Hertzbleed: The Claim of Constant-
time is Frequently Wrong

Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant Garrett-
Grossman, Christopher W. Fletcher, David Kohlbrenner, Hovav Shacham

Carnegie
Mellon
University

UTEXAS X ILLINOIS W7 yisiiinaTon

Power Side Channel vs Remote Timing

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Power Side Channel vs Remote Timing

Power Side-Channel Attacks

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Power Side Channel vs Remote Timing

Power Side-Channel Attacks Remote Timing Attacks

& L 4 “
‘ \
1 |

v

A

A
v

v

A

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: a New Class of Attacks

Power Side-Channel Attacks | > Remote Timing Attacks

:

v

A

A
v

&

A
v

Hertzbleed: enable remote key extraction from
constant-time cryptography implementation.

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: a New Class of Attacks

Power Side-Channel Attacks | > Remote Timing Attacks

:

v

A

v

&

A

v

A

Hertzbleed: exploiting
dynamic voltage and frequency scaling (DVFS)

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: a New Class of Attacks

Power Side-Channel Attacks | > Remote Timing Attacks

:

v

A

v

&

A

v

A

Hertzbleed: Re-think the definition of
constant-time programming

Hertzbleed: The Claim of Constant-time is Frequently Wrong

DVFS on a modern Intel CPU

Maximum Power Draw

Thermal Design Point (TDP)

DVFS is the manager that ensures
the CPU stays below the TDP.

Intel i7-8700

Hertzbleed: The Claim of Constant-time is Frequently Wrong

DVFS on a modern Intel CPU

CPU Core CPU Core DVFS is the manager that ensures
Power Consumption Frequency the CPU stays below the TDP.

£SO T

DVES
7\

Hertzbleed: The Claim of Constant-time is Frequently Wrong

DVFS on a modern Intel CPU

CPU Core CPU Core DVFS is the manager that ensures
Power Consumption Frequency the CPU stays below the TDP.
AN JUL
DVFS
I:> Why DVFS has anything to do with

0 constant-time cryptography?
A

Hertzbleed: The Claim of Constant-time is Frequently Wrong

DVFS on a modern Intel CPU

CPU Core CPU Core Why DVFS has anything to do with
Power Consumption Frequency constant-time cryptography?
f\ ‘ OVES —l_l—l_l— Power leaks data!

—

£ 77

Hertzbleed: The Claim of Constant-time is Frequently Wrong

DVFS on a modern Intel CPU

CPU Core CPU Core Why DVFS has anything to do with
Power Consumption Frequency constant-time cryptography?
f\ ‘ OVES —l_l—l_l— Power leaks datal

fm/‘ Does frequency also leak data?

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Frequency Depends on Data

* Vary the data values (Input) being processed in a “constant-time”
workload.

Hertzbleed: The Claim of Constant-time is Frequently Wrong

13

Frequency Depends on Data

* Vary the data values (Input) being processed in a “constant-time”

workload.
Power Consumption

0.6

Input 1
Input 2

Probability Density
o o o o
N w IS wn

°
o

o
S)
|

20 21 22 23 24 25 26 27
Power Consumption (W)

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Frequency Depends on Data

* Vary the data values (Input) being processed in a “constant-time”
workload.

Power Consumption CPU Frequency
0.6 4
00 Input 1 1.0 = ::Z:t;
Input 2 e Input 3
0.5
0.8
> 0.4
g > 0.6
a =
zo3 3
Q <)
©
S * 04
* 02
0.2 1
0.1
0.0 - = 0.0 4 .
20 21 22 23 24 25 26 27 4.2 4.3
Power Consumption (W) Frequency (GHz)

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Frequency Depends on Data

Vary the data values (Input) being processed in a “constant-time”

workload.
Power Consumption CPU Frequency

||||||

Frequency leaks data!

2047
g 30.6'
2 3
Z03 2

3 3

E * 04
o .
o

o
N}

o

=
=]
N

1wl

42 4.3
Frequency (GHz)

o
S)
.

Hertzbleed: The Claim of Constant-time is Frequently Wrong 16

Example of Data-Dependent Frequency

Function Sum(first, second): Test 1 (Ve 1 numben:
a = first first = 2022
b = second second = 23823
sum=a+b
return sum

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Test 2 (VE 2 numben):

first = 2022
second = 24436

17

Example of Data-Dependent Frequency

a = first

b = second
sum=a+b
return sum

Function Sum(first, second):

Test 1 (CVE 1 numbern): Test 2 (CVE 2 numben).
first = 2022 first = 2022
second = 23823 second = 24436

Which Runs at a Higher Frequency?

Hertzbleed: The Claim of Constant-time is Frequently Wrong 18

Example of Data-Dependent Frequency

Function Sum(first, second):
a = first
b = second
sum=a+b
return sum

We construct a leakage model

Test 1 (cVvE 1 numben:
first = 2022
second = 23823

Test 2 (cVE 2 numben):
first = 2022
second = 24436

Which Runs at a Higher Frequency?

to answer this question.

Hertzbleed: The Claim of Constant-time is Frequently Wrong

19

Frequency Leakage Model

Three independent effects:
1. Hamming distance (HD)
2. Hamming weight (HW)

3. Bit positions!

Hertzbleed: The Claim of Constant-time is Frequently Wrong

20

1.
2.
3.

Frequency Leakage Model

ax < 0000000011111111)
Hamming distance (HD) ax — 0001111111100000

Hertzbleed: The Claim of Constant-time is Frequently Wrong

21

Frequency Leakage Model

ax « 0000000011111111)

1. Hamming distance (HD) ax < 0001111111100000
2.
3. HD =10

ax « 0000000011111111)
ax « 0000011111111000

HD =6

Hertzbleed: The Claim of Constant-time is Frequently Wrong 22

1.
2.
3.

Frequency Leakage Model

ax « 0000000011111111
Hamming distance (HD) ax < 0001111111100000
HD =10
Consumes less ax « 0000000011111111
power ax « 0000011111111000
R t a high
uns at a higher HD = &

frequency!

Hertzbleed: The Claim of Constant-time is Frequently Wrong

23

Frequency Leakage Model

ax < 1111001111001111

ax < ax | ax

Hamming weight (HW)

Hertzbleed: The Claim of Constant-time is Frequently Wrong

24

Frequency Leakage Model

ax « 1111001111001111

ax < ax | ax

Hamming weight (HW)

Consumes less
power

Runs at a higher
frequency!

HW =12

ax « 1100110011001100

ax < ax | ax

HW = 8

Hertzbleed: The Claim of Constant-time is Frequently Wrong

25

1.
2.
3.

Frequency Leakage Model

Bit positions!

Consumes
different amount
of CPU power

Runs at a different
CPU frequency!

rax « 0x00000000000000ftt

rax « rax |
E ———

HW =8, HD =0

rax

Hertzbleed: The Claim of Constant-time is Frequently Wrong

26

1.
2.
3.

Frequency Leakage Model

Bit positions!

Consumes
different amount
of CPU power

Runs at a different
CPU frequency!

rax « 0x000000000000££00

rax « rax |
E ———

HW =8, HD =0

rax

Hertzbleed: The Claim of Constant-time is Frequently Wrong

27

1.
2.
3.

Frequency Leakage Model

Bit positions!

Consumes
different amount
of CPU power

Runs at a different
CPU frequency!

rax « 0x0000000000££0000

rax « rax |
E ———

HW =8, HD =0

rax

Hertzbleed: The Claim of Constant-time is Frequently Wrong

28

1.
2.
3.

Frequency Leakage Model

Bit positions!

Consumes
different amount
of CPU power

Runs at a different
CPU frequency!

rax « 0x00000000££000000

rax « rax |
E ———

HW =8, HD =0

rax

Hertzbleed: The Claim of Constant-time is Frequently Wrong

29

1.
2.
3.

Frequency Leakage Model

Bit positions!

Consumes
different amount
of CPU power

Runs at a different
CPU frequency!

rax « 0x000000££00000000

rax « rax |
E ———

HW =8, HD =0

rax

Hertzbleed: The Claim of Constant-time is Frequently Wrong

30

1.
2.
3.

Frequency Leakage Model

Bit positions!

Consumes
different amount
of CPU power

Runs at a different
CPU frequency!

rax « 0x0000££0000000000

rax « rax |
E ———

HW =8, HD =0

rax

Hertzbleed: The Claim of Constant-time is Frequently Wrong

31

1.
2.
3.

Frequency Leakage Model

Bit positions!

Consumes
different amount
of CPU power

Runs at a different
CPU frequency!

rax « 0x00££000000000000

rax « rax |
E ———

HW =8, HD =0

rax

Hertzbleed: The Claim of Constant-time is Frequently Wrong

32

1.
2.
3.

Frequency Leakage Model

Bit positions!

Consumes
different amount
of CPU power

Runs at a different
CPU frequency!

rax « 0xff00000000000000

rax « rax |
E ———

HW =8, HD =0

rax

Hertzbleed: The Claim of Constant-time is Frequently Wrong

33

1.
2.
3.

Frequency Leakage Model

Bit positions!

Consumes
different amount
of CPU power

Runs at a different
CPU frequency!

CPU frequency can leak
information about data even
with a fixed HD and HW.

rax « OxLfffffffriffffft

rax < rax | rax

HW =8, HD =0

Hertzbleed: The Claim of Constant-time is Frequently Wrong

34

Hertzbleed: CPU Frequency Depends on
CPU Power

A constant-time program with different secret inputs

CPU Power CPU Program
Consumption Frequency Execution Time

g nn
f\‘l\ Higher Lower Longer
/\ Power Frequency 0 Time

Hertzbleed: The Claim of Constant-time is Frequently Wrong 35

Probability density

Hertzbleed: Remote Key Extraction

Constant-time cryptography implementation

0.15 - Attacker made a correct guess of
a secret key bit.
0.10 A
0.05 A ’\
Attacker made an incorrect guess of a
0.00 T T 1
. 60 670 secret key bit.

Time (ms)

1Supersingular Isogeny Key Encapsulation

36

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: Remote Key Extraction

Probability density

SIKE" has been deprecated

Is SIKE the only cryptosystem
vulnerable to Hertzbleed?

650

660 670
Time (ms)

'Supersingular Isogeny Key Encapsulation

37

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: Remote Key Extraction

Probability density

SIKE" has been deprecated

Is every cryptosystem
vulnerable to Hertzbleed?

650

660 670
Time (ms)

'Supersingular Isogeny Key Encapsulation

38

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Which universe do we live 1in?

SIKE" is the only cryptosystem Every cryptosystem is
vulnerable to Hertzbleed. vulnerable to Hertzbleed.

1Supersingular Isogeny Key Encapsulation

Hertzbleed: The Claim of Constant-time is Frequently Wrong 39

Which universe do we live 1in?

SIKE" is the only cryptosystem Every cryptosystem is
vulnerable to Hertzbleed. vulnerable to Hertzbleed.

1Supersingular Isogeny Key Encapsulation

Hertzbleed: The Claim of Constant-time is Frequently Wrong 40

Hertzbleed: Amplification Gadget

Power leakage and frequency leakage are not equivalent.

