
Hertzbleed: The Claim of Constant-
time is Frequently Wrong

Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant Garrett-
Grossman, Christopher W. Fletcher, David Kohlbrenner, Hovav Shacham

2Hertzbleed: The Claim of Constant-time is Frequently Wrong

Power Side Channel vs Remote Timing

Power Side-Channel Attacks

3

https://github.com/h2lab/smartleia-demo

Power Side Channel vs Remote Timing

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Power Side-Channel Attacks

4

Remote Timing Attacks

Power Side Channel vs Remote Timing

https://github.com/h2lab/smartleia-demo

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Power Side-Channel Attacks

5

Remote Timing Attacks

Hertzbleed: a New Class of Attacks

https://github.com/h2lab/smartleia-demo

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: enable remote key extraction from
constant-time cryptography implementation.

Power Side-Channel Attacks

6Hertzbleed: The Claim of Constant-time is Frequently Wrong

Remote Timing Attacks

Hertzbleed: exploiting
dynamic voltage and frequency scaling (DVFS)

https://github.com/h2lab/smartleia-demo

Hertzbleed: a New Class of Attacks

Power Side-Channel Attacks

7

Remote Timing Attacks

https://github.com/h2lab/smartleia-demo

Hertzbleed: a New Class of Attacks

Hertzbleed: Re-think the definition of
constant-time programming

Hertzbleed: The Claim of Constant-time is Frequently Wrong

DVFS on a modern Intel CPU

Thermal Design Point (TDP)
120W

65W

Maximum Power Draw

Intel i7-8700

DVFS is the manager that ensures
the CPU stays below the TDP.

Hertzbleed: The Claim of Constant-time is Frequently Wrong

DVFS on a modern Intel CPU

DVFS is the manager that ensures
the CPU stays below the TDP.

CPU Core
Power Consumption

CPU Core
Frequency

DVFS

Hertzbleed: The Claim of Constant-time is Frequently Wrong

DVFS on a modern Intel CPU

DVFS is the manager that ensures
the CPU stays below the TDP.

CPU Core
Power Consumption

CPU Core
Frequency

DVFS
Why DVFS has anything to do with

constant-time cryptography?

Hertzbleed: The Claim of Constant-time is Frequently Wrong

DVFS on a modern Intel CPU

CPU Core
Power Consumption

CPU Core
Frequency

DVFS

Why DVFS has anything to do with
constant-time cryptography?

Power leaks data!

Hertzbleed: The Claim of Constant-time is Frequently Wrong

DVFS on a modern Intel CPU

CPU Core
Power Consumption

CPU Core
Frequency

DVFS

Why DVFS has anything to do with
constant-time cryptography?

Power leaks data!

Does frequency also leak data?

Hertzbleed: The Claim of Constant-time is Frequently Wrong

• Vary the data values (Input) being processed in a “constant-time”
workload.

13

Frequency Depends on Data

Hertzbleed: The Claim of Constant-time is Frequently Wrong

14

Power Consumption

Frequency Depends on Data

• Vary the data values (Input) being processed in a “constant-time”
workload.

Hertzbleed: The Claim of Constant-time is Frequently Wrong

15

CPU FrequencyPower Consumption

Frequency Depends on Data

• Vary the data values (Input) being processed in a “constant-time”
workload.

Hertzbleed: The Claim of Constant-time is Frequently Wrong

16

CPU FrequencyPower Consumption

Frequency Depends on Data

• Vary the data values (Input) being processed in a “constant-time”
workload.

Frequency leaks data!

Hertzbleed: The Claim of Constant-time is Frequently Wrong

17

Function Sum(first, second):
 a = first
 b = second
 sum = a + b
 return sum

Test 1 (CVE 1 number):
first = 2022
second = 23823

Test 2 (CVE 2 number):
first = 2022
second = 24436

Example of Data-Dependent Frequency

Hertzbleed: The Claim of Constant-time is Frequently Wrong

18

Function Sum(first, second):
 a = first
 b = second
 sum = a + b
 return sum

Test 1 (CVE 1 number):
first = 2022
second = 23823

Test 2 (CVE 2 number):
first = 2022
second = 24436

Example of Data-Dependent Frequency

Which Runs at a Higher Frequency?

