
M. Caner Tol, Berk Sunar
Center for Hardware Intelligence, Privacy and Security (CHIPS)

Worcester Polytechnic Institute

Real World Crypto, 2024

LLMs can do it better: Patching Code for
Side-Channel Leakages

Microarchitectural Attacks
• Exploits uArch features in modern CPUs
• Timing side-channel leakage (early 2000’s)
• Breaks through sandboxing:

• Virtual machines, Cloud VMs, Browsers, Mobile OSs

• Transient Execution Attacks:
• Spectre, Meltdown, etc.
• Side effect of speculative execution
• E.g. allows regular users to gain root privileges on

Intel and ARM machines.

• MDS Attacks RIDL, ZombieLoad, Fallout etc.
• Rowhammer fault injection
• Recent vulnerability: Downfall by Moghimi et al. Hardware

VMM

Guest OS #1 Guest OS #2

VM VM

SpyVictim

2

“Local side channel attacks, such as these, are
outside the scope of our security policy, however
the project generally does introduce mitigations
when they are discovered. In this case, the OTC
has decided that these attacks will not be
mitigated by changes to the OpenSSL code base.”

• Crypto library and software developers
are reluctant to issue patches e.g.
• OpenSSL’s response to

Spectre/Meltdown style disclosures:

• Similar response to Rowhammer
attacks on OpenSSL primitives:

The Big Picture

3

https://www.openssl.org/policies/secpolicy.html

• “Maintaining code with mitigations in place would be significantly more difficult. Most
potentially vulnerable code is extremely non-obvious, even to experienced security
programmers.

• It would thus be quite easy to introduce new attack vectors or fix existing ones
unknowingly.

• The mitigations themselves obscure the code which increases the maintenance burden.”

• “Automated verification and testing of the attacks is necessary but not sufficient. We do
not have automated detection for this family of vulnerabilities and if we did, it is likely that
variations would escape detection. This does not mean we won’t add automated checking
for issues like this at some stage.”

• “These problems are fundamentally a bug in the hardware…”

• “Some kernels and compilers can provide partial mitigation. Specifically, several common
compilers have introduced code generation options addressing some of these classes of
vulnerability…”

From the OpenSSL Blog:

Maintainability

Hardness

Automation

Trust

Reliability

Ownership

Toolchain
Integration

Developer’s Wishlist

4

Background – Speculative Execution

5

I don’t know array1_size yet.
I will execute the next line.

Background – Speculative Execution

6

I don’t know array1_size yet.
I will execute the next line.

Background – Speculative Execution

7

Our Approach

• Can we use GPT4 to rewrite vulnerable code?
• If yes, we have a scalable tool!
• No costly human security expert in the loop

• Goals
• Patch non-constant time behavior by recoding
• Patch Spectre-v1 gadgets by recoding

• For detection, we can use third-party tools
• Microwalk for non-constant time behavior (dynamic execution)
• Other tools for Spectre v1

8

Vulnerable Code Fragments

Data Dependent
Equality check

Spectre v1 example

9

ZeroLeak Framework

10

Use GPT4 for Microwalk Template Generation

• The dynamic profiler Microwalk

requires a template input

• We may also use GPT4 to generate
the Microwalk input template

11

Constant-time Patching
• In ZeroLeak, the Profiler identifies leaky C and

Javascript lines reporting specifics:
• Level of leakage

• Line of the leaky statements

• Type of leakage, e.g. memory reference

• We use this information to populate a Prompt
Template for constant time patching

• We replace <language> with the
programming language, (C or Javascript).

• We use <specifics> for instructing
workarounds for the tool or language-specific
compatibility issues.

• E.g., Javascript version ES6 is not supported by
Microwalk.

12

Comparison of LLMs

• Patching with different models.
• Constant-timeness, e.g. secret dependent memory access patterns, conditional branches, and

varying loop sizes are tested using Microwalk. Spectre-V1 was tested using Pitchfork.
• We counted a patch as successful if it has the same functionality, is marked as secured, and is

generated in a maximum of 5 trials

13

• Spectre v1 patch overhead comparison for GPT4
• The numbers reported are in clock cycles.
• The superscripts p, s, and k represent Pitchfork, Spectector, and KLEESpectre

Spectre-v1 Results

14

OpenSSL Spectre v1 Example
• Found by the Clou Tool in OpenSSL
• Still unpatched
• Red: Vulnerable Spectre v1 gadget in OpenSSL
• Green: Secure patch generated by ZeroLeak (GPT4)

15

Further Scrutinizing the Patch

• We observed that LLM-generated patches for Spectre-v1 gadgets tend to use similar
methods, such as index-masking which is commonly used in large commercial products.

• GPT4 generates the patch in the 3rd iteration.

• Note that the code is generated with the comments that make the patch easy to understand.
(Maintainability)

• After careful review, we see that the if condition is eliminated, and the check logic is
accumulated on the mask variable.

• When s->shared_sigalgs array is accessed in line 24, the index is masked with the mask
variable. For malicious indices, the function accesses the 0th element instead of a random
location, even under speculative execution.

• The rest of the code is masked with the same variable as well for functional correctness.

16

Conclusions

• Using LLMs, we can patch large repos for just cents/vulnerability
• No need for training!
• Comments included
• We can even query LLM for additional explanations
• Large variability between models

• Can be improved by further refining prompts

• No human intervention required
• Just scratched the surface

• Need to further study shortcomings of LLMs

17

Thank you!
Questions?

18

	Slide 1: LLMs can do it better: Patching Code for Side-Channel Leakages
	Slide 2: Microarchitectural Attacks
	Slide 3: The Big Picture
	Slide 4: Developer’s Wishlist
	Slide 5: Background – Speculative Execution
	Slide 6: Background – Speculative Execution
	Slide 7: Background – Speculative Execution
	Slide 8: Our Approach
	Slide 9: Vulnerable Code Fragments
	Slide 10: ZeroLeak Framework
	Slide 11: Use GPT4 for Microwalk Template Generation
	Slide 12: Constant-time Patching
	Slide 13: Comparison of LLMs
	Slide 14: Spectre-v1 Results
	Slide 15: OpenSSL Spectre v1 Example
	Slide 16: Further Scrutinizing the Patch
	Slide 17: Conclusions
	Slide 18: Thank you!

