
Alexandra Henzinger

MIT

Emma Dauterman

UC Berkeley

Henry Corrigan-Gibbs

MIT

Nickolai Zeldovich

MIT

Appeared at SOSP 2023

Private web search

Web-search queries reveal our sensitive data
Health	 	 ballet knee problem

Finances	 	 job opportunities in west palm beach

Religion african american churches in norfolk va

Citizenship	 application forms us citizen

https://trec.nist.gov/data/million.query07.html
2

3

Today: Search engines learn our queries

“knee problem”

hopkinsmedicine.org/  
health/knee-pain

Attacker 
(data breach)

SketchyCo 
(resale)

Your 

queries

LearningCo 
(training)

4

hopkinsmedicine.org/  
health/knee-pain

“knee problem”

Today: Search engines learn our queries

 ()

 ()

5

“knee problem”

Goal: Search without revealing query

hopkinsmedicine.org/  
health/knee-pain

Enc “knee problem”

hopkinsmedicine.org/  
health/knee-painEnc

⋮
Private
search
engine

6

“knee problem”

Goal: Search without revealing query

hopkinsmedicine.org/  
health/knee-pain

⋮
Private
search
engine

7

Goal: Search without revealing query

Attacker 
(data breach)

SketchyCo 
(resale)

LearningCo 
(training)

“knee problem”

hopkinsmedicine.org/  
health/knee-pain

Private
search
engine

⋮

8

Goal: Search without revealing query

- does not hide when the client makes searches
- does not guarantee integrity of search results
- does not hide subsequent HTTP(S) requests

Non-goals:

Attacker 
(data breach)

SketchyCo 
(resale)

LearningCo 
(training)

“knee problem”

hopkinsmedicine.org/  
health/knee-pain

Private
search
engine

⋮

9

Goal: Search without revealing query

Theoretically possible: Fully homomorphic encryption [RAD’78, Gen’09]

But, classic search algorithms are very expensive to express as circuits

Attacker 
(data breach)

SketchyCo 
(resale)

LearningCo 
(training)

“knee problem”

hopkinsmedicine.org/  
health/knee-pain

Private
search
engine

⋮

10

Goal: Search without revealing query

This work: Linearly homomorphic encryption suffices
Modern ML turns messy search computations into cheap, linear ones

Attacker 
(data breach)

SketchyCo 
(resale)

LearningCo 
(training)

“knee problem”

hopkinsmedicine.org/  
health/knee-pain

Private
search
engine

⋮

+ Search engine learns no information about the client’s queries
 i.e., semantic security relying on LWE and ring-LWE

+ Supports text & image search

+ Searches over public web crawl (364M pages) in 2.7s of latency
 with 145 core-s of compute, 57 MiB of traffic, and 0.3 GiB of client storage

- Search results not yet as good as with non-private search engines
11

Tiptoe: A private search engine

12

- Searchable Encryption
[SWP’00, CGKO’11, CryptDB’11, SPS’14, …]

- Oblivious RAM
[GO’96, O’90, SVSRYD’13, Dory’20, …]

Private search

on public data

Private search

on private data

- Google over Tor
leaks query contents

[DMS’04]

- Query-private search:
 Tiptoe, Coeus

expressive queries, hides query contents
[ASAEG’21]

- Private information retrieval
only key-value lookups

[CGKS’95,
 KO’97,
 Splinter’17, …]

 ()

 (𝑓())

 ()

Tiptoe: Architecture

URL service doc=92

webmd.com

doc91: 27%
doc92: 84%
doc93: 02%
 …

query

13

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Indexing batch job

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Ranking service

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Enc

Enc

Enc
Enc

 (𝑓())

doc91: 27%
doc92: 84%
doc93: 02%
 …

query

14

Indexing batch job

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Ranking service

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Enc

Enc

 ()
 () URL service doc=92

webmd.com

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Enc
Enc

Tiptoe: Architecture

 ()
 () URL service doc=92

webmd.com

15

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Indexing batch job

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Enc
Enc

 (𝑓())

Tiptoe: Architecture

doc91: 27%
doc92: 84%
doc93: 02%
 …

Ranking service

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Enc

Enc

query

Tiptoe: Design steps

16

1. Standard technique: Reduce text search to nearest-neighbor search
 Key tool: Semantic embeddings [Osgood’57, …]

2. Our contribution: Fast private nearest-neighbor search
 Key tools: Clustering to reduce communication
 + Linearly homomorphic encryption with preprocessing
 to shrink the computation [SimplePIR’23]

Embedding space
(e.g., dense vectors of 192 floats)

Documents

⋮

17

Represent documents and queries using semantic embeddings

e1

e2

[DC’19, MYCG’19, YYZL’19, SKPZ’22, …]

e3

e1

e2

Embedding space
(e.g., dense vectors of 192 floats)

Documents

⋮

18

Required property: when doc 1 and doc 2 are “similar” in meaning,
their embedding inner-product score is large.⟨e1, e2⟩

e3

Represent documents and queries using semantic embeddings
[DC’19, MYCG’19, YYZL’19, SKPZ’22, …]

e1

e2

Embedding space
(e.g., dense vectors of 192 floats)

Documents

⋮

“knee problem”

Embed

(270 MB)
q

19

Required property: when doc 1 and doc 2 are “similar” in meaning,
their embedding inner-product score is large.⟨e1, e2⟩

e3

Represent documents and queries using semantic embeddings
[DC’19, MYCG’19, YYZL’19, SKPZ’22, …]

e1

e2

Embedding space
(e.g., dense vectors of 192 floats)

Documents

⋮

“knee problem”

Embed

(270 MB)
q

20
 ↳ Goal: privately find the doc that maximizes the score , ⟨q e⟩

e3

Represent documents and queries using semantic embeddings
[DC’19, MYCG’19, YYZL’19, SKPZ’22, …]

21

Perform coarse nearest-neighbor search locally on the client

22

Cluster
centroids

(20 MB)

Perform coarse nearest-neighbor search locally on the client
Ahead of time: Server groups the docs into clustersN N

23

Cluster
centroids

(20 MB)

“knee problem”

Embed

(270 MB)
q

Cluste
r 2

Perform coarse nearest-neighbor search locally on the client

At query time: Client uses local list of centroids to find the closest cluster
Ahead of time: Server groups the docs into clustersN N

24

Cluster
centroids

(20 MB)

“knee problem”

Embed

(270 MB)
q

 ↳ Goal: privately fetch inner-product scores , for docs in Cluster 2⟨q e⟩

Need to hide both!

At query time: Client uses local list of centroids to find the closest cluster
Ahead of time: Server groups the docs into clustersN N
Perform coarse nearest-neighbor search locally on the client

Cluste
r 2

25

Server

Best match:
 cluster = 2  
 doc = ? cl

us
te
r
1

cl
us
te
r
3

…

cl
us
te
r

𝐶

cl
us
te
r
2

e1,1 e1,2 e1,3 e1,C

e2,1 e2,2 e2,3 e2,C

e3,1 e3,2 e3,3 e3,C

ek,1 ek,2 ek,3 ek,C

…

…

…

…

… … … … …

Perform exact search of the closest cluster under encryption

26

Server

Best match:
 cluster = 2  
 doc = ?

