
Rolfe Schmidt (Signal) Karthikeyan Bhargavan (Cryspen)
Charlie Jacomme (Inria) Franziskus Kiefer (Cryspen)

An Analysis of Signal
Messenger’s PQXDH

Formal verification
can speed
development and
clarify security of
real world protocols.

This is important as
many protocols are
being updated to
provide PQ security.

Let’s see how this
process worked with
the Signal Protocol.

The Signal Protocol

The Signal Protocol

Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4)

DH1 DH2

DH3

DH4

The Signal Protocol

Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4)

DH1 DH2

DH3

DH4

Contingent on DH assumptions
for the underlying group!

Signal is vulnerable to
any future DL solver -
quantum or classical.

Messages sent today
are vulnerable to
Harvest Now, Decrypt Later
(HNDL) attacks.

The PQXDH Key Agreement Protocol

PQXDH Protocol Requirements

● Provide HNDL protection against future DL solvers
● No loss of current DH-based security guarantees

Non-goal: Protect against active quantum attackers

PQXDH Protocol Requirements

● Provide HNDL protection against future DL solvers
● No loss of current DH-based security guarantees

Non-goal: Protect against active quantum attackers

To achieve this we need to add PQ
crypto to the X3DH handshake.

A simple idea:

Take X3DH and
add in a PQ-KEM
encapsulated shared secret.

PQXDH Design

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

PQXDH Design

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

After computing SK, Alex sends Blake:
● (C, CTKEM, EKA

PK) where
● C = AEAD.Enc(SK, msg, AD = IKA

PK
 ॥ IKB

PK)

Blake processed the message by:
● Using their EC keys to compute the DH’s
● Using their KEM key to decapsulate SS
● Computing SK
● Computing AEAD.Dec(SK, C, AD)

If the decryption succeeds, we have key agreement.

Does PQXDH
achieve its goals?

We need to
formally verify it.

Formally Modelling PQXDH

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

What We Model
Single Message PQXDH Protocol

● Arbitrary number of PQXDH endpoints
● Any endpoint can play any role
● (Out-of-Band) Identity Key Verification
● Untrusted Key Distribution Server

Compromise Scenarios

● Identity keys can be leaked at any time
● OPK, EK, and PQPK can be leaked

for certain security goals
● Quantum adversary has explicit power

to break all DH primitives

Symbolic Analysis with ProVerif

Symbolic (Dolev-Yao) Crypto Model

● “Perfect” crypto primitives
● Unbounded number of sessions
● Previously used for Signal, TLS 1.3, …

Quantum Adversary Model

● Adversary can invert DH

Security Analysis

● Queries for authentication and secrecy
● Fully automated analysis
● Finds attacks or establishes a theorem
● Easy to quickly test fixes

(* Post-Quantum Forward Secrecy Query *)
query A, B, spk, pqpk, sk, i, j;

event(BlakeDone(A,B,spk,pqpk,sk))@i
⇒ not(attacker(sk))
 | (event(LongTermComp(A))@j & j < i)
 | (event(QuantumComp)@j & j < i)

Attack Trace:

1. Using the function info_x25519_sha512_kyber1024 the attacker may obtain
info_x25519_sha512_kyber1024.
attacker(info_x25519_sha512_kyber1024).

2. Using the function zeroes_sha512 the attacker may obtain zeroes_sha512.
attacker(zeroes_sha512).

3. We assume as hypothesis that
attacker(a).

4. We assume as hypothesis that
attacker(b).

5. The message b that the attacker may have by 4 may be received at input {2}.
So the entry identity_pubkeys(b,SMUL(IK_s_2,G)) may be inserted in a table at insert {6}.
table(identity_pubkeys(b,SMUL(IK_s_2,G))).
 …

20. By 19, the attacker may know penc(SMUL(SPKB_s_3,G),ss_1).
Using the function weakECasKEM the attacker may obtain ss_1.
attacker(ss_1).