0x00000000

X
|

x = Oxffffffff

T

Higher Hamming
Weight (HW)

Hertzbleed: The Claim of Constant-time is Frequently Wrong

41

Hertzbleed: Amplification Gadget

CPU Core
Power Consumption

x = 0x00000000 f\ ’S'

x = Oxffffffff f“
T T

Higher Hamming Higher
Weight (HW) Power

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed: Amplification Gadget

CPU Core CPU Core
Power Consumption Frequency

0x00000000

X
|

A

Hertzbleed

x = Oxffffffff

T

o

Higher Hamming
Weight (HW)

Higher
Power

Hertzbleed: The Claim o

f Constant-time is Frequently Wrong

43

Hertzbleed: Amplification Gadget

CPU Core CPU Core
Power Consumption Frequency
x = 0x00000000 f\ ’\ | | | |
While (1<BIGNUM) : Hertzbleed

X * x —>

i ++
H x = Oxffffffff f/\

Amplification Gadget
A P4

Hertzbleed: The Claim of Constant-time is Frequently Wrong 44

Hertzbleed: Amplification Gadget

Amplification Gadget No systematic amplification gadget
f : \ " f /\ discovery methodology

WPH+2022: Hertzbleed: Turning Power Side-Channel
Attacks Into Remote Timing Attacks on x86

Hertzbleed: The Claim of Constant-time is Frequently Wrong 45

Hertzbleed: Amplification Gadget

Cryptography primitives with
known classes of weakness due
to side-channels.

—>

Cryptography engineers
carefully mitigate these

weakness in<Constant-time™>

Do not take frequency

leakages into account

Hertzbleed: The Claim of Constant-time is Frequently Wrong

46

Hertzbleed: Amplification Gadget

Cryptography primitives with Cryptography engineers
known classes of weakness due :} carefully mitigate these
to side-channels. weakness in<Constant-time™>

@ Will mitigated side-channel leakage reappear

if examined through a Hertzbleed lens?

WPW+2023: DVFS Frequently Leaks Secrets: Hertzbleed
Attacks Beyond SIKE, Cryptography, and CPU-Only Data

Hertzbleed: The Claim of Constant-time is Frequently Wrong 47

Hertzbleed: Amplification Gadget

Cryptography primitives with Cryptography engineers
known classes of weakness due :} carefully mitigate these
to side-channels. weakness in<Constant-time™>

@ Mitigated side-channel weakness do reappear

when looking through a Hertzbleed lens.

WPW+2023: DVFS Frequently Leaks Secrets: Hertzbleed
Attacks Beyond SIKE, Cryptography, and CPU-Only Data

Hertzbleed: The Claim of Constant-time is Frequently Wrong 48

Hertzbleed: Amplification Gadget

Cryptography primitives with Cryptography engineers
known classes of weakness due :} carefully mitigate these
to side-channels. weakness in<Constant-time™>
4\

G2

r Amplification Gadget
A ~ (A —

WPW+2023: DVFS Frequently Leaks Secrets: Hertzbleed
Attacks Beyond SIKE, Cryptography, and CPU-Only Data

Hertzbleed: The Claim of Constant-time is Frequently Wrong 49

Background: Error correcting code

Systematic error correcting code (ECC): Encoding a message with
redundancy for detecting and recovering errors.

A message Original codeword
M M ECC

A codeword | Corrupted codeword
M ECC M’ ECC

(T o
d Noisy Channel: n bits flipped 0—

Hertzbleed: The Claim of Constant-time is Frequently Wrong 50

Background: Binary Goppa Code

An ECC with a sharp decoding threshold t.

/\

Number of error > t

Number of error < t

\ 4

Cannot recover original codeword

Recovers original codeword

Hertzbleed: The Claim of Constant-time is Frequently Wrong

51

Background: McEliece Public-Key
Cryptosystem

Client: pick a codeword m, and secret error vector e with HW(e) = ¢.

A codeword

@ A o
C=|Encode (m)|+ e
- HW(e) =t m

Client > Server

Anyone without the secret key m,e = Decode ()

cannot decode € to m = cannot recover e from C.

Hertzbleed: The Claim of Constant-time is Frequently Wrong 52

Sloppy Alice Attack on McEliece Public
Key Cryptosystem

Threat model: MITM attacker attempts to recover e, and then computes m.

