
Weak Fiat-Shamir Attacks
on Modern Proof Systems

Quang Dao
qvd@andrew.cmu.edu

Paul Grubbs
paulgrub@umich.edu

Real World Cryptography 2024

Jim Miller
james.miller@trailofbits.com

Opal Wright
opal.wright@trailofbits.com

mailto:opal.wright@trailofbits.com

Proof Systems and Applications

Proof Systems and Applications

Proof Systems and Applications

Do implementations of proof systems
match their theoretical security?

Proof Systems from Fiat-Shamir

Proof Systems from Fiat-Shamir

(random)

(random)

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Proof Systems from Fiat-Shamir

(random)

(random)

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

P’s
message

V’s
challenge

Proof Systems from Fiat-Shamir

(random)

(random) Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

P’s
message

V’s
challenge

Proof Systems from Fiat-Shamir

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

P’s
message

V’s
challenge

Proof Systems from Fiat-Shamir

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

*𝖯 𝖵
π

x x

Security:

P’s
message

V’s
challenge

Proof Systems from Fiat-Shamir

Soundness: If has no , then rejects.x w 𝖵

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

*𝖯 𝖵
π

x x

Security:

P’s
message

V’s
challenge

Proof Systems from Fiat-Shamir

Soundness: If has no , then rejects.x w 𝖵

Knowledge Soundness: If accepts, then
* must “know” .

𝖵
𝖯 w

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

*𝖯 𝖵
π

x x

Security:

P’s
message

V’s
challenge

Proof Systems from Fiat-Shamir

Soundness: If has no , then rejects.x w 𝖵

Knowledge Soundness: If accepts, then
* must “know” .

𝖵
𝖯 w

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

Non-Adaptive
*𝖯 𝖵

π

x x

Security:

P’s
message

V’s
challenge

Fiat-Shamir

Strong Fiat-Shamir for Adaptive Security

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Security:

Public
Statement

Private
Witness

P’s
message

V’s
challenge

Fiat-Shamir

Strong Fiat-Shamir for Adaptive Security

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Security:

Public
Statement

Private
Witness

P’s
message

V’s
challenge

Fiat-Shamir

Strong Fiat-Shamir for Adaptive Security

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(x, a1)
c2 = 𝖧(x, a1, a2)

⋮
cn = 𝖧(x, a1, …, an)

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Strong

Security:

Public
Statement

Private
Witness

P’s
message

V’s
challenge

Fiat-Shamir

Strong Fiat-Shamir for Adaptive Security

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(x, a1)
c2 = 𝖧(x, a1, a2)

⋮
cn = 𝖧(x, a1, …, an)

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Strong

Security:

Public
Statement

Private
Witness

P’s
message

V’s
challenge

P’s
message

V’s
challenge

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Security:

Public
Statement

Private
Witness

P’s
message

V’s
challenge

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Weak
!

Security:

Public
Statement

Private
Witness

P’s
message

V’s
challenge

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Weak
!

Security:

Public
Statement

Private
Witness

Classic -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

P’s
message

V’s
challenge

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Weak
!

Security:

Public
Statement

Private
Witness

Classic -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

P’s
message

V’s
challenge

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

/
/
?
?

Weak
! Modern Proof Systems

(e.g. Bulletproofs, Plonk, Spartan)

?
Security:

Public
Statement

Private
Witness

Classic -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

P’s
message

V’s
challenge

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

/
/
?
?

Weak
! Modern Proof Systems

(e.g. Bulletproofs, Plonk, Spartan)

?
Security:

Public
Statement

Private
Witness

Classic -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

1. Are modern proof systems insecure under weak Fiat-Shamir?

P’s
message

V’s
challenge

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

/
/
?
?

Weak
! Modern Proof Systems

(e.g. Bulletproofs, Plonk, Spartan)

?
Security:

Public
Statement

Private
Witness

Classic -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

1. Are modern proof systems insecure under weak Fiat-Shamir?

2. Are these vulnerabilities present in implementations?

P’s
message

V’s
challenge

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

/
/
?
?