Hertzbleed: The Claim of Constant-time is Frequently Wrong

19

Function Sum(first, second):
 a = first
 b = second
 sum = a + b
 return sum

Test 1 (CVE 1 number):
first = 2022
second = 23823

Test 2 (CVE 2 number):
first = 2022
second = 24436

We construct a leakage model
to answer this question.

Example of Data-Dependent Frequency

Which Runs at a Higher Frequency?

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Three independent effects:
1. Hamming distance (HD)
2. Hamming weight (HW)
3. Bit positions!

20

Frequency Leakage Model

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1. Hamming distance (HD)
2.
3.

21

ax ← 0000000011111111
ax ← 0001111111100000

Frequency Leakage Model

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1. Hamming distance (HD)
2.
3.

22

ax ← 0000000011111111
ax ← 0001111111100000

HD = 10

ax ← 0000000011111111
ax ← 0000011111111000

HD = 6

Frequency Leakage Model

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1. Hamming distance (HD)
2.
3.

23

ax ← 0000000011111111
ax ← 0001111111100000

HD = 10

ax ← 0000000011111111
ax ← 0000011111111000

HD = 6
Runs at a higher

frequency!

Consumes less
power

Frequency Leakage Model

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2. Hamming weight (HW)
3.

24

ax ← 1111001111001111
 ax ← ax | ax

Frequency Leakage Model

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2. Hamming weight (HW)
3.

25

ax ← 1111001111001111
 ax ← ax | ax

HW = 12

ax ← 1100110011001100
 ax ← ax | ax

HW = 8
Runs at a higher

frequency!

Consumes less
power

Frequency Leakage Model

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2.
3. Bit positions!

26

rax ← 0x00000000000000ff
 rax ← rax | rax

Runs at a different
CPU frequency!

Consumes
different amount

of CPU power

Frequency Leakage Model

HW = 8, HD = 0

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2.
3. Bit positions!

27

rax ← 0x000000000000ff00
 rax ← rax | rax

Runs at a different
CPU frequency!

Consumes
different amount

of CPU power

Frequency Leakage Model

HW = 8, HD = 0

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2.
3. Bit positions!

28

rax ← 0x0000000000ff0000
 rax ← rax | rax

Runs at a different
CPU frequency!

Consumes
different amount

of CPU power

Frequency Leakage Model

HW = 8, HD = 0

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2.
3. Bit positions!

29

rax ← 0x00000000ff000000
 rax ← rax | rax

Runs at a different
CPU frequency!

Consumes
different amount

of CPU power

Frequency Leakage Model

HW = 8, HD = 0

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2.
3. Bit positions!

30

rax ← 0x000000ff00000000
 rax ← rax | rax

Runs at a different
CPU frequency!

Consumes
different amount

of CPU power

Frequency Leakage Model

HW = 8, HD = 0

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2.
3. Bit positions!

31

rax ← 0x0000ff0000000000
 rax ← rax | rax

Runs at a different
CPU frequency!

Consumes
different amount

of CPU power

Frequency Leakage Model

HW = 8, HD = 0

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2.
3. Bit positions!

32

rax ← 0x00ff000000000000
 rax ← rax | rax

HW = 8, HD = 0
Runs at a different

CPU frequency!

Consumes
different amount

of CPU power

Frequency Leakage Model

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2.
3. Bit positions!

33

rax ← 0xff00000000000000
 rax ← rax | rax

Runs at a different
CPU frequency!

Consumes
different amount

of CPU power

Frequency Leakage Model

HW = 8, HD = 0

Hertzbleed: The Claim of Constant-time is Frequently Wrong

1.
2.
3. Bit positions!

34

rax ← 0xffffffffffffffff
 rax ← rax | rax

Runs at a different
CPU frequency!

Consumes
different amount

of CPU power

Frequency Leakage Model

HW = 8, HD = 0

CPU frequency can leak
information about data even

with a fixed HD and HW.

