How can Cryptography help with Al regulation compliance?

Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, **Guru-Vamsi Policharla**, and Mingyuan Wang

Machine Learning

Applications

- Facial Recognition
- Grading Exams
- Resume Sorting
- Self Driving Cars
- Chatbots
- Manage Inventory
- Spam Filters
- Video Games

Machine Learning

Applications

Facial Recognition Grading Exams Resume Sorting Self Driving Cars

Chatbots

- Manage Inventory
- **Spam Filters**
- Video Games

... many more

*As categorized by the EU AI Act

Facial Recognition
Grading Exams

High Risk = Potential for serious harm

- Resume Sorting
- Self Driving Cars

Facial Recognition Grading Exams **Resume Sorting**

Self Driving Cars

High Risk = Potential for serious harm

'The Computer Got It Wrong': How Facial **Recognition Led To False Arrest Of Black Man**

- Facial Recognition
 - Grading Exams
 - **Resume Sorting**
 - Self Driving Cars

How a Discriminatory Algorithm Wrongly **Accused Thousands of Families of Fraud**

- **High Risk = Potential for serious harm**
- 'The Computer Got It Wrong': How Facial **Recognition Led To False Arrest Of Black Man**

- Facial Recognition
 - Grading Exams
 - **Resume Sorting**
 - Self Driving Cars

How a Discriminatory Algorithm Wrongly **Accused Thousands of Families of Fraud**

- **High Risk = Potential for serious harm**
- 'The Computer Got It Wrong': How Facial **Recognition Led To False Arrest Of Black Man**
 - - 17 fatalities, 736 crashes: The shocking toll of Tesla's Autopilot

- Facial Recognition
 - Grading Exams
 - **Resume Sorting**
 - Self Driving Cars

How a Discriminatory Algorithm Wrongly **Accused Thousands of Families of Fraud**

rate to deny care, lawsuit alleges

For the largest health insurer in the US, AI's error rate is like a feature, not a bug.

- **High Risk = Potential for serious harm**
- 'The Computer Got It Wrong': How Facial **Recognition Led To False Arrest Of Black Man**
- 17 fatalities, 736 crashes: The shocking UnitedHealth uses AI model with 90% error toll of Tesla's Autopilot

Many more: 🔗 incidentdatabase.ai

- EU: Artificial Intelligence Act
- NIST: Risk Management Framework
- USA: Biden's Executive Order
- Canada: AIDA \bigcirc
- China: Al Governance Initiative
- + local US state laws \bigcirc
- ... more incoming

- EU: Artificial Intelligence Act
- NIST: Risk Management Framework
- USA: Biden's Executive Order
- Canada: AIDA
- China: Al Governance Initiative
- + local US state laws
- ... more incoming

Common Requirements*

- EU: Artificial Intelligence Act
- **NIST:** Risk Management Framework 0
- **USA:** Biden's Executive Order 0
- Canada: AIDA \bigcirc
- **China:** Al Governance Initiative \bigcirc
- + local US state laws
- ... more incoming

<u>Common Requirements*</u>

High quality datasets

Eg: Facial Recognition dataset demographic diversity, such as age, gender, race etc.

*Technical details unspecified

- EU: Artificial Intelligence Act
- **NIST:** Risk Management Framework 0
- USA: Biden's Executive Order
- Canada: AIDA 0
- **China:** Al Governance Initiative 0
- + local US state laws
- ... more incoming

<u>Common Requirements*</u>

High quality datasets

Eg: Facial Recognition dataset demographic diversity, such as age, gender, race etc.

Procedural Regularity for Decisions

- Same algorithm used for all individuals
- Reproducible, including randomness

*Technical details unspecified

- EU: Artificial Intelligence Act
- **NIST:** Risk Management Framework \bigcirc
- USA: Biden's Executive Order
- Canada: AIDA \bigcirc
- China: Al Governance Initiative
- + local US state laws
- ... more incoming

Common Requirements*

High quality datasets

Eg: Facial Recognition dataset demographic diversity, such as age, gender, race etc.

