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Gate-by-gate “truth-table-by-truth-table”

Communication: s Communication: s-e€
Computation: s Computation: 5. 2%

© Works with correlated randomness, Homomorphic Secret
ac Sharing, Somewhat Homomorphic Encryption, low-rate
PIR...
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The size-s fan-in-2 circuit can be computed by a size-(e - s) fan-in-k circuit
IF there exists a size-¢ (log k)-path hitting set
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1. V¢ > 1, (-path hitting set is NP-hard in general graphs. ..
(¢ =2 is “Vertex Cover”)

2-degenerate ~ fan-in 2

2. ...but NOT always hard in 2-degenerate graphs
» 3-colouring-based algorithm:

€e=2/3, k=4

FVS:
Vertex set whose removal
yields a forest

» Feedback Vertex Set (FVS)-based algorithm:

35
k

» Valiant's edge-partitioning algorithm:

e=n-(1

e=2/5-(1+ ), any k < d

log k
— k<d
Iogd)’ any k <
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First algorithm, based on 3-colouring

» Colour greedily in topological order

(fan-in 2 implies there is always one
of the three colours available)

» The union of the two smallest
partitions is a vertex cover of size
< [2s/3]

(the complement—i.e. the largest

colour—is an independent set of size
at least [s/3])

33/38



First algorithm, based on 3-colouring

&

'Y

» Colour greedily in topological order

(fan-in 2 implies there is always one
of the three colours available)

» The union of the two smallest
partitions is a vertex cover of size
< [2s/3]

(the complement—i.e. the largest

colour—is an independent set of size
at least [s/3])

34/38



First algorithm, based on 3-colouring

» Colour greedily in topological order

(fan-in 2 implies there is always one
of the three colours available)

» The union of the two smallest
partitions is a vertex cover of size
< |2s/3]

(the complement—i.e. the largest
colour—is an independent set of size

./\ at least [s/3])

35/38



First algorithm, based on 3-colouring

» Colour greedily in topological order

(fan-in 2 implies there is always one
of the three colours available)

» The union of the two smallest
partitions is a vertex cover of size
< [2s/3]

(the complement—i.e. the largest

colour—is an independent set of size
at least [s/3])

36/38



Breaking the circuit-size barrier for information-theoretic MPC in the
correlated randomness model

Selected Result: Fractionally linear-communication MPC for all circuits

Any size-s circuit can be securely computed in the correlated randomness model
using 2s/5 + o(s) bits of communication per party and poly(s) bits of computa-
tion.

1. Ring- and basis-agnostic (but no free-xor)
2. Not just asymptotic (explicit constants), and linear-time algorithms

3. Also in the paper: Applications to the “Bootstrapping Problem” for FHE
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https://ia.cr/2024/1473

(more applications than presented here)
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