LLMs can do it better: Patching Code for
Side-Channel Leakages

M. Caner Tol, Berk Sunar

Center for Hardware Intelligence, Privacy and Security (CHIPS)

Worcester Polytechnic Institute

Microarchitectural Attacks

Exploits uArch features in modern CPUs
Timing side-channel leakage (early 2000’s)

Breaks through sandboxing:
* Virtual machines, Cloud VMs, Browsers, Mobile OSs

Transient Execution Attacks:
* Spectre, Meltdown, etc.
* Side effect of speculative execution

* E.g. allows regular users to gain root privileges on
Intel and ARM machines.

MDS Attacks RIDL, ZombielLoad, Fallout etc.
Rowhammer fault injection

Recent vulnerability: Downfall by Moghimi et al.

Victim

VM

VMM

Hardware

The Big Picture

* Crypto library and software developers
are reluctant to issue patches e.g.

* OpenSSLl’s response to

Spectre/Meltdown style disclosures:

* Similar response to Rowhammer
attacks on OpenSSL primitives:

Sent: Wednesday, August 24, 2022 4:27 AM
Subject: [EXT] Re: [openssl-security] openssl| - vulnerability
disclosure

Thank you for this report. In general fault injection attacks are
outside of our threat model - see

https://www.openssl.org/policies/general/security-policy.html

OpenSSL Blog

Blog | Archives

Spectre and Meltdown Attacks
Against OpenSSL

“Local side channel attacks, such as these, are
outside the scope of our security policy, however
the project generally does introduce mitigations
when they are discovered. In this case, the OTC
has decided that these attacks will not be
mitigated by changes to the OpenSSL code base.”

https://www.openssl.org/policies/secpolicy.html

Developer’s Wishlist

From the OpenSSL Blog:

“Maintaining code with mitigations in place would be significantly more difficult. Most
potentially vulnerable code is extremely non-obvious, even to experienced security
programmers.

It would thus be quite easy to introduce new attack vectors or fix existing ones
unknowingly.

The mitigations themselves obscure the code which increases the maintenance burden.” {_ Maintainabilit

“Automated verification and testing of the attacks is necessary but not sufficient. We do

not have automated detection for this family of vulnerabilities and if we did, it is likely that
variations would escape detection. This does not mean we won’t add automated checking Reliability
for issues like this at some stage.”

Automation

“These problems are fundamentally a bug in the hardware...”

“Some kernels and compilers can provide partial mitigation. Specifically, several common ——
compilers have introduced code generation options addressing some of these classes of Integration
vulnerability...”

-b ‘

Background — Speculative Execution

O W N

vold user function v0l(size t x) {

if (x < arrayl size) {
temp &= arravyZ2larrayl[x] *

}

1;

Background — Speculative Execution

| don’t know array1_size yet.
| will execute the next line.

O W N

if (x < arrayl size)

}

vold user function v0l(size t Xx)

{

{

temp &= arravyZ2larrayl[x] *

1;

Q
oo

Background — Speculative Execution

| don’t know array1_size yet.
| will execute the next line.

O W N

if (x < arrayl size)

}

vold user function v0l(size t Xx)

{

{

temp &= arrayZ{arrayl[x]y* -

Our Approach

* Can we use GPT4 to rewrite vulnerable code?
* |f yes, we have a scalable tool!
* No costly human security expert in the loop

* Goals
* Patch non-constant time behavior by recoding
* Patch Spectre-v1 gadgets by recoding

* For detection, we can use third-party tools
* Microwalk for non-constant time behavior (dynamic execution)
e Other tools for Spectre v1

Vulnerable Code Fragments

Data Dependent
Equality check

- o b B W N =

1

Spectre v1 example *
3

4

bool equals (byte al size_t a_len,

1y
byte b[], size_t b_len) {
for (size_t 1 = 0; 1 < a_len; 1i++)
if (a[i] != b[i]) // data dependent!

return false
return true;

vold victim_ function(size_t x) {
if(x < size)
temp &= array?2|[arrayl [x]

}

* 5127];

ZerolLeak Framework

[SE::;?;e] { Functions H} PatChT
v

[CompilerlParser]
LLM

Syntactically
correct?

Ves unctionallyNy S Prompt
correct? Generator
£
Yes

pS S

] W j Leakage Leakage? >No—>»Patched
Profilers 'L Reports

Use GPT4 for Microwalk Template Generation

» The dynamic profiler Microwalk
requires a template input

 We may also use GPT4 to generate
the Microwalk input template

User Prompt:
Implement a driver code using the following
template. Do not implement any other functions.

#include <stdint.h>
#include <stdio.h>
#include <crypto.h>

extern void RunTarget (FILE*x input) {
// Read the input file and assign it to the
// secret key
// Initialize other variables with random data
// Execute the primitive
// Verify If the primitive works
}

extern void InitTarget (FILEx input) {
// Initialize library
// If there isn’t a dedicated initialization
// function, just run the first test case for
// the first test case file:
// RunTarget (input) ;

11

Constant-time Patching

In ZerolLeak, the Profiler identifies leaky C and
Javascript lines reporting specifics:

» Level of leakage

» Line of the leaky statements

» Type of leakage, e.g. memory reference

We use this information to populate a Prompt
Template for constant time patching

We replace <language> with the
programming language, (C or Javascript).