Procedural Regularity for Decisions

- Same algorithm used for all individuals
- Reproducible, including randomness

Privacy

- Need to preserve privacy of data and model to comply with data privacy laws
- Companies may not want to leak IP
- Prevent gaming of system

*Technical details unspecified

Potential approach: Independent auditor certifies compliance

Inferences not tied to model!

No guarantee of Procedural Regularity Swapping models is difficult to detect

Inference

Other Problems:

Other Problems: Confirmation is interactive. Auditor stores model and re-runs inference.

- What if the (auditor) was coerced? Want public verifiability.
- Models continuously change auditors are expensive.

Confirmation is interactive. Auditor stores model and re-runs inference.

Other Problems:

- What if the (auditor) was coerced? Want public verifiability.
- Models continuously change auditors are expensive.
- Companies may not want to reveal model, even to auditors.

Confirmation is interactive. Auditor stores model and re-runs inference.

Financial vs Al Compliance

Financial vs Al Compliance

Finance:

The "final" product (balance sheet) is certified by auditors.

Financial vs Al Compliance

Financial vs Al Compliance

The "final" product (balance sheet) is certified by auditors. Everyone sees the same thing.

AI:

The "final" product (inference) is a function of model certified by auditors.

Financial vs Al Compliance

The "final" product (balance sheet) is certified by auditors. Everyone sees the same thing.

Guarantees provided by an auditor is strictly weaker in Al Compliance!

AI:

The "final" product (inference) is a function of model certified by auditors.

Financial vs Al Compliance

The "final" product (balance sheet) is certified by auditors. Everyone sees the same thing.

How can Cryptography help with Al regulation compliance?

ZK Proofs to the rescue

Prover

Public: $f(\cdot)$, output x

ZK Proofs to the rescue

ZK Proofs to the rescue

f can be any function (ML training)

ZK Proofs to the rescue

f can be any function (ML training)

Zero-Knowledge

Verifier learns nothing about w

ZK Proofs to the rescue

f can be any function (ML training)

Zero-Knowledge

Verifier learns nothing about *w*

Soundness

Verifier

Cheating prover cannot produce π if they don't know w : f(w) = x

Confirm Inference

Proof of Training

Prover knows some training data and training results in some model

- Prover knows some training data and training
 - results in some model
 - Training data satisfies desired statistical properties

- \bigcirc
- + any other guarantees. e.g. copyright secured

- Prover knows some training data and training results in some model
 - Training data satisfies desired statistical properties

- Prover knows some training data and training results in some model
- Training data satisfies desired statistical properties \bigcirc
- + any other guarantees. e.g. copyright secured

Proof of Training

 \bigcirc ZK \Rightarrow No information about model/data leaked

- Prover knows some training data and training results in some model
- Training data satisfies desired statistical properties 0
- + any other guarantees. e.g. copyright secured

Proof of Training

 \bigcirc ZK \Rightarrow No information about model/data leaked

- results in some model
- Training data satisfies desired statistical properties
- + any other guarantees. e.g. copyright secured
- \Box ZK \Rightarrow No information about model/data leaked

Guarantees same model is used for inference

Proof of Training

Guarantees same model is used for inference

Guarantees same model is used for inference

Proof of Training

Proof of Inference

Brief Overview of Our Work

1. Training is already very expensive

- 1. Training is already very expensive
 - Minimize prover overhead and need to be streaming friendly (massive circuits)

- 1. Training is already very expensive
 - Minimize prover overhead and need to be streaming friendly (massive circuits)
- 2. Verification of training happens only once per model

- 1. Training is already very expensive
 - Minimize prover overhead and need to be streaming friendly (massive circuits)
- 2. Verification of training happens only once per model
 - Can increase verifier work/proof size to get a faster prover

- 1. Training is already very expensive
 - Minimize prover overhead and need to be streaming friendly (massive circuits)
- 2. Verification of training happens only once per model
 - Can increase verifier work/proof size to get a faster prover
- 3. Machine Learning involves 32/64-bit floating point operations