Hertzbleed: The Claim of Constant-time is Frequently Wrong

35

A constant-time program with different secret inputs

CPU Power
Consumption

Higher
Power

CPU
Frequency

Lower
Frequency

Program
Execution Time

Longer
Time

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: CPU Frequency Depends on
CPU Power

36

Constant-time cryptography implementation

1Supersingular Isogeny Key Encapsulation

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Attacker made a correct guess of
a secret key bit.

Attacker made an incorrect guess of a
secret key bit.

Hertzbleed: Remote Key Extraction

37

1Supersingular Isogeny Key Encapsulation

Hertzbleed: The Claim of Constant-time is Frequently Wrong

SIKE1 has been deprecated

Is SIKE the only cryptosystem
vulnerable to Hertzbleed?

Hertzbleed: Remote Key Extraction

38

1Supersingular Isogeny Key Encapsulation

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: Remote Key Extraction

Is every cryptosystem
vulnerable to Hertzbleed?

SIKE1 has been deprecated

39Hertzbleed: The Claim of Constant-time is Frequently Wrong

SIKE1 is the only cryptosystem
vulnerable to Hertzbleed.

1Supersingular Isogeny Key Encapsulation

Every cryptosystem is
vulnerable to Hertzbleed.

Which universe do we live in?

40Hertzbleed: The Claim of Constant-time is Frequently Wrong

SIKE1 is the only cryptosystem
vulnerable to Hertzbleed.

1Supersingular Isogeny Key Encapsulation

Every cryptosystem is
vulnerable to Hertzbleed.

Which universe do we live in?

41

Hertzbleed: Amplification Gadget

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Power leakage and frequency leakage are not equivalent.

x * x

x = 0x00000000

x = 0xffffffff

Higher Hamming
Weight (HW)

42

Hertzbleed: Amplification Gadget

Hertzbleed: The Claim of Constant-time is Frequently Wrong

CPU Core
Power Consumption

x * x

x = 0x00000000

x = 0xffffffff

Higher Hamming
Weight (HW)

Higher
Power

CPU Core
Power Consumption

CPU Core
Frequency

Hertzbleed
x * x

x = 0x00000000

x = 0xffffffff

43

Higher Hamming
Weight (HW)

Higher
Power

Hertzbleed: Amplification Gadget

Hertzbleed: The Claim of Constant-time is Frequently Wrong

44

CPU Core
Power Consumption

CPU Core
Frequency

Hertzbleed
x = 0x00000000

x = 0xffffffff

Amplification Gadget

While(i<BIGNUM):
 x * x
 i ++

Hertzbleed: Amplification Gadget

Hertzbleed: The Claim of Constant-time is Frequently Wrong

45

Amplification Gadget

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: Amplification Gadget

No systematic amplification gadget
discovery methodology

WPH+2022: Hertzbleed: Turning Power Side-Channel
Attacks Into Remote Timing Attacks on x86

46

Cryptography primitives with
known classes of weakness due

to side-channels.

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: Amplification Gadget

Cryptography engineers
carefully mitigate these

weakness in “constant-time”.

Do not take frequency
leakages into account

47

WPW+2023: DVFS Frequently Leaks Secrets: Hertzbleed
Attacks Beyond SIKE, Cryptography, and CPU-Only Data

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: Amplification Gadget

Will mitigated side-channel leakage reappear
if examined through a Hertzbleed lens?

Cryptography primitives with
known classes of weakness due

to side-channels.

Cryptography engineers
carefully mitigate these

weakness in “constant-time”.

48

WPW+2023: DVFS Frequently Leaks Secrets: Hertzbleed
Attacks Beyond SIKE, Cryptography, and CPU-Only Data

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: Amplification Gadget

Mitigated side-channel weakness do reappear
when looking through a Hertzbleed lens.

Cryptography primitives with
known classes of weakness due

to side-channels.

Cryptography engineers
carefully mitigate these

weakness in “constant-time”.

49

WPW+2023: DVFS Frequently Leaks Secrets: Hertzbleed
Attacks Beyond SIKE, Cryptography, and CPU-Only Data

Amplification Gadget

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: Amplification Gadget

Cryptography primitives with
known classes of weakness due

to side-channels.

