πf | ≤ p(λ, log |x | )

Security (Evaluation binding): hard to open  to two different outputs for the same f𝖼𝗆x



Correctness

Security

WE for FCs
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(G, 𝖼𝗆, y)

𝖤𝗇𝖼(𝖼𝗄, (G, 𝖼𝗆, y), m) 𝖣𝖾𝖼(𝖼𝗄, (G, 𝖼𝗆, y), π, c)

m
c

π

m′￼

 then  If 𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, π) = 1 m′￼ = m

Main idea: encrypt a message w.r.t. who holds an FC opening to 
( )

G(x)
𝖲𝖾𝗍𝗎𝗉, 𝖢𝗈𝗆, 𝖮𝗉𝖾𝗇, 𝖵𝖾𝗋

𝖥𝖢

, 𝖤𝗇𝖼, 𝖣𝖾𝖼

If  then  leaks no information on 𝖼𝗆 = 𝖢𝗈𝗆(x) ∧ y ≠ G(x) c m



Our Contributions

‣ Definition of WE-FC compared to [BL20] we deal with computational binding/soundness
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Our Generic Construction

𝖵𝖾𝗋(𝖼𝗄, G, 𝖼𝗆, y, ⃗π) :

[Θ]T
?= [M]1 ⋅ ⃗π
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Conclusion and open problems

New WE notion: realization from simple tools + applications (w/succinctness)

Open problems: 

Avoiding Goldreich-Levin technique ⟹ efficiency + algebraic reduction

WE-FC for circuits

Standard assumptions

More applications e.g., [FKdP23] use special case (WE for VC) to build RBE

16



Conclusion and open problems

New WE notion: realization from simple tools + applications (w/succinctness)

Open problems: 

Avoiding Goldreich-Levin technique ⟹ efficiency + algebraic reduction

WE-FC for circuits

Standard assumptions

More applications e.g., [FKdP23] use special case (WE for VC) to build RBE

Thank you!
Questions?
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