ReSolveD: Shorter Signatures from Regular Syndrome Decoding and VOLE-in-the-Head

Hongrui Cui¹Hanlin Liu²Di Yan³Kang Yang³Yu Yu^{1,2}Kaiyi Zhang¹

Shanghai Jiao Tong University¹ · Shanghai Qi Zhi Institute² · State Key Laboratory of Cryptology³

1

Apr. 16, 2024 · PKC 2024

Synopsis

Motivation

- Vector-OLE in the Head
- Proving RSD in VOLE-hybrid Model

Results

Motivation: Post-Quantum Signature

- Digital Signature is the backbone of the Internet
- Quantum computation threats traditional digital signatures
- NIST PQC Standardization Process

NIST Additional Round of Digital Signature Standardization

PQ-Sig from LPN?

Consider Learning Parity with Noise (aka, Syndrome Decoding.)
 (A, y) ≈ (A, U), for short s, e

LPN: over \mathbb{F}_2

LWE: over \mathbb{Z}_p

- LPN has a similar form compared to LWE (Hamming vs. L2)
- LWE and its variants allow very efficient PQ-Sig
- How about LPN-based signatures?

Unfortunately, LPN is very Different from LWE

- Rejection sampling does not work on Hamming metric
- Nor do we know how to embed trapdoor in **A**
- So what now?

Unfortunately, LPN is very Different from LWE

- Rejection sampling does not work on Hamming metric
- Nor do we know how to embed trapdoor in A

So what now?

Digital Signature = ZK + OWF

Unfortunately, LPN is very Different from LWE

- Rejection sampling does not work on Hamming metric
- Nor do we know how to embed trapdoor in **A**

So what now?

```
Digital Signature = ZK + OWF
```


- GF(2) allows very efficient MPC
- "MPC in the Head" allows converting MPC into ZKP [IKOS07]
- A number of existing works with increasingly better efficiency...
 Papers: [GPS21, FJR21, BGKM22, FJR22, CCR23, AGHHJY23, FR23]
 NIST Submissions: SDitH

- Contribution 1: Combine DPF sketch with VOLE-in-the-Head
- Contribution 2: Use half-tree to optimize computational performance
- The resulting signature scheme demonstrates smaller signatures with comparable running time*

Synopsis

- Motivation
- Vector-OLE in the Head
- Proving RSD in VOLE-hybrid Model

Results

7

VOLE-based DVZK

VOLE-based DVZK

IT-MAC $[\![a]\!] := (a, M[a], K[a])$ subject to $K[a] = M[a] + a \cdot \Delta$ Open $([\![a]\!]): \mathcal{P} \to \mathcal{V} : (a, M[a]), \mathcal{V}$ checks $K[a] = M[a] + a \cdot \Delta$

\$\mathcal{P}\$ opens a different value \$\to\$ \$\mathcal{P}\$ guesses \$\Delta\$
 Soundness error = \$\frac{1}{|\mathbb{F}|}\$ = \$2^{-\lambda}\$

VOLE-based DVZK

8

IT-MAC $\llbracket a \rrbracket := (a, M[a], K[a])$ subject to $K[a] = M[a] + a \cdot \Delta$ Open($\llbracket a \rrbracket$): $\mathcal{P} \to \mathcal{V}$: (a, M[a]), \mathcal{V} checks $K[a] = M[a] + a \cdot \Delta$

- \$\mathcal{P}\$ opens a different value \$\to\$ \$\mathcal{P}\$ guesses \$\Delta\$
 Soundness error = \$\frac{1}{|\mathbb{F}|}\$ = \$2^{-\lambda}\$
- Linear Homomorphism: $\llbracket x \rrbracket + \llbracket y \rrbracket \mapsto \llbracket x + y \rrbracket$

$$\underbrace{\operatorname{Prove} a_1 \times a_2 = a_3}_{\mathcal{V}} \quad \underbrace{\mathsf{K}[\mathsf{a}] = \Delta}_{\mathcal{V}} \cdot \underbrace{\mathsf{a} + \mathsf{M}[\mathsf{a}]}_{\mathcal{P}}$$