- 1. Training is already very expensive
 - Minimize prover overhead and need to be streaming friendly (massive circuits)
- 2. Verification of training happens only once per model
 - Can increase verifier work/proof size to get a faster prover
- 3. Machine Learning involves 32/64-bit floating point operations
 - Avoid very large fields unnecessary overhead

- 1. Training is already very expensive
 - Minimize prover overhead and need to be streaming friendly (massive circuits)
- 2. Verification of training happens only once per model
 - Can increase verifier work/proof size to get a faster prover 0
- 3. Machine Learning involves 32/64-bit floating point operations
 - Avoid very large fields unnecessary overhead
 - Need to handle floating point algebra

Two okay candidates:	zk [BCCT12,

SNARKs Groth16, Plonk...] MPC-in-the-Head [IKOS07 ...]

zkSNARKs [BCCT12, Groth16, Plonk...] MPC-in-the-Head [IKOS07 ...]

Small

Large

zkSNARKs [BCCT12, Groth16, Plonk...]

MPC-in-the-Head [IKOS07 ...]

Small

Fast

Large

Slow

MPC-in-the-Head

MPC-in-the-Head

MPC-in-the-Head

Our approach: Best of both worlds

Small Field Support

zkSNARKs + MPC-in-the-Head

Our approach: Best of both worlds

Small Field Support

zkSNARKs + MPC-in-the-Head

Our approach: Best of both worlds

Small Field Support

zkSNARKs + MPC-in-the-Head
Logistic Regression on a realistic dataset — 250K records, 1024 features

- Logistic Regression on a realistic dataset 250K records, 1024 features
- With caveats: floating \rightarrow fixed point, approximate activation function

- Logistic Regression on a realistic dataset 250K records, 1024 features
- With caveats: floating \rightarrow fixed point, approximate activation function
- Proof Size: < 10% of dataset size

- Logistic Regression on a realistic dataset 250K records, 1024 features
- With caveats: floating \rightarrow fixed point, approximate activation function
- Proof Size: < 10% of dataset size

- Logistic Regression on a realistic dataset 250K records, 1024 features
- With caveats: floating \rightarrow fixed point, approximate activation function
- Proof Size: < 10% of dataset size
- Online Phase (single thread):

- Logistic Regression on a realistic dataset 250K records, 1024 features
- With caveats: floating \rightarrow fixed point, approximate activation function
- Proof Size: < 10% of dataset size
- Online Phase (single thread):
 - Prover ~ 1 hour

- Logistic Regression on a realistic dataset 250K records, 1024 features
- With caveats: floating \rightarrow fixed point, approximate activation function
- Proof Size: < 10% of dataset size
- Online Phase (single thread):
 - Prover ~ 1 hour
 - Verifier ~ few minutes

- Logistic Regression on a realistic dataset 250K records, 1024 features
- With caveats: floating \rightarrow fixed point, approximate activation function
- Proof Size: < 10% of dataset size
- Online Phase (single thread):
 - Prover ~ 1 hour
 - Verifier ~ few minutes
 - Training ~ 2-3 seconds

Other Applications

- Proof of Training for fine-tuning foundational models
- Also solves open problems in other papers:
 - [DDKYSA23] "Data Property Attestation"
 - [JBVGSTD23] "Tying models to the dataset"

DDKYSA23: https://arxiv.org/abs/2308.09552 JBVGSTD23: https://arxiv.org/abs/2303.07476

Incoming Al regulation can benefit greatly from ZKPs

Proofs of Training and Inferences are core building blocks

- Incoming Al regulation can benefit greatly from ZKPs
 - Proofs of Training and Inferences are core building blocks
- Make the job of Regulators easier!
 - Easy to use and deploy > fastest scheme.
 - Try to build on top of popular tooling. Better community adoption.

- Incoming Al regulation can benefit greatly from ZKPs
 - Proofs of Training and Inferences are core building blocks
- Make the job of Regulators easier!
 - Easy to use and deploy > fastest scheme.
 - Try to build on top of popular tooling. Better community adoption.
- ZKPs for ML Training can be practical!

Thank you!

Paper: <u>ia.cr/2023/1345</u> Code: <u>https://github.com/guruvamsi-policharla/zkpot</u>

Blogpost:

