
RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Adoption of High-Assurance and
Highly Performant Cryptographic
Algorithms at AWS
RWC 2024

Dusan Kostic, Hanno Becker, John Harrison,
Juneyoung Lee, Nevine Ebeid, and Torben Hansen
Amazon Web Services

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Libcrypto (AWS-LC) and s2n-bignum libraries

2

• AWS-LC (2020-):
• Fork of Google’s BoringSSL.
• Optimized for AWS use-cases.
• FIPS 140-3 validated.

• s2n-bignum (2018-):
• CPU-specific cryptographic algorithm

implementations.
• Formal verification of correctness.

s2n-bignum

formal verification

asm implementations

AWS-LC

asm implementations

AWS-LC 2022

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

This talk will explore the following 3 topics:

3

Distribution: How we distribute AWS-LC.

Performance: How we ensure AWS-LC is fast.

Assurance: How we ensure AWS-LC is safe using formal reasoning.

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS cryptographic algorithm stack

4

Application/LibrariesNative bindingsCommon C run-time

ACCP
(Java)

aws-lc-rs
(Rust)

cpython
(Python)

AWS-LC
(C) Rustls

(Rust)

Your
app/lib

s2n-quic
(Rust)

s2n-tls
(C)

AWS
services &

SDKs

Apache
Cassandra

(Java)

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why not implement cryptographic algorithms natively?

5

Ensure cryptographic algorithms are available where software is built and run.

Benefits of common C run-time:
• Implement optimizations once.
• Test implementations once.
• FIPS: validate once.

Algorithm needs

Data-in-transit

Data-at-rest

Quantum-safe

Availability needs

Rust, Java, C, Python

x86_64, Arm64

FIPS validated

Common C run-time and native language bindings for scalable
distribution of cryptographic algorithm implementations.

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

This talk will explore the following 3 topics:

6

Distribution: How we distribute AWS-LC.

Performance: How we ensure AWS-LC is fast.

Assurance: How we ensure AWS-LC is safe using formal reasoning.

Case study: x25519 and Ed25519 (x/Ed25519)

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Case study: x25519 and Ed25519 (x/Ed25519)

7

AWS-LC x/Ed25519 previously used Fiat Crypto.

New implementations in AWS-LC:
1. Written in assembly (x86_64 and Arm64).
2. Consider micro-architectural (µarch) differences in optimizations.
3. High algorithm “scope”.
4. Formal verification.

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Harnessing µarch diversity

8

AWS EC2 offers a wide varity of instance types:
• Arm64: AWS Graviton 2 and 3.
• x86_64: Many Intel and AMD CPU models.

Why it matters?

Every µarch has unique characteristics:
pipelining, instruction latencies/throughput, …

Therefore unique optimization opportunities.

Dive a bit deeper

Field operations
a " b mod 2255-19

Focus

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

x/Ed25519 µarch-specific scalar mul on AWS Graviton

9

Common Graviton 2 specificGraviton 3 specific

Bernstein-Yang
divstep modular
inverses [3]

“linear” functions e.g.
x+y mod 2225-19

Karatsuba multiplication

Use scalar+vector units:
• Lenngren

“hybridization” [1]
• SLOTHY “super-

optimization” [2]

Schoolbook
multiplication

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimal code is µarch-specific

10

Difference matters to production work loads

If G3-impl was used on Graviton 2: 51% slower
If G2-impl was used on Graviton 3: 39% slower

Graviton 3
optimized

Graviton 2
optimized

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

New x/Ed25519 implementations in AWS-LC: Graviton 2

11

Average improvement: 153%
Similar numbers for Graviton 3 and x86_64

Improved performance through µarch-specific
implementations for both Arm64 and x86_64

key generation +
shared key computation

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

This talk will explore the following 3 topics:

12

Distribution: How we distribute AWS-LC.

Performance: How we ensure AWS-LC is fast.

Assurance: How we ensure AWS-LC is safe using formal reasoning.

Case study: x25519 and Ed25519 (x/Ed25519)

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Existing assurance methods used in AWS-LC

13

• Code-review ✓✓.
• Unit testing.
• Fuzzing, Cryptofuzz, …
• Memory sanitizers, Valgrind, …
• Wycheproof.
• FIPS and ACVP.

Increase assurance through formal verification: Prove functional correctness.