$$\underbrace{\operatorname{\mathsf{Prove}} a_1 \times a_2 = a_3}_{\mathbb{V}} \quad \underbrace{\operatorname{\mathsf{K}}[\mathbf{a}] = \Delta}_{\mathbb{V}} \cdot \underbrace{\mathbf{a} + \mathsf{M}[\mathbf{a}]}_{\mathcal{P}}}_{\mathbb{P}} \\
\underbrace{\operatorname{\mathsf{K}}[a_1] \cdot \mathsf{K}[a_2] - \Delta \cdot \mathsf{K}[a_3]}_{\mathbb{B}} = (\mathsf{M}[a_1] + a_1 \cdot \Delta) \cdot (\mathsf{M}[a_2] + a_2 \cdot \Delta) - \Delta \cdot (\mathsf{M}[a_3] + a_3 \cdot \Delta) \\
= (a_1 \cdot a_2 - a_3)\Delta^2 + (\underbrace{a_1 \mathsf{M}[a_2] + a_2 \mathsf{M}[a_1] - \mathsf{M}[a_3]}_{A_1})\Delta + \underbrace{\mathsf{M}[a_1]\mathsf{M}[a_2]}_{A_0}$$

Prove
$$a_1 \times a_2 = a_3$$
 $\underbrace{\mathsf{K}[\mathbf{a}] = \Delta}_{\mathcal{V}} \cdot \underbrace{\mathbf{a} + \mathsf{M}[\mathbf{a}]}_{\mathcal{P}}$
 $\underbrace{\mathsf{K}[a_1] \cdot \mathsf{K}[a_2] - \Delta \cdot \mathsf{K}[a_3]}_{\mathcal{B}} = (\mathsf{M}[a_1] + a_1 \cdot \Delta) \cdot (\mathsf{M}[a_2] + a_2 \cdot \Delta) - \Delta \cdot (\mathsf{M}[a_3] + a_3 \cdot \Delta)$
 $= (a_1 \cdot a_2 - a_3)\Delta^2 + (\underbrace{a_1\mathsf{M}[a_2] + a_2\mathsf{M}[a_1] - \mathsf{M}[a_3]}_{A_1})\Delta + \underbrace{\mathsf{M}[a_1]\mathsf{M}[a_2]}_{A_0}$
• Assuming \mathcal{P} and \mathcal{V} has $\llbracket a_1 \rrbracket, \llbracket a_2 \rrbracket, \llbracket a_3 \rrbracket$
• \mathcal{P} sends A_0, A_1 to prove $a_1 \cdot a_2 = a_3$
• \mathcal{P} denotes the two proves and th

Prove
$$a_1 \times a_2 = a_3$$
 $\underbrace{\mathsf{K}[\mathbf{a}] = \Delta}_{\mathcal{V}} \cdot \underbrace{\mathbf{a} + \mathsf{M}[\mathbf{a}]}_{\mathcal{P}}$
 $\underbrace{\mathsf{K}[a_1] \cdot \mathsf{K}[a_2] - \Delta \cdot \mathsf{K}[a_3]}_{\mathcal{B}} = (\mathsf{M}[a_1] + a_1 \cdot \Delta) \cdot (\mathsf{M}[a_2] + a_2 \cdot \Delta) - \Delta \cdot (\mathsf{M}[a_3] + a_3 \cdot \Delta)$
 $= (a_1 \cdot a_2 - a_3)\Delta^2 + (\underbrace{a_1\mathsf{M}[a_2] + a_2\mathsf{M}[a_1] - \mathsf{M}[a_3]}_{A_1})\Delta + \underbrace{\mathsf{M}[a_1]\mathsf{M}[a_2]}_{A_0}$
Assuming \mathcal{P} and \mathcal{V} has $\llbracket a_1 \rrbracket, \llbracket a_2 \rrbracket, \llbracket a_3 \rrbracket$
 \mathcal{P} sends A_0, A_1 to prove $a_1 \cdot a_2 = a_3$
 \mathcal{P} checks
 $A_1 \cdot \Delta + A_0 = B$

We can prove multiple quadratic relations using random linear combination
 Sample **χ** = (χ⁽¹⁾, ..., χ^(ℓ))
 Compute A₁ = Σ_i χ⁽ⁱ⁾A₁⁽ⁱ⁾, A₀ = Σ_i χ⁽ⁱ⁾A₀⁽ⁱ⁾, B = Σ_i χ⁽ⁱ⁾B⁽ⁱ⁾
 Soundness loss = 1/|F| = 2^{-λ}

VOLEitH Step 1: Replace \mathcal{F}_{OT} by Com&Open

For public-coin DVZK, we can replace $\binom{2}{1}$ -OT with commitment

$$(c_{0}, d_{0}) \leftarrow \operatorname{Com}(\mathbf{m}_{0}), \\ (c_{1}, d_{1}) \leftarrow \operatorname{Com}(\mathbf{m}_{1}) \\ \mathcal{P} \xrightarrow{c_{0}, c_{1}} \mathcal{V} \\ \underbrace{\mathbf{DVZK}}_{\mathbf{b}} \xrightarrow{b} \\ \underbrace{\mathbf{DVZK}}_{\mathbf{b}} \xrightarrow{b} \\ \underbrace{\mathbf{Outputs} m_{b} \text{ if }}_{d_{b}} \\ \underbrace{\mathbf{Open}(c_{b}, d_{b}) \neq \bot}$$

VOLEitH Step 1: Replace \mathcal{F}_{OT} by Com&Open

For public-coin DVZK, we can replace $\binom{2}{1}$ -OT with commitment

VOLEitH Step 2: Small Field VOLE from VC

- The k = 1 case underlies the classical [IKNP03] OT extension.
- To achieve λ -bit security, one need $\frac{\lambda}{k}$ instances of depth k GGM trees

VOLEitH Step 2: Small Field VOLE from VC

- The k = 1 case underlies the classical [IKNP03] OT extension.
- Fo achieve λ -bit security, one need $\frac{\lambda}{k}$ instances of depth k GGM trees

Hongrui Cui · ReSolveD

VOLEitH Step 3: Merge Small Field VOLE into Large Field VOLE

- \mathcal{P} sends syndrome **C** to \mathcal{V}
- \mathcal{V} locally sets $K = K' [0 || \mathbf{C}] \cdot diag(\mathbf{\Delta})$

VOLEitH Step 3: Merge Small Field VOLE into Large Field VOLE

VOLEitH Step 3: Merge Small Field VOLE into Large Field VOLE

- SSOT: Check correlation on a random linear combination for consistency
- \mathcal{A} can gain 1-bit information about Δ via selective failure attack

Synopsis

- Motivation
- Vector-OLE in the Head
- Proving RSD in VOLE-hybrid Model

Results

Proving LPN/SD

- First step: Consider the **dual** form of LPN
- Proving knowledge of **s**, **e** with respect to **A**, **y** is equivalent to proving knowledge of **e** alone

Regular Syndrome Decoding (Learning Parity with Regular Noise)

Let m, k, w, d be positive integers such that m > k, m > w and d = w. The regular noise syndrome decoding problem with parameters (m, k, w, d) is the following problem: Let **H**, **e** and **y** be such that:

- 1. **H** is uniformly sampled from $\mathbb{F}_2^{(m-k) \times m}$,
- 2. **e** is uniformly sampled from $\{[\mathbf{e}_1 \| ... \| \mathbf{e}_w] : \forall i \in [1, w], \mathbf{e}_i \in \mathbb{F}_2^{\frac{m}{w}}, \| \mathbf{e}_i \|_0 = 1\},\$
- 3. **y** is defined as $\mathbf{y} := \mathbf{H} \cdot \mathbf{e}$. From (\mathbf{H}, \mathbf{y}) , find \mathbf{e} .

- **Using VOLEitH** we can get [e]
- $\blacksquare \mathbf{e} = \mathbf{e}_1 \| ... \| \mathbf{e}_w$
- Prove that e_i is a unit vector

- **Using VOLEitH** we can get [e]
- $\blacksquare \mathbf{e} = \mathbf{e}_1 \| ... \| \mathbf{e}_w$
- Prove that e_i is a unit vector
- Solution: linear sketch functions [BGI16]

- **Using VOLEitH** we can get $[\![e]\!]$
- $\blacksquare \mathbf{e} = \mathbf{e}_1 \| ... \| \mathbf{e}_w$
- Prove that e_i is a unit vector
- Solution: linear sketch functions [BGI16]
- **Completeness**. If $e_i = unit(j)$

- **Using VOLEitH** we can get $[\![e]\!]$
- $\blacksquare \mathbf{e} = \mathbf{e}_1 \| ... \| \mathbf{e}_w$
- Prove that e_i is a unit vector
- Solution: linear sketch functions [BGI16]

Completeness. If e_i = unit(j)

$$\langle \mathbf{1}, \mathbf{e}_i \rangle = \mathbf{e}_{i,1} + ... + \mathbf{e}_{i,m/w} = \mathbf{e}_{i,j} = 1$$

Soundness. For every $j, k \in [m/w]$ s.t. $j \neq k \land \mathbf{e}_{i,j} = 1 \land \mathbf{e}_{i,k} = 1$

Soundness. For every $j, k \in [m/w]$ s.t. $j \neq k \land \mathbf{e}_{i,j} = 1 \land \mathbf{e}_{i,k} = 1$

If $wt(\mathbf{e}_i) > 1$, there will be cross terms

SZ-Lemma: except with probability $\frac{2}{2^{\lambda}}$, we have wt(\mathbf{e}_i) ≤ 1

Soundness. For every $j, k \in [m/w]$ s.t. $j \neq k \land \mathbf{e}_{i,j} = 1 \land \mathbf{e}_{i,k} = 1$

If $wt(\mathbf{e}_i) > 1$, there will be cross terms

SZ-Lemma: except with probability $\frac{2}{2^{\lambda}}$, we have wt(\mathbf{e}_i) ≤ 1

$$\langle \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ \mathbf{e}_i \end{bmatrix} \rangle = 1$$

Use IT-MAC opening to check that $\langle \mathbf{1}, \mathbf{e}_i \rangle = 1$

Synopsis

- Motivation
- Vector-OLE in the Head
- Proving RSD in VOLE-hybrid Model

Results

ReSolveD Signature

Systematic Form

- $\blacksquare \mathbf{H} = [\mathbf{I}_{m-k} \| \mathbf{H}_{\mathbf{B}}]$
- $\blacksquare \mathbf{y} = \mathbf{H} \cdot \mathbf{e} = \mathbf{e}_{A} + \mathbf{H}_{B} \cdot \mathbf{e}_{B}$
- We only commit $\llbracket \mathbf{e}_B \rrbracket$ and reconstruct $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{y} \mathbf{H}_{\mathbf{B}} \cdot \mathbf{e}_B \Vert \mathbf{e}_B \rrbracket$

Half-Tree

- Replace $(r_{2i}||r_{2i+1}) \leftarrow G(r_i)$ with $r_{2i} \leftarrow H(r_i)$, $r_{2i+1} \leftarrow H(r_i) \oplus r_1$
- Saves half of the AES calls
- Provable security in RPM

Parameters

• *m*: witness length, τ : repetition count

Security estimation according to the formulas in [CCJ23]

Parameter Set	т	k	W	au	Estimated Bit Security
ReSolveD-128-Var1	1302	738	217	14	128.20
ReSolveD-128-Var2	1302	738	217	10	128.20
ReSolveD-L1	1470	834	245	11	143.20
ReSolveD-L3	2196	1248	366	17	207.48
ReSolveD-L5	2934	1668	489	22	272.29