We use <specifics> forinstructing
workarounds for the tool or language-specific
compatibility issues.
« E.g., Javascript version ES6 is not supported by
Microwalk.

System Prompt:

You are an expert at implementing constant-time
cryptographic algorithms in <language>.

Patch the given functions according to user’s
instructions. Do not give detailed explanations.
The generated code should be complete, do not omit
any part of the code. It should be able to run
without any post-processing. You can implement new
functions and integrate them with the original
function. Do not introduce new arguments to the
given function. Do not change the name of the
function. <specifics>

User Prompt:

<Option 1>

<function to patch> <array names> array is
accessed dependent on the secret in line <line>.
Patch the code such that the array access is made
input independent.

<Option 2>

<function to patch> The condition in

<if statement> is secret dependent and causes
side channel vulnerability. Patch the code such

that it does not require any conditional execution}

<Option 3>

<function to patch> The termination condition in
<loop statement> is secret dependent. Patch the
code such that loops execute the same amount of
time for every input.

<Option 4>

<crash reason> The generated code must be complete|

Generate everything even if you do not make any
changes. Try the same patch again.

12

Comparison of LLMs

Model-Version Release Date Publisher Open-Sourced Memory Leakage Branch Leakage Spectre-V1 Estimated Cost [USD]

GPT4-0613 06/13/2023 X 5/5 12/13 16/16 $1.34
GPT3.5-turbo-0613 06/13/2023 X 2/5 9/13 10/16 $0.07
text-davinci-003 10/28/2022 pen X 0/5 7/13 12/16 $2.29
code-davinci-edit-001 03/15/2022 X 0/5 8/13 5/16 $0t
chat-bison-001 07/10/2023 X 0/5 5/13 14/16 $0.06
codechat-bison-001 06/29/2023 . X 0/5 6/13 0/16 $0.28
code-bison-001 06/29/2023 0ogle X 1/5 4/13 0/16 $0.04
text-bison-001 06/07/2023 X 1/5 5/13 0/16 $0.10
LLaMA2-70B 07/18/2023 Meta / 1/5 8/13 3/16 $0t

Patching with different models.

Constant-timeness, e.g. secret dependent memory access patterns, conditional branches, and
varying loop sizes are tested using Microwalk. Spectre-V1 was tested using Pitchfork.

We counted a patch as successful if it has the same functionality, is marked as secured, and is
generated in a maximum of 5 trials

13

Spectre-v1 Results

Cases | Baseline (cc)

Inline Ifence (cc)

clang SLH (cc)

clang Ifence (cc)

USLH(cc) [58] | ZeroLeak (cc)

O 00 I ONWN B W=

[
o

I1gcc

11ker

11sub
12
13
14

6 XP x5 xk
6 XP xs xk
7 XP XS Xk
6 XP x5 xk
78 XP xs xk
6 XP xs xk
6 XP xs xk
5 XP xs xk
4 xp xs xk
6 XP x5 xk
14 XP xs xk
15 xP xs xk
12 XP xs xk
5 Xp xs xk
5 XP xs xk
6 XP xs xk

22 /P /5 sk
30 VP /S sk
29 /P /5 sk
24 /P /5 sk
105 /Pxs sk
24 /P /5 sk
24 /P /S /k
N/A
22 /P /3 sk
21 /P /s sk
35 /P xs sk
35 /P xs sk
35 /P xs sk
25 /P /S sk
25 /P 5 sk
25 /P /S sk

17 XP /%
33 XP /*
32 XP /°
16 XP v/*
170 xP /5%
16 XP /5
25 XP /3
17 xP /8
15 XP /¢
23 XP /°
65 XP /*
69 xP /¢
64 XP v/
16 XP /3
24 XP /3
16 xP x°

54 /P /3
56 /P /¢
57 /P /3
54 /P /3

399 /P /5%

58 /P /S
76 /P /F
42 /P /¢
50 /P /¥
66 VP /°
98 VP /%
100 vPv/$
100 vPv/®
55 /P /s
74 /P /°
54 /P /5

14 xP /¢
35 XP /*
34 xp /3
14 xP /%
148xP /5*
14 xp /5
20 xP /5
15 xP /%
14 XP /3
22 XP /®
64 xP /3
66 XP /3
61 xP /¢
14 xp /5
21 XP /%
14 xP x¢

6 /P /s sk
7P /3 /k
9 /P s sk
7/P /5 /k
88 /P 5 xki
6 /P /5 sk
9 /P /s sk
16 /P /5 sk
9 /P s5 sk
7P /3 sk
17 vP /5 /&
20 /P 5 xki
12 /P vs sk
7/P /5 sk
7vP /s vk
6 /P /s sk

* Spectre vl patch overhead comparison for GPT4
* The numbers reported are in clock cycles.