C=Encode (m) + e

@ HW(e) = t

[
»

Client

— 7
ﬁa el0]=1: Server

C'=Encode (m) + ¢ @ P
ah

Attacker m, e’ = Decode (C")

« Failif HW(e') > t

* Success ifHW(e") <t

Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece Public-Key Cryptosystem

Hertzbleed: The Claim of Constant-time is Frequently Wrong

53

Sloppy Alice Attack on McEliece Public
Key Cryptosystem

C=Encode (m) + e

&) [HWe) = N S

em
g Server

Attacker m, e’ = Decode (C")

« S if HW(e") <t
More details are _/ . F:iCICiESHSVI\/(e’) St)
in the paper

Client

Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece Public-Key Cryptosystem

Hertzbleed: The Claim of Constant-time is Frequently Wrong 54

Classic McElice: A KEM on top of the
McEliece Public Key Cryptosystem

Classic McEliece does not

expose decoding result m, e’ = Decode (C")
* Success if HW(e') <t

« Fail if HW(e') > ¢t

C=Encode (m) + e
HW(e) =t

P
C'=Encode (m) + €' @
e

g Server

Attacker

Hertzbleed: The Claim of Constant-time is Frequently Wrong 55

Hertzbleed Attack on Classic McEliece

@Oﬂ

o

Server

,e' =Decode (C")
Success if HW(e") <t
Fail if HW(e') > t

 Valid C
Malformed C': HW(e") < t

Malformed C': HW(e") > t

Classic McEliece does a hamming
weight checking and re-encryption
to reject any malformed ciphertext.

fﬂ Amp'ﬁcﬁn Gadget . 0\

A decode oracle via Hertzbleed

Hertzbleed: The Claim of Constant-time is Frequently Wrong 56

Hertzbleed Attack on Classic McEliece

C=Encode (m) + e @ P
HW(e) = t C'=Encode (m) + €' m m, e’ = Decode (C")
> * Success if HW(e) <t
‘ g e[0] = 1? Server |+ Failif HW(e") >t
Attacker ﬂ
 Bitslicing

« Transpose FFT with
butterfly subroutine

Amplification Gadget
AN £ A

Hertzbleed: The Claim of Constant-time is Frequently Wrong 57

Hertzbleed Attack on Classic McEliece

C=Encode (m) + e @ P
HW(e) = ¢t C'=Encode (m) + ¢ m m,e’ = Decode (C')
> * Success if HW(e) <t
‘ g e[0] = 1? Server |+ Failif HW(e") >t

Attacker ﬂ

v e[0]=1 = High HW&HD | * Bitslicing
« Transpose FFT with

X e[0] =0 = Low HW&HD butterfly subroutine

Amplification Gadget
AN £ A

Hertzbleed: The Claim of Constant-time is Frequently Wrong 58

Hertzbleed Attack on Classic McEliece

C= Encode (m) + e @ P
HW(e) = t C'=Encode (m) + €' m m, e’ = Decode (C")
> * Success if HW(e) <t
‘ g e[0] = 1? Server |+ Failif HW(e") >t
Attacker ﬂ
velll=1 = f% Bitslicing
« Transpose FFT with
X e[0]=0 = R butterfly subroutine

Amplification Gadget
AN £ A

Hertzbleed: The Claim of Constant-time is Frequently Wrong 59

Hertzbleed Attack on Classic McEliece

C= Encode (m) + e @ e
HW(e) = ¢t C'=Encode (m) + ¢ m m,e’ = Decode (C')
> * Successif HW(e') <t
‘ g e[0] = 1? Server |+ Failif HW(e") >t
Attacker ﬂ
v e[O] =1 |:> Slower i BitSliCiﬂg
« Transpose FFT with
X e[0] =0 = Faster butterfly subroutine

