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Private web search



Web-search queries reveal our sensitive data
Health	 	 ballet knee problem

Finances	 	 job opportunities in west palm beach

Religion  african american churches in norfolk va

Citizenship	 application forms us citizen

https://trec.nist.gov/data/million.query07.html
2



3

Today: Search engines learn our queries

“knee problem”

hopkinsmedicine.org/  
health/knee-pain
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“knee problem”

Goal: Search without revealing query
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Goal: Search without revealing query

- does not hide when the client makes searches 
- does not guarantee integrity of search results 
- does not hide subsequent HTTP(S) requests 

Non-goals:
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Goal: Search without revealing query

Theoretically possible: Fully homomorphic encryption [RAD’78, Gen’09]

But, classic search algorithms are very expensive to express as circuits
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Goal: Search without revealing query

This work: Linearly homomorphic encryption suffices 
Modern ML turns messy search computations into cheap, linear ones
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+  Search engine learns no information about the client’s queries 
     i.e., semantic security relying on LWE and ring-LWE 

+  Supports text & image search 

+  Searches over public web crawl (364M pages) in 2.7s of latency 
     with 145 core-s of compute, 57 MiB of traffic, and 0.3 GiB of client storage 

-  Search results not yet as good as with non-private search engines
11

Tiptoe: A private search engine
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- Searchable Encryption
[SWP’00, CGKO’11, CryptDB’11, SPS’14, …]

- Oblivious RAM
[GO’96, O’90, SVSRYD’13, Dory’20, …]

Private search 

on public data

Private search 

on private data

- Google over Tor
leaks query contents

[DMS’04]

- Query-private search:  
  Tiptoe, Coeus

expressive queries, hides query contents
[ASAEG’21]

- Private information retrieval
only key-value lookups

[CGKS’95,  
 KO’97, 
 Splinter’17, …]
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Tiptoe: Architecture

URL service doc=92

webmd.com

doc91: 27% 
doc92: 84%
doc93: 02% 
    …

query
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.
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search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
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facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.
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Client-facing Tiptoe services. Clients interact with two Tip-
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1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
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2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
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facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
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search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
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jobs compute a set of cryptographic data structures required
for our private-search protocols.
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1. The document-embedding function that the client uses
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function depends only on the type of document being
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neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
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2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
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Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
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• locally search over these inner-product scores to identify
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a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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1. Standard technique: Reduce text search to nearest-neighbor search 
       Key tool: Semantic embeddings [Osgood’57, …] 

2. Our contribution: Fast private nearest-neighbor search 
       Key tools: Clustering to reduce communication 
                    + Linearly homomorphic encryption with preprocessing 
                       to shrink the computation [SimplePIR’23]
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 ↳ Goal: privately find the doc that maximizes the score , ⟨q e⟩
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Represent documents and queries using semantic embeddings
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Perform coarse nearest-neighbor search locally on the client
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Figure 2: The Tiptoe system architecture. J In a preprocessing
phase, the Tiptoe batch jobs use a pretrained embedding function to
embed each document into a vector, cluster the vectors, and generate
the cryptographic data structures. The client and servers each store
portions of the preprocessed data.   Upon each query, the client
embeds the query string into a vector, identifies the cluster nearest
its query vector, and queries the nearest-neighbor service to find
the best documents within that cluster. À Once the client knows the
IDs of the best-matching documents, it queries the URL service.
Ã Finally, the client uses the answer from the URL service to recover
the document URLs.

facing services run on a cluster of tens of physical machines;
a production deployment could use many more to scale up.

Corpus indexing. The Tiptoe batch jobs convert the raw
corpus of documents into a set of data structures for private
search. First, the indexing jobs run each document through
an embedding function to generate a fixed-size vector rep-
resentation of the document. The output of this step is one
embedding vector per document; the embeddings we use for
text search are vectors of 768 floats. Second, the indexing jobs
group the embedding vectors into clusters of tens of thousands
of documents each, and compute the centroids of each cluster.
Since nearby embedding vectors represent documents that
are close in content, the documents within each cluster are
about related topics. (Clustering is a common technique in
information-retrieval systems [23, 46, 48, 59, 87].) Finally, the
jobs compute a set of cryptographic data structures required
for our private-search protocols.

