Compact Frequency Estimators

in Adversarial Environments

Sam A. Markelon

University of Florida

Mia Filić

ETH Zürich

Thomas Shrimpton

University of Florida

A way to

compactly represent (stream of) data

and

provide approximate answers to queries about the data

A way to

compactly represent (stream of) data

and

provide approximate answers to queries about the data

Frequency estimation
 How many times does x appear in the set?
 Count-min sketch, HeavyKeeper

A way to

compactly represent (stream of) data

and

provide approximate answers to queries about the data

- Frequency estimation
 How many times does x appear in the set?
 Count-min sketch, HeavyKeeper
- Membership queries
 Is x in the set?
 Bloom filter, Cuckoo filter

A way to

compactly represent (stream of) data

and

provide approximate answers to queries about the data

- Frequency estimation
 How many times does x appear in the set?
 Count-min sketch, HeavyKeeper
- Membership queries
 Is x in the set?
 Bloom filter, Cuckoo filter
- Cardinality estimation
 How many distinct elements in the set?

 HyperLogLog, KMV estimator

Compact Frequency Estimators (CFE) help us

Poseidon (Zhang et al. 2020) ACC-Turbo (Alcoz et al. 2022) ALBUS (Scherrer et al. 2023)

Jaqen (Liu et al. 2021)

Ripple (Xing et al. 2021)

Stream

Stream

Stream

Stream

Stream

Stream

n,z,r,p,t,w,l,l,n,s,k

Stream

n,z,r,p,t,w,l,l,n,s,k

Our focus

Adversarial correctness of Compact Frequency Estimators (CFE)

 How does an adversary interfere with the functionality of Count-min sketch (CMS) and Heavy-keeper?

Our focus

Adversarial correctness of Compact Frequency Estimators (CFE)

 How does an adversary interfere with the functionality of Count-min sketch (CMS) and Heavy-keeper?

Exploration of a more robust CFE

 How can we reduce estimation error and make CFE more robust in adversarial settings?

Count-min sketch (CMS)

CMS: how does it work?

Count-min sketch (CMS)

CMS: attack model

CMS: attack model

CMS: attack goal

Cover set insertions

Err: insertions/k

Cover set

2^20

Err: insertions/k

CMS: attack

Err: 2^20/3 approx. 350k

CMS: attack model cont.

CMS: cover set finding

CMS: cover set finding

insert + query

Cover set = $\{z1, z2, ..., zk\}$

CMS: attack cont.

CMS: attack cont.

Cover set

/
/
/
insertions/k-m Hk

Err: insertions/k - m Hk

We have similar attacks against Heavy-Keeper

We have similar attacks against Heavy-Keeper, Count-Sketch, and CMS with conservative updates

Our attacks make

elements absent from the stream marked as heavy

Our attacks make

elements absent from the stream marked as heavy or high-frequency elements marked as absent.

Our attacks make

elements absent from the stream marked as heavy or

high-frequency elements marked as absent.

Existing CFE are not adversarially robust

Overestimator + Underestimator

Overestimator + Underestimator

Overestimator + Underestimator

CMS est & *HeavyKeeper est ---refine---> final est

CMS est & *HeavyKeeper est ---refine---> final est

CK err < 1/2(CMS est - HK est)


```
+ other error related properties (see our paper) :)
```


CK ~~ CMS ~~ HK

Honest setting experiments

CMS M

*HeavyKeeper A

Attacks similar to the CMS ones

CMS M

*HeavyKeeper A

Err: insertions/(2k)

CMS M

*HeavyKeeper A

Err: CK < 1/2 CMS CK << 1/2 HK

Attack experiments

CMS M

*HeavyKeeper A

CK can detect suspicious estimates

CMS M

*HeavyKeeper A

CK can detect suspicious estimates

Open problems & Future work

Underestimator ?

Overestimator ?

Open problems & Future work

Thank you!

Paper: https://ia.cr/2023/1366

Code: https://github.com/smarky7CD/cfe-in-adv-envs