
LaZer:
a Lattice Library for Zero-Knowledge

and Succinct Proofs
Vadim Lyubashevsky, Gregor Seiler, Patrick Steuer

IBM Research Europe, Zurich

Quantum-Safe Zero-Knowledge
(state of the art)

The only concretely-efficient ZK SNARKs used today are hash-based

Up until a few years ago, even linear-size lattice-based proofs were not concretely
efficient

But lattice-based proofs can be more compact and more efficient

 … especially for proving “lattice relations” like As=t

Lattices can give the best of all worlds – quantum-safe and the most efficient

Progress on Lattice ZK

• Linear-Size Proofs [… , LPS’ 22+some improvements]
• Useful when witnesses are “short”
• e.g. Ring Signatures, Kyber key well-formedness, Anonymous credentials in a

(few) dozen KB
• Results in quite efficient lattice-based privacy protocols

• SNARKS [..., BS ‘23]
• Any circuit has proof size 40 – 60KB. Very slow asymptotic growth
• Seems to give the most space-efficient quantum-safe multi-party (e.g.

threshold) crypto

Applications

LaBRADOR LNP ‘22

Key / Ciphertext Well-Formedness

Privacy-Based Crypto

Threshold Crypto

General Circuits

Lattice ZK in Privacy Protocols

ZK proofs are a crucial part of the protocols for:

• Blind signatures
• Anonymous credentials
• NIKE
• Threshold signatures
• …

Problem: ZK is very complicated to implement

Efficient parametrization of the ZK proof depends on the instance
• ZK proof consists of many parts
• Each part requires its own parameter set
• All the parameters are intertwined, many trade-offs

Non-trivial to do manually even for experts

For previous schemes, it was redone every time

In the newer schemes, it’s simply not done

Goals of LaZer

1. Simple to Use:
• No understanding of Lattice ZK proofs necessary
• Specify the relation, and just call the ZK proof
• Can write full protocols using the easy-to-use python wrapper
• The ZK parameters are automatically figured out “under the covers”

2. Universal and Modular:
• Should be able to prove any relation – ZK proofs automatically adjust to the instance
• Allow for (efficiency) improvements to be easily added to the library

3. Efficient:
• The flexibility and ease-of-use should only have a minor effect on efficiency

LaZer

Algebra

LaBRADOR [LPS ‘22]

PCS
dot

prod
const

… As = t

1-
out-
of-

many

…

Python wrapper

Useful Building Blocks

ZK Protocols

Common Mathematical
Operations

Crypto Protocol “Canvas”

trap.
samp

Blind signatures

user(pk), signer(sk), verifier(pk)
- user, signer run protocol s.t user obtains a signature on their message
- verifier can verify the signature on the message

Properties:
1. correctness
2. anonymity/unlinkability: signer cannot link signatures to interactions
3. one-more unforgability: a user running the protocol n times cannot

obtain more than n signatures

Blind signatures from lattices

Need two ZKPs, each proving knowledge of a "short" solution w to a linear relations
of the form

Aw + t = 0

"short": for a partition of w, each part is either bounded in l2-norm or has binary
coefficients only

statement: (A,t) + shortness, witness: w
shortness constraints are fixed

example: parameter specification for codegen

code example: proving knowledge of a signature

code example: proof verification

Current State – LPS’22

• privacy protocols (using [LPS ’22]):
• e.g. blind signatures / anonymous credentials / well-formedness proofs

• Have simple python implementations
• All have fairly small proofs (smallest of all the quantum-safe constructions)
• Acceptable runtime, but can be greatly optimized – (a 100x speedup should be possible)

~ proof size (KB) ~ prover runtime (ms)

blind signature 27 420

anonymous credentials 29 610

Kyber1024 19 190

LaBRADOR SNARK
• Recursive folding protocol
• Small concrete proof size of about 60 KB (optimized

params)
• Fully vectorized polynomial arithmetic using AVX-512

instructions
• Multimodular 16-bit arithmetic via explicit CRT
• Multiprecision arithmetic with 14-bit limbs
• Fast binary matrix multiplication for Johnson-

Lindenstrauss projection using Four Russians algorithm
and in-register shuffles for table lookups

By RichardF, CC BY-SA 3.0,
http://creativecommons.org/licenses/by-sa/3.0/

Chihuahua Frontend
Dot-product constraints and norm
constraint on witness 𝑠 = (𝑠!, … , 𝑠")

!
!,#

𝑎!,# 𝑠!, 𝑠# +!
!

𝜑!, 𝑠! + 𝑏 = 0

!
!

𝑠! $ ≤ 𝛽

By Steven Shigeo Yamada, CC BY 2.0,
https://creativecommons.org/licenses/by/2.0

Dachshund Frontend
• Same dot-product constraints as in

Chihuahua
• But individual norm constraints on all

witness vectors (𝑙#-norm or binary)

(
$,&

𝑎$,& 𝑠$, 𝑠& +(
$

𝜑$, 𝑠$ + 𝑏 = 0

𝑠$ # ≤ β$ for all 𝑖

By Igor Bredikhin, CC BY 3.0,
https://creativecommons.org/licenses/by/3.0

Greyhound Frontend
• Polynomial commitment scheme

joint work with Khanh Nguyen
• Transparent setup
• Sublinear verifier complexity (square

root)
• Faster proving time than STARKs
• Smaller proof sizes than STARKs

By PardoY, CC BY-SA 3.0,
http://creativecommons.org/licenses/by-sa/3.0/

Dachshund Example: Signature Aggregation

• Prove many Falcon signatures for same message under different
public keys

No of signatures 100 1’000 10’000

Size 84.82 KB 81.2 KB 83.91 KB

Prover Time 102 ms 590 ms 5.56 s

Verifier Time 81 ms 396 ms 3.22 s

Greyhound Runtimes

• Commit to polynomial 𝑓 of degree 𝑛 in ℤ' 𝑋 for q ≈ 2(#

• Prove evaluation of 𝑓 at 𝑥 ∈ ℤ', 𝑓 𝑥 = 𝑦

Degree n 𝟐𝟐𝟎 𝟐𝟐𝟐 𝟐𝟐𝟒 𝟐𝟐𝟔 𝟐𝟐𝟖

Proof Size 74 KB 74 KB 79 KB 77 KB 91 KB

Commit Time 0.0497 s 0.249 s 1.199 s 6.77 s 23.5 s

Prove Time 0.107 s 0.272 s 0.771 s 2.65 s 8.47 s

Verify Time 0.072 s 0.153 s 0.318 s 0.676 s 1.28 s

Comparison to STARKs for 𝑛 = 2!"

Scheme Size Commit Prove Verify

Brakedown-PC 93767 KB 150 s 13 s 2.56 s

Ligero-PC 14383 KB 169 s 12.4 s 0.402 s

Greyhound 91 KB 23.5 s 8.47 s 1.28 s

THANK YOU!!

We are hiring a PhD Student to
work on Lattice Proofs!

