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An Analysis of Signal 
Messenger’s PQXDH



Formal verification 
can speed 
development and 
clarify security of 
real world protocols.



This is important as 
many protocols are 
being updated to 
provide PQ security.



Let’s see how this 
process worked with 
the Signal Protocol.



The Signal Protocol
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Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability
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Contingent on DH assumptions 
for the underlying group!



Signal is vulnerable to 
any future DL solver - 
quantum or classical.



Messages sent today 
are vulnerable to 
Harvest Now, Decrypt Later 
(HNDL) attacks.



The PQXDH Key Agreement Protocol
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● Provide HNDL protection against future DL solvers
● No loss of current DH-based security guarantees

Non-goal: Protect against active quantum attackers
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● Provide HNDL protection against future DL solvers
● No loss of current DH-based security guarantees

Non-goal: Protect against active quantum attackers

To achieve this we need to add PQ 
crypto to the X3DH handshake.



A simple idea:

Take X3DH and 
add in a PQ-KEM 
encapsulated shared secret.



PQXDH Design

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)
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OPKB
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DH3
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SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

After computing SK, Alex sends Blake:
● (C, CTKEM, EKA

PK) where 
● C = AEAD.Enc(SK, msg, AD = IKA

PK
 ॥ IKB

PK) 

Blake processed the message by:
● Using their EC keys to compute the DH’s
● Using their KEM key to decapsulate SS 
● Computing SK
● Computing AEAD.Dec(SK, C, AD)

If the decryption succeeds, we have key agreement. 



Does PQXDH 
achieve its goals?

We need to 
formally verify it.



Formally Modelling PQXDH



Our Formal Verification Methodology



Our Formal Verification Methodology



Our Formal Verification Methodology



Our Formal Verification Methodology



Our Formal Verification Methodology



Our Formal Verification Methodology



What We Model
Single Message PQXDH Protocol

● Arbitrary number of PQXDH endpoints
● Any endpoint can play any role
● (Out-of-Band) Identity Key Verification
● Untrusted Key Distribution Server

Compromise Scenarios

● Identity keys can be leaked at any time
● OPK, EK, and PQPK can be leaked 

for certain security goals
● Quantum adversary has explicit power 

to break all DH primitives



Symbolic Analysis with ProVerif

Symbolic (Dolev-Yao) Crypto Model

● “Perfect” crypto primitives
● Unbounded number of sessions
● Previously used for Signal, TLS 1.3, …

Quantum Adversary Model

● Adversary can invert DH 

Security Analysis

● Queries for authentication and secrecy
● Fully automated analysis
● Finds attacks or establishes a theorem
● Easy to quickly test fixes

(* Post-Quantum Forward Secrecy Query *)
query A, B, spk, pqpk, sk, i, j;

event(BlakeDone(A,B,spk,pqpk,sk))@i
⇒ not(attacker(sk))
    | (event(LongTermComp(A))@j & j < i)
    | (event(QuantumComp)@j & j < i)

Attack Trace:

1. Using the function info_x25519_sha512_kyber1024 the attacker may obtain 
info_x25519_sha512_kyber1024.
attacker(info_x25519_sha512_kyber1024).

2. Using the function zeroes_sha512 the attacker may obtain zeroes_sha512.
attacker(zeroes_sha512).

3. We assume as hypothesis that
attacker(a).

4. We assume as hypothesis that
attacker(b).

5. The message b that the attacker may have by 4 may be received at input {2}.
So the entry identity_pubkeys(b,SMUL(IK_s_2,G)) may be inserted in a table at insert {6}.
table(identity_pubkeys(b,SMUL(IK_s_2,G))).
 …

20. By 19, the attacker may know penc(SMUL(SPKB_s_3,G),ss_1).
Using the function weakECasKEM the attacker may obtain ss_1.
attacker(ss_1).

… 

And so on



Computational Proofs with CryptoVerif

Computational Crypto Model

● Precise Cryptographic Assumptions
● Probabilistic Polynomial-Time Adversary

Quantum Adversary Model

● Adversary can (passively) break DH
● Uses new Post-Quantum Soundness 

results for CryptoVerif proofs

Security Analysis

● Queries for authentication and secrecy
● Game-based machine-checked proofs 
● Similar guarantees to pen-and-paper proofs
● Requires manual guidance







Finding and Confirming Weaknesses
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Now Alex computes :
(SS, CT) = KEM.Encaps(SPKB

PK)

Without further assumptions about 
KEM this is an insecure computation.

Given CT the attacker can now 
compute SS.

We lose PQ security.



This is representative of a general 
class of cross-protocol attacks 
between classical and PQ crypto. 

Fix: Ensure all key encodings 
have disjoint co-domains.



KEM Re-encapsulation Vulnerability
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   KEM.Dec(PQPKB
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Re-encapsulation can happen 
without violating IND-CCA for the 
KEM.



No session independence.
No agreement on the KEM public key.

A compromise of one PQPK breaks HNDL 
security for all other PQPKs of a party. 

Fix: Require that the KEM encapsulation 
   binds the recipient’s public key



A New Protocol Revision



The Signal Implementation is Secure

Our open-source implementation was never vulnerable:

● Key encodings have disjoint co-domains (and key sizes are different).
● Kyber public keys are contributory to the KEM shared secret.



The Signal Implementation is Secure

Our open-source implementation was never vulnerable:

● Key encodings have disjoint co-domains (and key sizes are different).
● Kyber public keys are contributory to the KEM shared secret.

But we did want to add restrictions to the protocol description.



After iterating, the models:
● reflected our security goals,
● captured key implementation details,
● guided a new protocol revision,
● and yielded security proofs.



The findings led to a new revision of the protocol:

● We added AEAD as a parameter and required it to be post-quantum IND-CPA 
and INT-CTXT

● Added description of key identifier use
● Restricted the ranges of encodings to be disjoint
● Added PQPKB

PK to AD when it isn’t contributory to the KEM
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The findings led to a new revision of the protocol:

● We added AEAD as a parameter and required it to be post-quantum IND-CPA 
and INT-CTXT

● Added description of key identifier use
● Restricted the ranges of encodings to be disjoint
● Added PQPKB

PK to AD when it isn’t contributory to the KEM

PQXDH Protocol Revisions

With these changes we can prove that PQXDH meets its classical and PQ 
security requirements in the symbolic, computational, and HNDL models.





Conclusion

● Designing PQ protocols is about more than just swapping in PQ crypto.
● There are many potential pitfalls, some of which we found in PQXDH.

● Formal verification can help find and prevent attacks in PQ protocols.
● Combining symbolic and computational analyses gives better results.

● Close collaboration between protocol designers and proof engineers 
can provide quick turnaround and help guide protocol revisions

● Signal will continue using formal verification to analyze future protocols.


