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Web-search gueries reveal our sensitive data

Health ballet knee problem
Finances job opportunities in west palm beach
Religion african american churches in norfolk va

Citizenship application forms us citizen

https://trec.nist.gov/data/million.query@7.html



Today: Search engines learn our queries
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Goal: Search without revealing query
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Goal: Search without revealing query
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Non-goals: - does not hide when the client makes searches
- does not guarantee integrity of search results
- does not hide subsequent HTTP(S) requests



Goal: Search without revealing query
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Theoretically possible: Fully homomorphic encryption [RAD78, Gen'09]
But, classic search algorithms are very expensive to express as circuits
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M This work: Linearly homomorphic encryption suffices
= Modern ML turns messy search computations into cheap, linear ones
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Tiptoe: A private search engine

+ Search engine learns no information about the client’s queries

+ Supports text & image search

+ Searches over public web crawl (364M pages) in 2.7s of latency

= Search results not yet as good as with non-private search engines



Private search
on private data

- Searchable Encryption

- Oblivious RAM

Private search
on public data

- Private information retrieval
only key-value lookups

- Google over Tor
leaks query contents

=» Query-private search:

Tiptoe, Coeus
expressive gueries, hides query contents
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Tiptoe: Architecture
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Tiptoe: Architecture

W Enc( doc=92 ) URL service
; Enc (webmd. com ) ‘ ....J
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Tiptoe: Architecture

Enc( f( query ))

Ranking service
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Tiptoe: Design steps

1. Standard technique: Reduce text search to nearest-neighbor search
Key tool: Semantic embeddings

2. Our contribution: Fast private nearest-neighbor search

Key tools: Clustering to reduce communication

+ Linearly homomorphic encryption with preprocessing
to shrink the computation
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Represent documents and queries using semantic embeddings
[DC’19, MYCG'19, YYZIU19, SKPZ'22, .. ]

Embedding space Documents
(e.g., dense vectors of 192 floats)
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Represent documents and queries using semantic embeddings

Embedding space Documents
(e.g., dense vectors of 192 floats)

Required property: when doc 1 and doc 2 are “similar” in meaning,
their embedding inner-product score (ey, €,) is large.
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Represent documents and queries using semantic embeddings

Embedding space Documents
(e.g., dense vectors of 192 floats)

“knee problem”

Required property: when doc 1 and doc 2 are “similar” in meaning,
their embedding inner-product score (ey, €,) is large.
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Represent documents and queries using semantic embeddings

Embedding space Documents
(e.g., dense vectors of 192 floats)

“knee problem”

 Goal: privately find the doc that maximizes the score {(q, €)
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Perform coarse nearest-neighbor search locally on the client
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Perform coarse nearest-neighbor search locally on the client
Server groups the N docs into 1/N clusters
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Perform coarse nearest-neighbor search locally on the client
Server groups the N docs into 1/N clusters
Client uses local list of centroids to find the closest cluster

“knee problem”
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Perform coarse nearest-neighbor search locally on the client
Server groups the N docs into 1/N clusters
Client uses local list of centroids to find the closest cluster

“knee problem”

/\

Cluster
Centr;|ds :’é’}

(20 MB)

(270 MB)

Need to hide both!

 Goal: privately fetch inner-product scores {(, €) for docs in Cluster 2
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Perform exact search of the closest cluster under encryption
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Perform exact search of the closest cluster under encryption

Best match:
cluster = 2
doc = 7
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Perform exact search of the closest cluster under encryption

0 Server
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Perform exact search of the closest cluster under encryption

i Server
« 1ind f clust 2
q index of cluster ~ v % s
Best match: : 4& Pt (}QJ P
cluster = 2 {0 1 > & N &
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Communication: O(v/ Nd), Server work: fast with SimplePIR

on N docs and embedding length d (2d 64-bit operations per doc)



Tiptoe: Life of a query j{ﬁﬁ* 3
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Tiptoe is cheaper than state-of-the-art private search

Docs searched

Client storage

Server compute

Communication

End-to-end latency
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Tiptoe is cheaper than state-of-the-art private search

Coeus Tiptoe Gain
Docs searched 5 million 364 million 72 X
Client storage Semantic embeddings: 100 X — 00 X
Server compute \smaller doc representations

6,450 %

[SimpIePIR: 10 X less computation J

Communication

[Clustering: communication sublinear in N % 62 X

End-to-end latency - 2.7 s



Tiptoe is cheaper than state-of-the-art private search
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Tiptoe’s search quality is acceptable

ColBERT Best non-private:
0.4 Top result on average
Better 03 ranked 2.3 of 100
search
quality 0-2 Private:
(MRR@100)

Top result on average
ranked 7.7 of 100

0.1

0.0

On the MS MARCO doc-rank “dev” data set 33



—xamples: Tiptoe works best on conceptual queries

how long before eagles get feathers the meaning of haploid cell

A}W Home Latest Photos

All folders  Scott Maez
g ﬁ 4‘ haploid phase =: Table of Contents

® Britannica = © - [Subserive

by Lyn Arnold
haploid phase
biology

Eagle banding Ottawa Refuge < share

6-4-09 LEARN ABOUT THIS TOPIC in these articles:
algae

7 In algae: Reproduction and life histories

...of chromosomes and is called haploid, whereas in the

second stage each cell has two sets of chromosomes and is
called d1p101d When one haploid gamete fuses with another haploid gamete
during fertilization, the resulting combination, with two sets of chromosomes, is
called a zygote. Either immediately or at some...

READ MORE

On the Common crawl! data set 34



. but Tiptoe’s exact-string search could improve

/7 Massachusetts Avenue
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On the Common crawl data set



Private search is within reach... what’'s next?

Many directions for improvement
Improve quality: run more powerful search under encryption”?
Reduce cost: shrink communication? increase throughput?

Many applications of private nearest-neighbor search

Tiptoe can search over products, ads, feeds, and more
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Alexandra Henzinger
Code: github.com/ahenzinger/tiptoe

Paper: eprint.iacr.org/2023/1438
Demo: come talk to mel
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https://github.com/ahenzinger/tiptoe
https://eprint.iacr.org/2023/1438
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