LaZer:
a Lattice Library for Zero-Knowledge
and Succinct Proofs

Vadim Lyubashevsky, Gregor Seiler, Patrick Steuer

IBM Research Europe, Zurich

Quantum-Safe Zero-Knowledge
(state of the art)

The only concretely-efficient ZK SNARKs used today are hash-based

Up until a few years ago, even linear-size lattice-based proofs were not concretely
efficient

But lattice-based proofs can be more compact and more efficient
... especially for proving “lattice relations” like As=t

Lattices can give the best of all worlds — quantum-safe and the most efficient

Progress on Lattice ZK

* Linear-Size Proofs [..., LPS’ 22+some improvements]
e Useful when witnesses are “short”

* e.g. Ring Signatures, Kyber key well-formedness, Anonymous credentials in a
(few) dozen KB

* Results in quite efficient lattice-based privacy protocols

* SNARKS [..., BS 23]

* Any circuit has proof size 40 — 60KB. Very slow asymptotic growth

* Seems to give the most space-efficient quantum-safe multi-party (e.g.
threshold) crypto

Applications

Key / Ciphertext Well-Formedness J
Privacy-Based Crypto J

Threshold Crypto

44

General Circuits

Lattice ZK in Privacy Protocols

ZK proofs are a crucial part of the protocols for:

* Blind signatures
* Anonymous credentials
* NIKE

* Threshold signatures

Problem: ZK is very complicated to implement

Efficient parametrization of the ZK proof depends on the instance

e ZK proof consists of many parts
* Each part requires its own parameter set
* All the parameters are intertwined, many trade-offs

Non-trivial to do manually even for experts
For previous schemes, it was redone every time

In the newer schemes, it’s simply not done

Goals of LaZer

1. Simple to Use:
* No understanding of Lattice ZK proofs necessary
e Specify the relation, and just call the ZK proof
e Can write full protocols using the easy-to-use python wrapper
 The ZK parameters are automatically figured out “under the covers”

2. Universal and Modular:
e Should be able to prove any relation — ZK proofs automatically adjust to the instance
* Allow for (efficiency) improvements to be easily added to the library

3. Efficient:

* The flexibility and ease-of-use should only have a minor effect on efficiency

LaZer

Crypto Protocol “Canvas” Python wrapper

dot
B .
samp
const
ZK Protocols LaBRADOR [LPS 22]

Common Mathematical Algebra
Operations

Blind sighatures

user(pk), signer(sk), verifier(pk)
- user, signer run protocol s.t user obtains a signature on their message

- verifier can verify the signature on the message

Properties:
1. correctness
2. anonymity/unlinkability: signer cannot link signatures to interactions

3. one-more unforgability: a user running the protocol n times cannot
obtain more than n signatures

Blind sighatures from lattices

Need two ZKPs, each proving knowledge of a "short" solution w to a linear relations
of the form

Aw+t=0

"short": for a partition of w, each part is either bounded in |,-norm or has binary
coefficients only

statement: (A,t) + shortness, witness: w

shortness constraints are fixed

example: parameter specification for codegen

psteuer@li-83147acc-2e21-11b2-a85c-f46fabc726ce:~/github/lazer

Create a header file with proof system parameters for
proving knowledge of a witness w in Rp™n (Rp = Zp[X]/(X"d + 1))
such that

1. w satisfies a linear relation over Rp: Aw + U =
2. each element in a partition of w either ..

2.1 has binary coefficients only

2.2 satisfies an 12-norm bound

from math import sqrt

p2" # variable name

Rp degree
Rp modulus
dimensions of A in Rp”™(m,n)

partition of w
12-norm bounds on parts of w
binary coeffs condition on parts of w

5833 # optional: linf-norm bound on w

code example: proving knowledge of a signature

psteuer@li-83147acc-2e21-11b2-a85c-f46fabc726ce:~/github/lazer/python
def unblind(self, blindsig: bytes):
tau, sl, s2 = bytes(64), poly t(Rp), poly t(Rp)
[...] decode blindsig -> tau, sl, s2