Performance

Compared with NIST Alternative PQ Signature

Scheme _	Sizes in Bytes				Ru	untimes in	Assumption	
	sig	sk	pk	sig + pk	$t_{ m keygen}$	$t_{\sf sign}$	$t_{ m verify}$	
ReSolveD-L1	3916	32	96	4012	4.36	97.51	80.21	RSD over \mathbb{F}_2
ReSolveD-L3	8532	48	143	8675	9.97	257.37	226.71	RSD over \mathbb{F}_2
ReSolveD-L5	14944	64	191	15135	17.66	537.54	469.72	RSD over \mathbb{F}_2
FAEST-L1-S	5006	32	32	5038	0.19	129.14	124.89	AES
FAEST-L3-S	12744	56	64	12808	1.01	401.76	371.87	AES
FAEST-L5-S	22100	64	64	22164	1.47	624.62	586.12	AES
FAEST_EM-L1-S	4566	32	32	4598	0.18	112.06	108.85	EM-AES
FAEST_EM-L3-S	10824	48	48	10872	0.46	297.66	288.40	EM-AES
FAEST_EM-L5-S	20956	64	64	21020	1.41	540.35	540.04	EM-AES
SDitH-L1-gf256	8224	404	120	8344	6.08	33.23	28.62	SD over \mathbb{F}_{256}
SDitH-L1-gf251	8224	404	120	8344	4.41	14.76	12.32	SD over \mathbb{F}_{251}
SDitH-L3-gf256	19544	616	183	19727	7.31	113.98	98.82	SD over \mathbb{F}_{256}
SDitH-L3-gf251	19544	616	183	19727	5.30	34.46	28.32	SD over \mathbb{F}_{251}
SDitH-L5-gf256	33992	812	234	34226	10.59	209.67	186.77	SD over \mathbb{F}_{256}
SDitH-L5-gf251	33992	812	234	34226	8.74	59.33	54.85	SD over \mathbb{F}_{251}

More Performace

Compared with previous PQC submissions

Scheme	Sizes in KB			Runtim	Assumption	
	sig	pk	sig + pk	t _{sign}	^t verify	
Dilithium2	2.36	1.28	3.64	0.128	0.046	MLWE
Falcon-512	0.65	0.88	1.53	0.168	0.036	NTRU
SPHINCS ⁺ -SHAKE-L1-F	16.69	0.03	16.72	18.37	1.08	Hash
SPHINCS ⁺ -SHAKE-L1-S	7.67	0.03	7.70	355.64	0.38	Hash
SPHINCS ⁺ -SHA2-L1-F	16.69	0.03	16.72	10.86	0.69	Hash
SPHINCS ⁺ -SHA2-L1-S	7.67	0.03	7.70	207.98	0.28	Hash
SPHINCS-α-SHAKE-L1-F	16.33	0.03	16.36	15.85	0.99	Hash
SPHINCS- α -SHAKE-L1-S	6.72	0.03	6.75	316.60	1.36	Hash
SPHINCS- α -SHA2-L1-F	16.33	0.03	16.36	7.40	0.56	Hash
SPHINCS- α -SHA2-L1-S	6.72	0.03	6.75	149.18	0.75	Hash
Picnic1-L1-FS	32.09	0.03	32.12	1.37	1.10	LowMC
Picnic2-L1-FS	12.05	0.03	12.08	40.95	18.20	LowMC
Picnic3-L1	12.30	0.03	12.33	5.17	3.96	LowMC
Picnic3-L1-K12	12.30	0.03	12.33	3.98	2.87	LowMC
Picnic3-L1-64	11.14	0.03	11.17	23.25	17.21	LowMC
Picnic3-5-L1	13.38	0.03	13.41	5.59	4.63	LowMC
ReSolveD-L1	3.82	0.09	3.91	95.51	80.21	RSD

Thanks for your listening