
WhatsApp Key Transparency

Sean Lawlor
Software Engineer

Kevin Lewi
Software Engineer



Overview

Infrastructure

Auditable Dictionaries

Agenda



Overview



End-to-End Encrypted Messaging

Phone #s Public Keys

Alice pk_Alice

Bob pk_Bob

… …

Alice Bob

“Give me Bob’s pk” “Give me Alice’s pk”

pk_Bob pk_Alice



Security Codes

Alice and Bob can verify that they got the correct public 
key if they have an already-established authenticated 
channel (e.g. Zoom call, meeting up in person)

Code = Hash(Alice’s public keys, Bob’s public keys)

Note: this code changes every time Alice or Bob add a 
new device!

Also: Group chats?



Key Transparency

Automatic validation of public keys

How?
- WhatsApp servers publish a 

commitment to the database of public 
keys

- Users check their public keys against 
this commitment to make they are 
consistent



Infrastructure



Normal Registration and Lookup

“Hi, I’m Bob, I want to register a new key:
4c94884df1bc…”

User Key

Alice ecb6427d8ae8…

Bob 4c94884df1bc…

Charlie 95f64aee5f4d…
“What is Alice’s latest public key?”

ecb6427d8ae8…

Database

Registration (Write Path):

Lookup (Read Path):



Key Transparency: Write Path
New Epoch!

AWS Bucket

Root Hash +

Append-Only Proof

“Hi, I’m Bob, I want to register a new key:
4c94884df1bc…”



Key Transparency: Publish

Append-Only 
Proof

Version: 14
Public Root Hash: 
9f96c0d0d583298…

Version: 15
Public Root Hash: 
481109384d45…

Append-only proofs guarantee that we manage the database consistently

Each publish contains:
Version: 14
Public Root Hash: 
9f96c0d0d…
Append-Only Proof: …



Key Transparency: Read Path

“Give me the latest 
copy of Alice’s key”

The server returns:
- Alice’s latest key
- The latest root hash
- An inclusion proof
- A root hash signature



Key Transparency: Read Path

“Give me the latest 
copy of Alice’s key”

The server returns:
- Alice’s latest key
- The latest root hash
- An inclusion proof
- A root hash signature

Root hash signature ties 
the latest hash in AWS 
to what the client 
received

AWS Bucket



Key Directory 
Client

Key Directory 
Client

Key Directory 
Client

Key Directory 
Client

Infrastructure
Single writer, multiple readers

Database

Get Proof

Read-only connection

Key 
Queue

Change identity key
(register, re-register,
delete account) Key Directory 

Sequencer

Write
able

Connection

5 min

Key Directory Client

WhatsApp Infrastructure



Infrastructure - Some Gotchas
● Single writer - one binary tree to rule them all
● “Shadow” clone of prod database
● Pause, resume, replay all supported from shadow logs

Testing write flows

Production
Database

Key 
Queue

Prod Key Directory 
Sequencer

WhatsApp Infrastructure

Blob Storage

(1) (2)

(3)

Shadow
Database

Key Directory 
Worker

(4) (5)

Test Key Directory 
Sequencer



Client Experience



Auditable 
Dictionaries



Construction: Sparse Merkle Trees and VRFs [CONIKS 2015]

Sparse Merkle Trees:
- Unique positions for entries
- Supports inclusion and non-inclusion proofs

We use Verifiable Random Functions (VRFs) to randomize leaf positions in the Merkle tree

0 1

0 1 0 1

0 1

0 1

0 1

0 1 0 1

0 1

0 1

Inclusion Proof Non-Inclusion Proof

0010 = VRF(K, …)

101 = VRF(K, …)

100 110



Large Append-Only Proofs

Auditors verify append-only-ness of the tree

Audit proofs only contain leaf values (hashes), not the raw public keys themselves.
However, proofs are O(M log N) in size, where: M = # of updates, N = total # of leaves in the tree

In practice: they are ~200 MB each!

+ →

(M times)old tree new tree



AKD: Rust Open-Source Library

https://github.com/facebook/akd

- An (optimized) implementation of the 
SEEMless [CDGM’19] protocol

- Built on top of a Sparse Merkle tree and ECVRF 
(RFC 9381)

- Same as what we are using in WhatsApp 
today

- In fact, you can use it to verify our audit proofs

- Dual-licensed under Apache 2.0 and MIT

https://github.com/facebook/akd


AKD: For Industry

https://github.com/facebook/akd

- Composable storage trait for flexibility

- Employs preloading nodes + caching to make 
operations more efficient

- Audited by NCC Group in Nov 2023

https://github.com/facebook/akd


AKD: For Academics

https://github.com/facebook/akd

- We also have benchmarks to test against, 
future academic works may be able to use this

- Crypto operations are configurable
- E.g. swapping out VRF, hash function

https://github.com/facebook/akd


Related Work

Merkle-tree-based solutions:

- CONIKS [MBBFF’15]
- SEEMless [CDGM’19]: more efficient history checks + privacy guarantees

- Parakeet [MKSGOLL’23]: putting SEEMless into practice, handling deletion
- Merkle^2 [HHKYP’21]: Uses Merkle prefix tree + chronological tree together
- Rotatable Zero Knowledge Sets [CDGGKMM’22]

- Addresses forward secrecy for VRF private key

Algebraic solutions:

- Transparency Logs via Append-Only Authenticated Dictionaries [TBPPTD’19]
- Verdict [TKPS’21], VeRSA [TFZBT’22]

Other implementations:

- Keybase [2015], Google [2017], Zoom [2020], Apple [2023], Proton [2023]