Amplification Gadget
AN £ A

Hertzbleed: The Claim of Constant-time is Frequently Wrong 60

Probability

Hertzbleed Attack on Classic McEliece

e[0] =1
mm e[0]=0
0.2 A
0.1 - |
0.0 T T
3.42 3.44 3.46 3.48

Time (s)

I

3.50

Classic McEliece decapsulation
timing distribution:

cel0]=1
* Blue: e[0]=0

Hertzbleed: The Claim of Constant-time is Frequently Wrong

61

Hertzbleed Attack on Classic McEliece

C=Encode (m) + e @ =
HW(e) = t C'=Encode (m) + €' m m, e’ = Decode (C")
> * Success if HW(e) <t
‘ g e[0] = 1? Server |+ Failif HW(e") >t
Attacker ﬂ
 Bitslicing

* Longer response time: Amplification Gadget
e[0] =1) : \ “f /A . Transpose FFT with
¢ 1| butterfly subroutine

* Shorter response time:

N

el0] =0 Decode (C"): Success or fail?

62

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Hertzbleed Attack on Classic McEliece

C=Encode (m) + e @ P
HW(e) = ¢t C'=Encode (m) + ¢ m m,e’ = Decode (C')
> * Success ifHW(e") <t
‘ g e[0] = 1? Server |+ Failif HW(e") >t
Attacker ﬂ
The piece of code hides * Bitslicing

\ 4

decoding failure/success * Transpose FFT with
in constant-time. butterfly subroutine

Hertzbleed: The Claim of Constant-time is Frequently Wrong 63

Hertzbleed Attack on Classic McEliece

C=Encode (m) + e @ P
HW(e) = ¢t C'=Encode (m) + ¢ m m,e’ = Decode (C')
> * Success ifHW(e") <t
‘ g e[0] = 1? Server |+ Failif HW(e") >t
Attacker ﬂ
The piece of code creates * Bitslicing

\ 4

the timing leakage under * Transpose FFT with
Hertzbleed. butterfly subroutine

Hertzbleed: The Claim of Constant-time is Frequently Wrong 64

Discussion & Takeaway

» Current practices for how to write constant-time code are no
longer sufficient to guarantee constant-time execution.

* Hertzbleed turns power leakage into timing leakage.

* No systematic way of achieving constant-power without masking.

if secret == 1 then state = array[secret] res = x * secret / 255.0f
routine(); .
% No secret-dependent No secret inputs to
No secret-dependent memory accesses variable-time instructions

branches

Hertzbleed: The Claim of Constant-time is Frequently Wrong 65

seconds

program

Discussion & Takeaway

instructions cycles seconds
= X - — X
program instruction cycle

Hertzbleed: The Claim of Constant-time is Frequently Wrong

66

Discussion & Takeaway

seconds instructions cycles seconds
= X - — X
program program instruction cycle

[/

All prior timing attacks

Hertzbleed: The Claim of Constant-time is Frequently Wrong

Discussion & Takeaway

seconds instructions cycles
= X ,
program program instruction

[/

All prior timing attacks

seconds

cycle

|

Hertzbleed

Hertzbleed: The Claim of Constant-time is Frequently Wrong

68

References

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on
x86 (USENIX Security 2022) www.hertzbleed.com

— Yingchen Wang*, Riccardo Paccagnella*, Elizabeth He, Hovav Shacham,
Christopher Fletcher, David Kohlbrenner.

— |EEE Micro Top Picks 2023, Black Hat Pwnie Award 2022 for Best Cryptographic
Attack

DVFS Frequently Leaks Secrets: Hertzbleed Attacks Beyond SIKE, Cryptography,
and CPU-Only Data (IEEE Security & Privacy 2023)

— Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant
Garrett-Grossman, Christopher Fletcher, David Kohlbrenner, Hovav Shacham.

Hertzbleed: The Claim of Constant-time is Frequently Wrong 69

http://www.hertzbleed.com/