Weak
! Modern Proof Systems

(e.g. Bulletproofs, Plonk, Spartan)

?
Security:

Public
Statement

Private
Witness

Classic -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

1. Are modern proof systems insecure under weak Fiat-Shamir?

2. Are these vulnerabilities present in implementations?

3. Do they lead to attacks on larger/surrounding protocols?

P’s
message

V’s
challenge

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

/
/
?
?

Weak
! Modern Proof Systems

(e.g. Bulletproofs, Plonk, Spartan)

?
Security:

Public
Statement

Private
Witness

Classic -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

1. Are modern proof systems insecure under weak Fiat-Shamir?

2. Are these vulnerabilities present in implementations?

3. Do they lead to attacks on larger/surrounding protocols?

4. What are the consequences of these attacks?

Our Contributions

Our Contributions
1. Survey of 75+ implementations:

36 weak F-S vulnerabilities across
12 different proof systems.

Our Contributions
1. Survey of 75+ implementations:

36 weak F-S vulnerabilities across
12 different proof systems.

patchedvulnerable

Our Contributions
1. Survey of 75+ implementations:

36 weak F-S vulnerabilities across
12 different proof systems.

2. Explicit Attacks against Bulletproofs, Plonk,
Spartan, and Wesolowski’s VDF:

 Provable break of soundness⟹

patchedvulnerable

Our Contributions
1. Survey of 75+ implementations:

36 weak F-S vulnerabilities across
12 different proof systems.

2. Explicit Attacks against Bulletproofs, Plonk,
Spartan, and Wesolowski’s VDF:

 Provable break of soundness⟹

3. Practical Impacts: unlimited currency
minting in two blockchain protocols

patchedvulnerable

Our Contributions
1. Survey of 75+ implementations:

36 weak F-S vulnerabilities across
12 different proof systems.

2. Explicit Attacks against Bulletproofs, Plonk,
Spartan, and Wesolowski’s VDF:

 Provable break of soundness⟹

3. Practical Impacts: unlimited currency
minting in two blockchain protocols

patchedvulnerable

Our Contributions
1. Survey of 75+ implementations:

36 weak F-S vulnerabilities across
12 different proof systems.

2. Explicit Attacks against Bulletproofs, Plonk,
Spartan, and Wesolowski’s VDF:

 Provable break of soundness⟹

3. Practical Impacts: unlimited currency
minting in two blockchain protocols

4. New Tool: Decree for preventing weak F-S

patchedvulnerable

Our Contributions
1. Survey of 75+ implementations:

36 weak F-S vulnerabilities across
12 different proof systems.

2. Explicit Attacks against Bulletproofs, Plonk,
Spartan, and Wesolowski’s VDF:

 Provable break of soundness⟹

3. Practical Impacts: unlimited currency
minting in two blockchain protocols

4. New Tool: Decree for preventing weak F-S

IEEE S&P Distinguished
Paper Award!

patchedvulnerable

Weak Fiat-Shamir Attacks
(as easy as solving a linear equation)

Template for Weak F-S Attacks

Template for Weak F-S Attacks
Schnorr with Weak F-S

𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
(X , x) X

Template for Weak F-S Attacks
Schnorr with Weak F-S

a R← 𝔽p

A := ga

𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
(X , x) X

c := H(A) ∈ 𝔽p

z := a + cx

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)
a R← 𝔽p

A := ga

𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
(X , x) X

c := H(A) ∈ 𝔽p

z := a + cx

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

a R← 𝔽p

A := ga

𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
(X , x) X

c := H(A) ∈ 𝔽p

z := a + cx

c := H(A) ∈ 𝔽p

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

a R← 𝔽p

A := ga

𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
(X , x) X

c := H(A) ∈ 𝔽p

z := a + cx

c := H(A) ∈ 𝔽p

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

*𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}

c := H(A) ∈ 𝔽p

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

*𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
1. Identify the public input(s) that are not

included in Fiat-Shamir,

c := H(A) ∈ 𝔽p

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

*𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
1. Identify the public input(s) that are not

included in Fiat-Shamir,

c := H(A) ∈ 𝔽p

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

*𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
1. Identify the public input(s) that are not

included in Fiat-Shamir,

2. Find the verification check(s) that rely on
said public input(s),

c := H(A) ∈ 𝔽p

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

*𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
1. Identify the public input(s) that are not

included in Fiat-Shamir,

2. Find the verification check(s) that rely on
said public input(s),

c := H(A) ∈ 𝔽p

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

*𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
1. Identify the public input(s) that are not

included in Fiat-Shamir,

2. Find the verification check(s) that rely on
said public input(s),

3. Compute a proof with arbitrary witness
and randomness,

c := H(A) ∈ 𝔽p

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

A R← 𝔾

*𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}

c := H(A) ∈ 𝔽p

z R← 𝔽p

1. Identify the public input(s) that are not
included in Fiat-Shamir,

2. Find the verification check(s) that rely on
said public input(s),

3. Compute a proof with arbitrary witness
and randomness,

c := H(A) ∈ 𝔽p

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

A R← 𝔾

*𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}

c := H(A) ∈ 𝔽p

z R← 𝔽p

1. Identify the public input(s) that are not
included in Fiat-Shamir,

2. Find the verification check(s) that rely on
said public input(s),

3. Compute a proof with arbitrary witness
and randomness,

4. Solve for the public input value(s) that
would pass verification.

c := H(A) ∈ 𝔽p

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

A R← 𝔾

*𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
X

c := H(A) ∈ 𝔽p

z R← 𝔽p

1. Identify the public input(s) that are not
included in Fiat-Shamir,

2. Find the verification check(s) that rely on
said public input(s),

3. Compute a proof with arbitrary witness
and randomness,

4. Solve for the public input value(s) that
would pass verification.

c := H(A) ∈ 𝔽p

Set
X := (g z / A)1/c

Template for Weak F-S Attacks
Schnorr with Weak F-S

π := (A, z)

Check that
g z ?= A ⋅ X c

Attack Strategy

A R← 𝔾

*𝖯 𝖵Relation:

{((𝔾, g, p), X , x) : X = g x}
X

c := H(A) ∈ 𝔽p

z R← 𝔽p

1. Identify the public input(s) that are not
included in Fiat-Shamir,

2. Find the verification check(s) that rely on
said public input(s),

3. Compute a proof with arbitrary witness
and randomness,

4. Solve for the public input value(s) that
would pass verification.

c := H(A) ∈ 𝔽p

Set
X := (g z / A)1/c

X

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2 3 2 w1

w2 w3

10

+ ×

×

Public
Input

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Consistency CheckGate Check Vanishing Domain

Public
Input

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Consistency CheckGate Check Vanishing Domain

Batching Challenge Evaluation Point

Public
Input

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)
Batching Challenge Evaluation Point

Public
Input

Weak Fiat-Shamir Attack on Plonk

Constraint System: general (fan-in 2) arithmetic circuits

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)
Batching Challenge Evaluation Point

(Fixed) Scalars

Public
Input

Weak Fiat-Shamir Attack on Plonk

Weak Fiat-Shamir Attack on Plonk
Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Weak Fiat-Shamir Attack on Plonk

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Weak Fiat-Shamir Attack on Plonk

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Weak Fiat-Shamir Attack on Plonk

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Weak Fiat-Shamir Attack on Plonk

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

2. Solve for the public values that will pass verification.𝖯𝖨 = (𝖯𝖨1, …, 𝖯𝖨k)

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Weak Fiat-Shamir Attack on Plonk

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

2. Solve for the public values that will pass verification.𝖯𝖨 = (𝖯𝖨1, …, 𝖯𝖨k)

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Linear Equation
𝖯𝖨1 ⋅ 𝖫1(ζ) + … + 𝖯𝖨k ⋅ 𝖫k(ζ) = T

Weak Fiat-Shamir Attack on Plonk

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

2. Solve for the public values that will pass verification.𝖯𝖨 = (𝖯𝖨1, …, 𝖯𝖨k)

Degrees of freedom: can set all but one to be arbitrary.𝖯𝖨i

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Linear Equation
𝖯𝖨1 ⋅ 𝖫1(ζ) + … + 𝖯𝖨k ⋅ 𝖫k(ζ) = T

Weak Fiat-Shamir Attack on Plonk

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

2. Solve for the public values that will pass verification.𝖯𝖨 = (𝖯𝖨1, …, 𝖯𝖨k)

Degrees of freedom: can set all but one to be arbitrary.𝖯𝖨i

In Contrast: For strong Fiat-Shamir, changing will also change .𝖯𝖨 α, ζ

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Linear Equation
𝖯𝖨1 ⋅ 𝖫1(ζ) + … + 𝖯𝖨k ⋅ 𝖫k(ζ) = T

Practical Impacts
(unlimited money printing on blockchains)

Weak Fiat-Shamir Attacks

Case Study: Dusk Network

(as of March 11, 2024)

Case Study: Dusk Network
Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍Coin
Com(value)

Aux

Existing Coins

(as of March 11, 2024)

Case Study: Dusk Network
Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍Coin
Com(value)

AuxTx

Inputs

Outputs Pf

Nulls

Existing Coins

(as of March 11, 2024)

Case Study: Dusk Network
Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍Coin
Com(value)

AuxTx

Inputs

Outputs Pf

Nulls

Existing Coins

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

(as of March 11, 2024)

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Com(value)

AuxTx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Com(value)

AuxTx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Com(value)

Aux

Weak F-S Attack:

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Com(value)

Aux

Weak F-S Attack:

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Com(value)

Aux

Weak F-S Attack:

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Com(value)

Aux

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Com(value)

Aux

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Disclosure Timeline:

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

2022

Vulnerability
disclosed

March 18

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

Vulnerability
disclosed

March 18

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

April 11

Patch
deployed

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

April 11

Patch
deployed

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

• No user funds were at risk

• However, we don’t know if the attack was
carried out

Disclosure Timeline:

Testnet
launched

March 22

2022

April 11

Patch
deployed

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

• No user funds were at risk

• However, we don’t know if the attack was
carried out

• Forged proofs are indistinguishable from
honest proofs

Disclosure Timeline:

Testnet
launched

March 22

2022

April 11

Patch
deployed

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Case Study: Incognito Chain

Case Study: Incognito Chain

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

Case Study: Incognito Chain

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy equality
check as well as BP verification

vin, vout

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy equality
check as well as BP verification

vin, vout

• Forged proofs are indistinguishable
from honest proofs

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy equality
check as well as BP verification

vin, vout

• Forged proofs are indistinguishable
from honest proofs

Disclosure Timeline:

Vuln.
disclosed

April 25

2023

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy equality
check as well as BP verification

vin, vout

• Forged proofs are indistinguishable
from honest proofs

Disclosure Timeline:

Vuln.
disclosed

April 25

2023

May 1

Patch
deployed

April 26

Patch
proposed

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy equality
check as well as BP verification

vin, vout

• Forged proofs are indistinguishable
from honest proofs

Disclosure Timeline:

Vuln.
disclosed

April 25

2023

May 1

Patch
deployed

Mainnet
launched

Nov 2019 April 26

Patch
proposed

4 years!

Practical Impacts

Weak Fiat-Shamir Attacks

(and how to prevent it?)

Why is Weak F-S so widespread?

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

 (some) do not get it right on the first try!⟹

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

 (some) do not get it right on the first try!⟹

Insufficient Coverage of “correct” Fiat-Shamir

Plonk:

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

 (some) do not get it right on the first try!⟹

(March 2020)

Insufficient Coverage of “correct” Fiat-Shamir

Plonk: (December 2019)

Insufficient Coverage of “correct” Fiat-Shamir

Plonk:

Bulletproofs:

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

 (some) do not get it right on the first try!⟹

Insufficient Coverage of “correct” Fiat-Shamir

Plonk:

Bulletproofs:

(July 2018)

(April 2022)

(in response to our FrozenHeart disclosure)

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

 (some) do not get it right on the first try!⟹

How to Prevent Weak Fiat-Shamir?

Merlin prevents some F-S issues

How to Prevent Weak Fiat-Shamir?

Merlin prevents some F-S issues

How to Prevent Weak Fiat-Shamir?

Merlin prevents some F-S issues

How to Prevent Weak Fiat-Shamir?
Limitations of Merlin

Merlin prevents some F-S issues

How to Prevent Weak Fiat-Shamir?
Limitations of Merlin

•No detection of missing, duplicated,
or incorrect inputs

•No enforcement of ordering for inputs
& challenges

•Unclear boundaries for protocol stages

• Limited auditability, i.e., “the code is
the spec”

Preventing Weak F-S with Decree
Limitations of Merlin

•No detection of missing, duplicated,
or incorrect inputs

•No enforcement of ordering for inputs
& challenges

•Unclear boundaries for protocol stages

• Limited auditability, i.e., “the code is
the spec”

Improving on Merlin with Decree

Preventing Weak F-S with Decree
Limitations of Merlin

•No detection of missing, duplicated,
or incorrect inputs

•No enforcement of ordering for inputs
& challenges

•Unclear boundaries for protocol stages

• Limited auditability, i.e., “the code is
the spec”

Improving on Merlin with Decree

• Full specification of protocol flow:
• Missing, duplicate, or incorrect

inputs raise an error

• Canonical ordering for inputs &
enforcing challenge ordering

• Explicit boundaries for multi-round
protocols

Preventing Weak F-S with Decree
Improving on Merlin with Decree

• Full specification of protocol flow:
• Missing, duplicate, or incorrect

inputs raise an error

• Canonical ordering for inputs &
enforcing challenge ordering

• Explicit boundaries for multi-round
protocols

Preventing Weak F-S with Decree
Implementing Schnorr with DecreeImproving on Merlin with Decree

• Full specification of protocol flow:
• Missing, duplicate, or incorrect

inputs raise an error

• Canonical ordering for inputs &
enforcing challenge ordering

• Explicit boundaries for multi-round
protocols

Preventing Weak F-S with Decree
Implementing Schnorr with DecreeImproving on Merlin with Decree

• Full specification of protocol flow:
• Missing, duplicate, or incorrect

inputs raise an error

• Canonical ordering for inputs &
enforcing challenge ordering

• Explicit boundaries for multi-round
protocols

Preventing Weak F-S with Decree
Implementing Schnorr with DecreeImproving on Merlin with Decree

Preventing Weak F-S with Decree
Implementing Schnorr with Decree

Long-term: Standardization of Fiat-Shamir

Improving on Merlin with Decree

Summary & Future Directions

Summary & Future Directions

Takeaways:

Summary & Future Directions

Takeaways:
1. Never implement weak Fiat-Shamir!

Summary & Future Directions

Takeaways:
1. Never implement weak Fiat-Shamir!

2. For Academics:

Summary & Future Directions

Takeaways:
1. Never implement weak Fiat-Shamir!

2. For Academics:

• Specify the correct Fiat-Shamir transform!

Summary & Future Directions

Takeaways:
1. Never implement weak Fiat-Shamir!

2. For Academics:

• Specify the correct Fiat-Shamir transform!

3. For Practitioners: Use tooling for Fiat-Shamir

Summary & Future Directions

Takeaways:
1. Never implement weak Fiat-Shamir!

2. For Academics:

• Specify the correct Fiat-Shamir transform!

3. For Practitioners: Use tooling for Fiat-Shamir

• Our tool Decree is coming soon!

Summary & Future Directions

Takeaways:
1. Never implement weak Fiat-Shamir!

2. For Academics:

• Specify the correct Fiat-Shamir transform!

3. For Practitioners: Use tooling for Fiat-Shamir

• Our tool Decree is coming soon!

Future Directions:

Summary & Future Directions

Takeaways:
1. Never implement weak Fiat-Shamir!

2. For Academics:

• Specify the correct Fiat-Shamir transform!

3. For Practitioners: Use tooling for Fiat-Shamir

• Our tool Decree is coming soon!

Future Directions:
• New attack vectors against proof systems?

Summary & Future Directions

Takeaways:
1. Never implement weak Fiat-Shamir!

2. For Academics:

• Specify the correct Fiat-Shamir transform!

3. For Practitioners: Use tooling for Fiat-Shamir

• Our tool Decree is coming soon!

Future Directions:
• New attack vectors against proof systems?

Thank You! Questions?

Read our paper
(ePrint 2023/691)

IEEE S&P Distinguished
Paper Award!