A
u
W

polymat t(Rp, 1, 5, [Arl, Ar2, Atau, -Bl, -self.B2])
polyvec t(Rp, 1
polyvec t(Rp, 5

, [Am * self.m])
, [self.rl, self.r2, poly t(Rp, tau), sl, s2])

self.p2 prover.set statement(A, u)
self.p2 prover.set witness(w)
p2 = self.p2 prover.prove()

sig = p2
return sig

code example: proof verification

psteuer@li-83147acc-2e21-11b2-a85c-f46fabc726ce:~/github/lazer/python

def verify(self, msg: bytes, sig: bytes):
m = poly t(Rp, msg)
= sig

A = polymat t(Rp, 1, 5, [Arl, Ar2, Atau, -Bl, -self.B2])
u polyvec t(Rp, 1, [Am * m])

self.p2 verifier.set statement(A, u)
self.p2 verifier.verify(p2)

Current State — LPS’22

* privacy protocols (using [LPS '22]):

* e.g. blind signatures / anonymous credentials / well-formedness proofs
* Have simple python implementations
 All have fairly small proofs (smallest of all the quantum-safe constructions)
* Acceptable runtime, but can be greatly optimized — (a 100x speedup should be possible)

| ~proofsize (kB)

blind signature 27 420
anonymous credentials 29 610
Kyber1024 19 190

LaBRADOR SNARK

* Recursive folding protocol

e Small concrete proof size of about 60 KB (optimized
params)

* Fully vectorized polynomial arithmetic using AVX-512
instructions

* Multimodular 16-bit arithmetic via explicit CRT
* Multiprecision arithmetic with 14-bit limbs

* Fast binary matrix multiplication for Johnson-
Lindenstrauss projection using Four Russians algorithm
and in-register shuffles for table lookups

By RichardF, CC BY-SA 3.0,
http://creativecommons.org/licenses/by-sa/3.0/

Chihughua Frontend

Dot-product constraints and norm
constraint on witness s = (54, ..., S;)

z al',j(SiJSj) + z<§0il Si) +b=0
i,j i
Ensiuz <p
[

By Steven Shigeo Yamada, CC BY 2.0,
https://creativecommons.org/licenses/by/2.0

Dachshund Frontend

 Same dot-product constraints as in
Chihuahua

* But individual norm constraints on all
witness vectors (l,-norm or binary)

z ai,j<SiJSj> + 2<‘Pi»5i> +b=0 ':.z;@: % "
i ”

— i, soa e S e TR R P e e e e

l'] T e Ve 0 5 G POt s AP A 1 o O O AT 0 e 8k ks v
By Igor Bredikhin, CC BY 3.0,
https://creativecommons.org/licenses/by/3.0

”Sillz < Bi for all i

Greyhound Frontend

* Polynomial commitment scheme
joint work with Khanh Nguyen

* Transparent setup

 Sublinear verifier complexity (square
root)

 Faster proving time than STARKs

http://creativecommons.org/licenses/by-sa/3.0/

* Smaller proof sizes than STARKs

Dachshund Example: Signature Aggregation

* Prove many Falcon signatures for same message under different
public keys

Size 84.82 KB 81.2 KB 83.91 KB
Prover Time 102 ms 590 ms 5.56 s
Verifier Time 81 ms 396 ms 3.22s

Greyhound Runtimes

» Commit to polynomial f of degree n in Z;[X] for q = 232

* Prove evaluationof fatx € Z,, f(x) =y

Proof Size 74 KB 74 KB 79 KB 77 KB 91 KB
Commit Time 0.0497 s 0.249 s 1.199 s 6.77 s 23.5s
Prove Time 0.107 s 0.272s 0.771s 2.65s 847 s

Verify Time 0.072s 0.153 s 0.318s 0.676s 1.28 s

Comparison to STARKs forn = 248

soene e ____onmn __ro L __

Brakedown-PC 93767 KB 150 s 2.56s
Ligero-PC 14383 KB 169 s 124 s 0.402 s
Greyhound 91 KB 23.5s 8.47 s 1.28 s

THANK YOU!!