…

And so on

Computational Proofs with CryptoVerif

Computational Crypto Model

● Precise Cryptographic Assumptions
● Probabilistic Polynomial-Time Adversary

Quantum Adversary Model

● Adversary can (passively) break DH
● Uses new Post-Quantum Soundness

results for CryptoVerif proofs

Security Analysis

● Queries for authentication and secrecy
● Game-based machine-checked proofs
● Similar guarantees to pen-and-paper proofs
● Requires manual guidance

Finding and Confirming Weaknesses

Key Confusion Attack

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

Key Confusion Attack

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

Attacker swaps keys and
signatures

Key Confusion Attack

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

{PQPKB}

{SPKB}

Key Confusion Attack

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

{PQPKB}

{SPKB}

Now Alex computes :
(SS, CT) = KEM.Encaps(SPKB

PK)

Without further assumptions about
KEM this is an insecure computation.

Given CT the attacker can now
compute SS.

We lose PQ security.

This is representative of a general
class of cross-protocol attacks
between classical and PQ crypto.

Fix: Ensure all key encodings
have disjoint co-domains.

KEM Re-encapsulation Vulnerability

Blake’s Phone

IKB

SPKB

OPKB
1, OPKB

2, OPKB
3, ...

PQPKB
1, PQPKB

2, PQPKB
3,

…

First: Attacker obtains the private
key for one PQ-KEM key.

KEM Re-encapsulation Vulnerability

Blake’s Phone

IKB

SPKB

OPKB
1, OPKB

2, OPKB
3, ...

PQPKB
1, PQPKB

2, PQPKB
3,

…Robbie

PQPKB
1

First: Attacker obtains the private
key for one PQ-KEM key.

KEM Re-encapsulation Vulnerability

Blake’s Phone

IKB

SPKB

OPKB
1, OPKB

2, OPKB
3, ...

PQPKB
1, PQPKB

2, PQPKB
3,

…Robbie

PQPKB
1PQPKB

1

First: Attacker obtains the private
key for one PQ-KEM key.

KEM Re-encapsulation Vulnerability

Robbie

Then: Attacker breaks session independence between
multiple PQ-KEM keys using a single compromised key.

Alex
PreKeyBundle(...,

PQPKB
2,...)

Blake

PQPKB
1

KEM Re-encapsulation Vulnerability

Robbie

PQPKB
1

Then: Attacker breaks session independence between
multiple PQ-KEM keys using a single compromised key.

Alex

Runs protocol
 …

(CT, SScomp)
 = KEM.Enc(PQPKB

1)
…

send compromised CT.

PreKeyBundle(...,
PQPKB

1,...)
PreKeyBundle(...,

PQPKB
2,...)

Blake

KEM Re-encapsulation Vulnerability

Robbie

PQPKB
1

Then: Attacker breaks session independence between
multiple PQ-KEM keys using a single compromised key.

Alex

Runs protocol
 …

(CT, SScomp)
 = KEM.Enc(PQPKB

1)
…

send compromised CT.
SScomp =
 KEM.Dec(PQPKB

1, CT)
CTcomp =
 ReEnc(SScomp,PQPKB

2)

PreKeyBundle(...,
PQPKB

1,...)

PQXDHMessage(...,
CT,...)

SScomp PreKeyBundle(...,
PQPKB

2,...)

Blake

KEM Re-encapsulation Vulnerability

Robbie

PQPKB
1

Then: Attacker breaks session independence between
multiple PQ-KEM keys using a single compromised key.

Alex

Runs protocol
 …

(CT, SScomp)
 = KEM.Enc(PQPKB

1)
…

send compromised CT.
SScomp =
 KEM.Dec(PQPKB

1, CT)
CTcomp =
 ReEnc(SScomp,PQPKB

2)

PreKeyBundle(...,
PQPKB

1,...)

PQXDHMessage(...,
CT,...)

SScomp PreKeyBundle(...,
PQPKB

2,...)

Blake

PQXDHMessage(...,
CTcomp,...)