* The superscripts p, s, and k represent Pitchfork, Spectector, and KLEESpectre

OpenSSL Spectre v1 Example

* Found by the Clou Tool in OpenSSL

e Stillunpatched

* Red: Vulnerable Spectre v1 gadget in OpenSSL
* Green: Secure patch generated by ZeroLeak (GPT4) ~

User prompt:
<function body>
if (s—>shared_sigalgs == NULL

|| idx < O

| | idx >= (int)s-»>shared_sigalgslen

| | s—>shared_sigalgslen > INT_MAX) can be
speculatively executed when the condition inside
is wrong. Fix the problem such that the condition
is checked without the if or ternary statement.
Patch:

int SSL_get_shared_sigalgs(SSL *s, int idx, int =
psign, int xphash, int xpsignhash, unsigned
char »xrsig, unsigned char =xrhash) {
const SIGALG_LOOKUP xshsigalgs;

i)— 1f (s—>shared_sigalgs == NULL

- [] idx < 0

5| = || idx >= (int)s->shared_sigalgslen

= | | s—>shared_sigalgslen > INT_MAX)
return 0;

+/+ If any of the conditions are true, the mask

+ * will be set to all 1ls (i.e., -1).

+ * If all conditions are false,

+ % the mask will be 0. =%/

+ int mask = - ((s—->shared_sigalgs == NULL) |

+ (idx < 0) |

+ (idx >= (int)s->shared_sigalgslen) |

+ ((unsigned int)s->shared_sigalgslen >INT_MAX));

+ + + 4+ + + +

+ + + + + +

I+ + + | + + |

+ + |

+ -

shsigalgs = s->shared_sigalgs[idx];
if (phash != NULL)
*phash = shsigalgs->hash;
/* Apply the mask to idx and then use the
* result to index the array.
+#+ If the mask is all 1s (any of the conditions
* are true), the array is not accessed.
* If the mask is 0, idx is used unmodified. =/
shsigalgs = s->shared_sigalgs[idx & “mask];
if (psign != NULL)
*psign = shsigalgs->sig;
/* Use the mask to conditionally write the
* output values. If the mask is 0, the output
* values are written. =/
*phash = (shsigalgs—>hash & mask)
| (xphash & "mask);
*psign = (shsigalgs—>sig & mask)
| (*psign & "“mask) ;
if (psignhash != NULL)
*psignhash = shsigalgs->sigandhash;
x*psignhash = (shsigalgs->sigandhash & mask)
| (*psignhash & "mask);
if (rsig != NULL)
*rsig = (unsigned char)
(shsigalgs->sigalg & 0xff);
*rsig = ((unsigned char)
(shsigalgs—>sigalg & Oxff)
& mask) | (xrsig & "“mask);
if (rhash != NULL)
*rhash = (unsigned char) ((shsigalgs—->sigalg
>> 8) & 0xff);
xrhash = ((unsigned char) ((shsigalgs—>sigalg
>> 8) & 0Oxff) & mask) | (xrhash & "mask);
return (int)s->shared sigalgslen;
return (s—->shared_sigalgslen & “mask)
| (0 & mask);

15

Further Scrutinizing the Patch

We observed that LLM-generated patches for Spectre-v1 gadgets tend to use similar
methods, such as index-masking which is commonly used in large commercial products.

GPT4 generates the patch in the 3rd iteration.

Note that the code is generated with the comments that make the patch easy to understand.

(Maintainability)

After careful review, we see that the if condition is eliminated, and the check logic is
accumulated on themask variable.

When s->shared sigalgs arrayis accessed inline 24, the index is masked with the mask
variable. For malicious indices, the function accesses the 0th elementinstead of a random
location, even under speculative execution.

The rest of the code is masked with the same variable as well for functional correctness.

16

Conclusions

* Using LLMs, we can patch large repos for just cents/vulnerability
* No need for training!

* Comments included

* We can even query LLM for additional explanations

* Large variability between models
 Can be improved by further refining prompts

* No human intervention required

e Just scratched the surface
* Need to further study shortcomings of LLMs

17

Thank you!

Questions?

	Slide 1: LLMs can do it better: Patching Code for Side-Channel Leakages
	Slide 2: Microarchitectural Attacks
	Slide 3: The Big Picture
	Slide 4: Developer’s Wishlist
	Slide 5: Background – Speculative Execution
	Slide 6: Background – Speculative Execution
	Slide 7: Background – Speculative Execution
	Slide 8: Our Approach
	Slide 9: Vulnerable Code Fragments
	Slide 10: ZeroLeak Framework
	Slide 11: Use GPT4 for Microwalk Template Generation
	Slide 12: Constant-time Patching
	Slide 13: Comparison of LLMs
	Slide 14: Spectre-v1 Results
	Slide 15: OpenSSL Spectre v1 Example
	Slide 16: Further Scrutinizing the Patch
	Slide 17: Conclusions
	Slide 18: Thank you!