Cryptography engineers
carefully mitigate these

weakness in “constant-time”.

50

Systematic error correcting code (ECC): Encoding a message with
redundancy for detecting and recovering errors.

M

M ECC

Noisy Channel: 𝑛 bits flipped

A codeword Corrupted codeword

M’ ECC’

M ECC

Original codewordA message

Background: Error correcting code

Hertzbleed: The Claim of Constant-time is Frequently Wrong

51

An ECC with a sharp decoding threshold 𝑡.

Number of error > 𝑡

Background: Binary Goppa Code

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Number of error ≤ 𝑡

Cannot recover original codeword Recovers original codeword

52

Client: pick a codeword 𝑚, and secret error vector 𝑒	with HW(𝑒) = t	.

Client Server

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡

Background: McEliece Public-Key
Cryptosystem

Hertzbleed: The Claim of Constant-time is Frequently Wrong

A codeword

Anyone without the secret key
cannot decode C		to	𝑚 = cannot recover 𝑒	from	𝐶.

𝑚, 𝑒		=	Decode C	

53

Threat model: MITM attacker attempts to recover 𝑒, and then computes 𝑚.

Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece Public-Key Cryptosystem

Sloppy Alice Attack on McEliece Public
Key Cryptosystem

Hertzbleed: The Claim of Constant-time is Frequently Wrong

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡

Attacker

ServerClient
𝑒[0]	=	1

C	′=	Encode	(𝑚)	 + 	𝑒′

𝑚, 𝑒′		=	Decode C	′
• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	

54

Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece Public-Key Cryptosystem

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡

Server

Attacker

Client

Sloppy Alice Attack on McEliece Public
Key Cryptosystem

Hertzbleed: The Claim of Constant-time is Frequently Wrong

𝑒,𝑚

More details are
in the paper

𝑚, 𝑒′		=	Decode C	′
• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	

C	′

55

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡

Attacker

Server

Classic McElice: A KEM on top of the
McEliece Public Key Cryptosystem

Hertzbleed: The Claim of Constant-time is Frequently Wrong

C	′=	Encode	(𝑚)	 + 	𝑒′

Classic McEliece does not
expose decoding result 𝑚, 𝑒′		=	Decode C	′

• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	

56

Server

• Valid C	

• Malformed C	‘: HW(𝑒′)	≤ 𝑡	

• Malformed C	‘: HW(𝑒′)	> 𝑡

Classic McEliece does a hamming
weight checking and re-encryption
to reject any malformed ciphertext.

Amplification Gadget

A decode oracle via Hertzbleed

Hertzbleed Attack on Classic McEliece

Hertzbleed: The Claim of Constant-time is Frequently Wrong

𝑚, 𝑒′		=	Decode C	′
• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	

57

Server

Attacker

Amplification Gadget

• Bitslicing
• Transpose FFT with

butterfly subroutine

Hertzbleed Attack on Classic McEliece

Hertzbleed: The Claim of Constant-time is Frequently Wrong

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡 C	′=	Encode	(𝑚)	 + 	𝑒′ 𝑚, 𝑒′		=	Decode C	′

• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	𝑒[0]	=	1

58

Server

Attacker

 𝑒[0]	=	1

 𝑒[0]	=	0

High HW&HD

Low HW&HD
Amplification Gadget

• Bitslicing
• Transpose FFT with

butterfly subroutine

Hertzbleed Attack on Classic McEliece

Hertzbleed: The Claim of Constant-time is Frequently Wrong

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡 C	′=	Encode	(𝑚)	 + 	𝑒′ 𝑚, 𝑒′		=	Decode C	′

• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	𝑒[0]	=	1

59

Server

Attacker

Amplification Gadget

• Bitslicing
• Transpose FFT with

butterfly subroutine

Hertzbleed Attack on Classic McEliece

Hertzbleed: The Claim of Constant-time is Frequently Wrong

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡 C	′=	Encode	(𝑚)	 + 	𝑒′ 𝑚, 𝑒′		=	Decode C	′

• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	𝑒[0]	=	1

 𝑒[0]	=	1

 𝑒[0]	=	0

60

Server

Slower

Faster
Amplification Gadget

• Bitslicing
• Transpose FFT with

butterfly subroutine

Attacker

Hertzbleed Attack on Classic McEliece

Hertzbleed: The Claim of Constant-time is Frequently Wrong

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡 C	′=	Encode	(𝑚)	 + 	𝑒′ 𝑚, 𝑒′		=	Decode C	′

• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	𝑒[0]	=	1

 𝑒[0]	=	1

 𝑒[0]	=	0

61

Hertzbleed Attack on Classic McEliece

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Classic McEliece decapsulation
timing distribution:
• Orange: 𝑒[0]	=	1
• Blue: 𝑒[0]	=	0

62

Server

Attacker

Amplification Gadget• Longer response time:
𝑒[0]	=	1

• Shorter response time:
𝑒[0]	=	0

Decode C	′ : Success or fail?

• Bitslicing
• Transpose FFT with

butterfly subroutine

Hertzbleed Attack on Classic McEliece

Hertzbleed: The Claim of Constant-time is Frequently Wrong

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡 C	′=	Encode	(𝑚)	 + 	𝑒′ 𝑚, 𝑒′		=	Decode C	′

• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	𝑒[0]	=	1

63

Server

Attacker

The piece of code hides
decoding failure/success

in constant-time.

• Bitslicing
• Transpose FFT with

butterfly subroutine

Hertzbleed Attack on Classic McEliece

Hertzbleed: The Claim of Constant-time is Frequently Wrong

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡 C	′=	Encode	(𝑚)	 + 	𝑒′ 𝑚, 𝑒′		=	Decode C	′

• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	𝑒[0]	=	1

64

Server

Attacker

The piece of code creates
the timing leakage under

Hertzbleed.

• Bitslicing
• Transpose FFT with

butterfly subroutine

Hertzbleed Attack on Classic McEliece

Hertzbleed: The Claim of Constant-time is Frequently Wrong

C	=	Encode	(𝑚)	+	𝑒
HW(𝑒) = 𝑡 C	′=	Encode	(𝑚)	 + 	𝑒′ 𝑚, 𝑒′		=	Decode C	′

• Success if HW(𝑒′)	≤ 𝑡	
• Fail	if HW(𝑒′)	>	𝑡	𝑒[0]	=	1

Discussion & Takeaway
• Current practices for how to write constant-time code are no

longer sufficient to guarantee constant-time execution.
• Hertzbleed turns power leakage into timing leakage.
• No systematic way of achieving constant-power without masking.

65

if secret == 1 then
 routine();

res = x * secret / 255.0f

No secret-dependent
branches

No secret inputs to
variable-time instructions

No secret-dependent
memory accesses

state = array[secret]

Hertzbleed: The Claim of Constant-time is Frequently Wrong

66

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 	=

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 	×

𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛	×

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑐𝑦𝑐𝑙𝑒

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Discussion & Takeaway

67

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 	=

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 	×

𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛	×

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑐𝑦𝑐𝑙𝑒

All prior timing attacks

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Discussion & Takeaway

68

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 	=

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 	×

𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛	×

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑐𝑦𝑐𝑙𝑒

HertzbleedAll prior timing attacks

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Discussion & Takeaway

References

• Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on
x86 (USENIX Security 2022)
– Yingchen Wang*, Riccardo Paccagnella*, Elizabeth He, Hovav Shacham,

Christopher Fletcher, David Kohlbrenner.
– IEEE Micro Top Picks 2023, Black Hat Pwnie Award 2022 for Best Cryptographic

Attack

• DVFS Frequently Leaks Secrets: Hertzbleed Attacks Beyond SIKE, Cryptography,
and CPU-Only Data (IEEE Security & Privacy 2023)
– Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant

Garrett-Grossman, Christopher Fletcher, David Kohlbrenner, Hovav Shacham.

69Hertzbleed: The Claim of Constant-time is Frequently Wrong

www.hertzbleed.com

http://www.hertzbleed.com/