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Proving functional correctness of x/Ed25519

14

Correctness bug in rare code-path in implementation. Impact AWS customer
experience:
 very low x25519 TLS error-rate
 + visible Cx impact.
 50MM TLS requests/second

Proof engine requirements:
• Handle x86_64, Arm64, and µarch’s.
• Verify object code – compiler assumption.

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Proof engine: HOL Light and how we use it

15

HOL
Light

Proof is
“correct”
or “fail”

Object file
(.o)

Proof script
(.ml)

Assembly
language

(.S)

x/E
d25519

assembler

Continuous
integration

• Abstract mathematical
specification.

• ISA model.

• Interactive proof assistant.
• Written and maintained by

John Harrison.

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What do we prove for x/Ed25519?

16

“Executing x/Ed25519,
with their specific sequence of object code bytes,
on an Arm64 or x86_64 CPU,
will correctly compute the same result as the
abstract mathematical specification”

Acknowledgement: DJB who wrote the HOL Light proof of the
Bernstein-Yang divstep iteration used for modular inversion.

Main assumptions:

ISA model captures real-world

Specification is correct

HOL Light engine is correct

See all proofs in s2n-bignum project: https://github.com/awslabs/s2n-bignum

Formal verification of functional correctness through HOL Light
with no compiler assumptions.

https://github.com/awslabs/s2n-bignum

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Our experience implementing optimized cryptographic
algorithms while using formal reasoning

17

• Significant time investment was required; 1 person years for end-to-end
x/Ed25519 implementation and integration. Worth it at scale.

• Did we hit any major roadblocks? No…

• Mostly non-cryptographic and non-formal verification issues:
• Portability and build issues: e.g. .text ELF section non-readable but stores

data tables.
• Code size from adding multiple implementations for the same CPU.

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Summary

18

Successfully development cryptographic algorithm implementations of
x/Ed25519 combining high-performance and formal verification now
servicing Trillions of requests a day.

Common C run-time and native language bindings for scalable distribution of
cryptographic algorithm implementations.

Improved performance through µarch-specific implementations for both
Arm64 and x86_64.

Formal verification of functional correctness through HOL Light with no
compiler assumptions.

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Resources

19

• [1] https://github.com/Emill/X25519-AArch64
• [2] https://github.com/slothy-optimizer/slothy
• [3] Daniel J. Bernstein and Bo-Yin Yang, Fast constant-time gcd computation and modular inversion,

IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019.
• AWS-LC: https://github.com/aws/aws-lc
• s2n-bignum: https://github.com/awslabs/s2n-bignum
• aws-lc-rs: https://github.com/aws/aws-lc-rs
• accp: https://github.com/corretto/amazon-corretto-crypto-provider
• s2n-tls: https://github.com/aws/s2n-tls
• s2n-quic: https://github.com/aws/s2n-quic
• HOL Light: https://github.com/jrh13/hol-light
• Open-source cryptography @ AWS: https://aws.amazon.com/security/opensource/cryptography/
• Automated reasoning @ AWS: https://aws.amazon.com/what-is/automated-reasoning/
• Cryptographic computing @ AWS: https://aws.amazon.com/security/cryptographic-computing/

https://github.com/Emill/X25519-AArch64
https://github.com/slothy-optimizer/slothy
https://github.com/aws/aws-lc
https://github.com/awslabs/s2n-bignum
https://github.com/aws/aws-lc-rs
https://github.com/corretto/amazon-corretto-crypto-provider
https://github.com/aws/s2n-tls
https://github.com/aws/s2n-quic
https://github.com/jrh13/hol-light
https://aws.amazon.com/security/opensource/cryptography/
https://aws.amazon.com/what-is/automated-reasoning/
https://aws.amazon.com/security/cryptographic-computing/

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!
Torben Hansen
htorben@amazon.com

Open-source cryptography @ AWS
https://aws.amazon.com/security/opensource/cryptography

https://aws.amazon.com/security/opensource/cryptography

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 21

Extra slides in the unlikely
event of extra time

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimizations of x/Ed25519: Algorithm scope

22

Ed25519 RFC8032 verify step:
Decode public key

RWC 2024 – APRIL 2024

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimal code must consider complete algorithm scope

23

Ed25519 verify = decoding + other operations.
Using best-µarch implementation: decoding 9% à 6% of total Ed25519 verify.