Blake completes protocol
with compromised secret:

SScomp =
 KEM.Dec(PQPKB

2, CTcomp)

KEM Re-encapsulation Vulnerability

Robbie

PQPKB
1

Then: Attacker breaks session independence between
multiple PQ-KEM keys using a single compromised key.

Alex

Runs protocol
 …

(CT, SScomp)
 = KEM.Enc(PQPKB

1)
…

send compromised CT.
SScomp =
 KEM.Dec(PQPKB

1, CT)
CTcomp =
 ReEnc(SScomp,PQPKB

2)

PreKeyBundle(...,
PQPKB

1,...)

PQXDHMessage(...,
CT,...)

SScomp PreKeyBundle(...,
PQPKB

2,...)

Blake

PQXDHMessage(...,
CTcomp,...)

Blake completes protocol
with compromised secret:

SScomp =
 KEM.Dec(PQPKB

2, CTcomp)

Re-encapsulation can happen
without violating IND-CCA for the
KEM.

No session independence.
No agreement on the KEM public key.

A compromise of one PQPK breaks HNDL
security for all other PQPKs of a party.

Fix: Require that the KEM encapsulation
 binds the recipient’s public key

A New Protocol Revision

The Signal Implementation is Secure

Our open-source implementation was never vulnerable:

● Key encodings have disjoint co-domains (and key sizes are different).
● Kyber public keys are contributory to the KEM shared secret.

The Signal Implementation is Secure

Our open-source implementation was never vulnerable:

● Key encodings have disjoint co-domains (and key sizes are different).
● Kyber public keys are contributory to the KEM shared secret.

But we did want to add restrictions to the protocol description.

After iterating, the models:
● reflected our security goals,
● captured key implementation details,
● guided a new protocol revision,
● and yielded security proofs.

The findings led to a new revision of the protocol:

● We added AEAD as a parameter and required it to be post-quantum IND-CPA
and INT-CTXT

● Added description of key identifier use
● Restricted the ranges of encodings to be disjoint
● Added PQPKB

PK to AD when it isn’t contributory to the KEM

PQXDH Protocol Revisions

The findings led to a new revision of the protocol:

● We added AEAD as a parameter and required it to be post-quantum IND-CPA
and INT-CTXT

● Added description of key identifier use
● Restricted the ranges of encodings to be disjoint
● Added PQPKB

PK to AD when it isn’t contributory to the KEM

Not security relevant

PQXDH Protocol Revisions

The findings led to a new revision of the protocol:

● We added AEAD as a parameter and required it to be post-quantum IND-CPA
and INT-CTXT

● Added description of key identifier use
● Restricted the ranges of encodings to be disjoint
● Added PQPKB

PK to AD when it isn’t contributory to the KEM

PQXDH Protocol Revisions

Prevent Key Confusion Attack

The findings led to a new revision of the protocol:

● We added AEAD as a parameter and required it to be post-quantum IND-CPA
and INT-CTXT

● Added description of key identifier use
● Restricted the ranges of encodings to be disjoint
● Added PQPKB

PK to AD when it isn’t contributory to the KEM

PQXDH Protocol Revisions

Prevent KEM Re-encapsulation Attack

The findings led to a new revision of the protocol:

● We added AEAD as a parameter and required it to be post-quantum IND-CPA
and INT-CTXT

● Added description of key identifier use
● Restricted the ranges of encodings to be disjoint
● Added PQPKB

PK to AD when it isn’t contributory to the KEM

PQXDH Protocol Revisions

With these changes we can prove that PQXDH meets its classical and PQ
security requirements in the symbolic, computational, and HNDL models.

Conclusion

● Designing PQ protocols is about more than just swapping in PQ crypto.
● There are many potential pitfalls, some of which we found in PQXDH.

● Formal verification can help find and prevent attacks in PQ protocols.
● Combining symbolic and computational analyses gives better results.

● Close collaboration between protocol designers and proof engineers
can provide quick turnaround and help guide protocol revisions

● Signal will continue using formal verification to analyze future protocols.