Clients. Clients in Tiptoe make private queries by interacting
with the Tiptoe services that we describe below. Each Tiptoe
client needs three pieces of data:

1. The document-embedding function that the client uses
this function to embed its query string into a vector. This
function depends only on the type of document being
indexed (e.g., text, image) and not on the corpus itself.
We use the msmarco-distilbert-base-tas-b pretrained

neural network [46] as our text-embedding function. It
takes 265 MiB to represent; other popular embedding
models have similar size [94].

2. The cluster centroids output by the indexing batch jobs.
This list is 68 MiB for a text-search corpus of 360 million
web pages. The client uses the centroids to find the cluster
closest to its query embedding.

3. The data structures used for the cryptographic protocols
(§3–§4) that the client uses to interact with the Tiptoe
services. These require 885 MiB of storage for our text-
search corpus.

Client-facing Tiptoe services. Clients interact with two Tip-
toe services over the Internet:

1. Nearest-neighbor service. The client uses the nearest-
neighbor service to find the IDs of the documents that
best match its query within a particular cluster (§3). The
Tiptoe client uses a new cryptographic protocol to obtain
the distance between its query embedding and all of the
documents in its chosen cluster, without revealing its query
or its chosen cluster to the Tiptoe service.

2. URL service. The Tiptoe client uses the URL service to
fetch the URL and associated metadata for a document (§4).
The Tiptoe client uses a cryptographic private-information-
retrieval protocol [25] to query the URL service for this
data, while hiding which document it is interested in.

3 Finding the best documents with
private nearest-neighbor search

Once the Tiptoe client has its query embedding q, the client
must find the documents whose embedding vectors are nearest
to q in vector space. This is a private nearest-neighbor search
problem. (More precisely, since we measure closeness by
inner-product distance and return only an approximate result,
we implement “private approximate maximum-inner-product
search.”) Prior schemes for private nearest-neighbor search
that scale beyond a few thousand items require multiple
non-colluding servers for security [22, 86, 101]; our protocol
requires a single logical server, relies only on cryptographic
assumptions, and has communication cost that scales with the
square root of the number of documents.

Tiptoe implements private nearest-neighbor search by hav-
ing the client:

• use its locally cached set of cluster centroids to identify
the index 8

⇤ of the cluster nearest to its query embedding,
• run a new, compute-optimized private inner-product proto-

col with the servers (Figure 4) to learn the inner product
of its query vector q with every vector in cluster 8⇤, and

• locally search over these inner-product scores to identify
the IDs of the best-matching documents within cluster 8⇤.
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Tiptoe Gain
Docs searched 5 million 364 million 72  
Client storage - 0.3 GiB – ∞ 
Server compute                
(per million docs) 2,580 core-s 0.4 core-s 6,450

Communication     
(per million docs) 10 MiB 0.16 MiB 62  

End-to-end latency - 2.7 s

×

×

×

×

Coeus (SOSP’21)

Tiptoe is cheaper than state-of-the-art private search
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Tiptoe Gain
Docs searched 5 million 364 million 72  
Client storage - 0.3 GiB – ∞ 
Server compute                
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×

×

×

×

Coeus (SOSP’21)

Tiptoe is cheaper than state-of-the-art private search

Semantic embeddings: 
smaller doc representations

100 ×

Clustering: communication sublinear in N

SimplePIR: less computation10 ×
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Examples: Tiptoe works best on conceptual queries

how long before eagles get feathers the meaning of haploid cell 

34On the Common crawl data set



… but Tiptoe’s exact-string search could improve

77 Massachusetts Avenue

35On the Common crawl data set
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Many directions for improvement

     Improve quality: run more powerful search under encryption? 
     Reduce cost: shrink communication? increase throughput? 

Many applications of private nearest-neighbor search

     Tiptoe can search over products, ads, feeds, and more 

Private search is within reach… what’s next?
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Attacker 
(data breach)

SketchyCo 
(resale)

LearningCo 
(training)

“knee problem”

hopkinsmedicine.org/  
health/knee-pain

Tiptoe 
private 
search

⋮

Alexandra Henzinger

Code:  github.com/ahenzinger/tiptoe 
Paper: eprint.iacr.org/2023/1438 
Demo: come talk to me! 

CodePaper

https://github.com/ahenzinger/tiptoe
https://eprint.iacr.org/2023/1438
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