Enc

← index of cluster 2

×

cl
us
te
r
1

cl
us
te
r
3

…

cl
us
te
r

𝐶

cl
us
te
r
2

e1,1 e1,2 e1,3 e1,C

e2,1 e2,2 e2,3 e2,C

e3,1 e3,2 e3,3 e3,C

ek,1 ek,2 ek,3 ek,C

…

…

…

…

… … … … …

0

0

0
⋮

q
Enc

0

0

0
⋮

q
Enc

, ⟨q e1,2⟩
, ⟨q e2,2⟩
, ⟨q e3,2⟩

, ⟨q ek,2⟩
⋮

Perform exact search of the closest cluster under encryption

27

Server

Best match:
 cluster = 2  
 doc = 3

4
10
72

3

Enc

← index of cluster 2

×

cl
us
te
r
1

cl
us
te
r
3

…

cl
us
te
r

𝐶

cl
us
te
r
2

e1,1 e1,2 e1,3 e1,C

e2,1 e2,2 e2,3 e2,C

e3,1 e3,2 e3,3 e3,C

ek,1 ek,2 ek,3 ek,C

…

…

…

…

… … … … …

0

0

0
⋮

q
Enc

0

0

0
⋮

q
Enc

⋮

= score of doc 1

= score of doc 2

= score of doc 3

= score of doc k

Perform exact search of the closest cluster under encryption

28

Server

Best match:
 cluster = 2  
 doc = 3

4
10
72

3

Enc

← index of cluster 2

×

cl
us
te
r
1

cl
us
te
r
3

…

cl
us
te
r

𝐶

cl
us
te
r
2

e1,1 e1,2 e1,3 e1,C

e2,1 e2,2 e2,3 e2,C

e3,1 e3,2 e3,3 e3,C

ek,1 ek,2 ek,3 ek,C

…

…

…

…

… … … … …

0

0

0
⋮

q
Enc

0

0

0
⋮

q
Enc

⋮

= score of doc 1

= score of doc 2

= score of doc 3

= score of doc k

Communication: ,
on docs and embedding length

𝑂(𝑁d)
N d

Server work: fast with SimplePIR

(64-bit operations per doc)2d

Perform exact search of the closest cluster under encryption

 ()

 (𝑓())

 ()doc=92

webmd.com

doc91: 27%
doc92: 84%
doc93: 02%
 …

query

29

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Indexing batch job

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Preprocessing

Per query

J Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

NN service

URL service

Clusters J
Embeddings

URLs

J Cluster centers
Crypto. data structures

Client

Enc(query1)

Enc(answer1)

Enc(query2)

Enc(answer2)

 query

URL

Pretrained
embedding J Embedding fn.

�
Embed Find cluster

À Decrypt
Find doc. ID

DecryptÃ

Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data. Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.

4

Enc

Enc

Enc
Enc

Embed

+

query

Tiptoe: Life of a query

Embed
Ranking service

URL service

Text embeddings: msmarco-distilbert-base-tas-b

30

Tiptoe Gain
Docs searched 5 million 364 million 72
Client storage - 0.3 GiB – ∞
Server compute
(per million docs) 2,580 core-s 0.4 core-s 6,450

Communication
(per million docs) 10 MiB 0.16 MiB 62

End-to-end latency - 2.7 s

×

×

×

×

Coeus (SOSP’21)

Tiptoe is cheaper than state-of-the-art private search

31

Tiptoe Gain
Docs searched 5 million 364 million 72
Client storage - 0.3 GiB – ∞
Server compute
(per million docs) 2,580 core-s 0.4 core-s 6,450

Communication
(per million docs) 10 MiB 0.16 MiB 62

End-to-end latency - 2.7 s

×

×

×

×

Coeus (SOSP’21)

Tiptoe is cheaper than state-of-the-art private search

Semantic embeddings:
smaller doc representations

100 ×

Clustering: communication sublinear in N

SimplePIR: less computation10 ×

32

Tiptoe Gain
Docs searched 5 million 364 million 72
Client storage - 0.3 GiB – ∞
Server compute
(per million docs) 2,580 core-s 0.4 core-s 6,450

Communication
(per million docs) 10 MiB 0.16 MiB 62

End-to-end latency - 2.7 s

×

×

×

×

Coeus (SOSP’21)

Tiptoe is cheaper than state-of-the-art private search

0.0

0.1

0.2

0.3

0.4

ColBERT

BM25

tf-idf Tiptoe

1

Private:
Top result on average
ranked 7.7 of 100

Best non-private:

Top result on average
ranked 2.3 of 100

33On the MS MARCO doc-rank “dev” data set

Better

search
quality

(MRR@100)

Tiptoe’s search quality is acceptable

Examples: Tiptoe works best on conceptual queries

how long before eagles get feathers the meaning of haploid cell

34On the Common crawl data set

… but Tiptoe’s exact-string search could improve

77 Massachusetts Avenue

35On the Common crawl data set

36

Many directions for improvement

 Improve quality: run more powerful search under encryption?
 Reduce cost: shrink communication? increase throughput?

Many applications of private nearest-neighbor search

 Tiptoe can search over products, ads, feeds, and more

Private search is within reach… what’s next?

37

Attacker 
(data breach)

SketchyCo 
(resale)

LearningCo 
(training)

“knee problem”

hopkinsmedicine.org/  
health/knee-pain

Tiptoe
private
search

⋮

Alexandra Henzinger

Code: github.com/ahenzinger/tiptoe
Paper: eprint.iacr.org/2023/1438
Demo: come talk to me!

CodePaper

https://github.com/ahenzinger/tiptoe
https://eprint.iacr.org/2023/1438

38

