Private web search

Alexandra Henzinger MIT Emma Dauterman UC Berkeley Henry Corrigan-Gibbs Nickolai Zeldovich MIT MIT

Appeared at SOSP 2023

Web-search queries reveal our sensitive data

Health ballet knee problem

Finances job opportunities in west palm beach

Religion african american churches in norfolk va

Citizenship application forms us citizen

https://trec.nist.gov/data/million.query07.html

Today: Search engines learn our queries

Today: Search engines learn our queries

Non-goals: - does not hide *when* the client makes searches

- does not guarantee integrity of search results
- does not hide subsequent HTTP(S) requests

Theoretically possible: Fully homomorphic encryption [RAD'78, Gen'09] But, classic search algorithms are very expensive to express as circuits

This work: Linearly homomorphic encryption suffices Modern ML turns messy search computations into cheap, linear ones

Tiptoe: A private search engine

- Search engine learns <u>no information</u> about the client's queries i.e., semantic security relying on LWE and ring-LWE
- + Supports text & image search
- → Searches over public web crawl (364M pages) in 2.7s of latency
 with 145 core-s of compute, 57 MiB of traffic, and 0.3 GiB of client storage
- Search results not yet as good as with non-private search engines

Private search on private data

- Searchable Encryption

[SWP'00, CGKO'11, CryptDB'11, SPS'14, ...]

- Oblivious RAM

[GO'96, O'90, SVSRYD'13, Dory'20, ...]

Private search on public data

- Private information retrieval [CGKS'95, KO'97, Splinter'17, ...]
- Google over Tor [DMS'04] leaks query contents
- Query-private search:
 Tiptoe, Coeus [ASAEG'21]
 expressive queries, hides query contents

Tiptoe: Architecture

Tiptoe: Design steps

- 1. Standard technique: Reduce text search to nearest-neighbor search Key tool: Semantic embeddings [Osgood'57, ...]
- 2. Our contribution: Fast private nearest-neighbor search

Key tools: Clustering to reduce communication

+ Linearly homomorphic encryption with preprocessing to shrink the computation [SimplePIR'23]

Required property: when doc 1 and doc 2 are "similar" in meaning, their embedding inner-product score $\langle e_1, e_2 \rangle$ is large.

Required property: when doc 1 and doc 2 are "similar" in meaning, their embedding inner-product score $\langle e_1, e_2 \rangle$ is large.

 \rightarrow Goal: <u>privately</u> find the doc that maximizes the score $\langle \mathbf{q}, \mathbf{e} \rangle$

Perform coarse nearest-neighbor search locally on the client

Perform coarse nearest-neighbor search locally on the client Ahead of time: Server groups the *N* docs into \sqrt{N} clusters

Perform coarse nearest-neighbor search locally on the clientAhead of time:Server groups the N docs into \sqrt{N} clustersAt query time:Client uses local list of centroids to find the closest cluster

Perform coarse nearest-neighbor search locally on the clientAhead of time:Server groups the N docs into \sqrt{N} clustersAt query time:Client uses local list of centroids to find the closest cluster

Communication: $O(\sqrt{Nd})$, on *N* docs and embedding length *d* Server work: fast with SimplePIR (2*d* 64-bit operations per doc)

Tiptoe is cheaper than state-of-the-art private search

	Coeus (SOSP'21)	Tiptoe	Gain
Docs searched	5 million	364 million	72×
Client storage	_	0.3 GiB	$-\infty \times$
Server compute (per million docs)	2,580 core-s	0.4 core-s	6,450 ×
Communication (per million docs)	10 MiB	0.16 MiB	62 ×
End-to-end latency	_	2.7 s	

Tiptoe is cheaper than state-of-the-art private search

	Coeus (SOSP'21)	Tiptoe	Gain
Docs searched	5 million	364 million	72×
Client storage	Semantic emb	eddings: $100 \times$	$-\infty \times$
Server compute (per million docs)	smaller doc rep 2,5 SimplePIR: 10 × le	ess computation	≽6,450×
(per million docs)	Clustering: communication sublinear in N \sim 62 \times		
End-to-end latency	· _	2.7 s	

Tiptoe is cheaper than state-of-the-art private search

	Coeus (SOSP'21)	Tiptoe	Gain
Docs searched	5 million	364 million	72×
Client storage	_	0.3 GiB	$-\infty \times$
Server compute (per million docs)	2,580 core-s	0.4 core-s	6,450 ×
Communication (per million docs)	10 MiB	0.16 MiB	62 ×
End-to-end latency	_	2.7 s	

Tiptoe's search quality is acceptable

Best non-private: Top result on average ranked 2.3 of 100

Private: Top result on average ranked 7.7 of 100

Examples: Tiptoe works best on conceptual queries

how long before eagles get feathers

the meaning of haploid cell

🖗 Britannica	Search Britannica	Q	Subscribe
naploid phase			■: Table of Contents
haploid pl biology Share LEARN ABOU	hase JT THIS TOPIC in these	articles:	
N. Margaria	In algae: Reproduction	and life histories	

called diploid. When one haploid gamete fuses with another haploid gamete during fertilization, the resulting combination, with two sets of chromosomes, is called a zygote. Either immediately or at some...

READ MORE

... but Tiptoe's exact-string search could improve

77 Massachusetts Avenue

On the Common crawl data set

Private search is within reach... what's next?

Many directions for improvement

Improve quality: run more powerful search under encryption? Reduce cost: shrink communication? increase throughput?

Many applications of private nearest-neighbor search Tiptoe can search over products, ads, feeds, and more

Alexandra Henzinger Code: github.com/ahenzinger/tiptoe Paper: eprint.iacr.org/2023/1438 Demo: come talk to me!