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Can every fan-in-2 circuit of size s be
computed by a fan-in k circuit of size

ϵ · s?

Fan-in: Max number of
inputs to a gate

Size: Number
of gates

Fractional regime

ϵ

k

∈ (0, 1)

≤ log log s

2/3

4

→ 2/5

ω(1)

Sublinear regime

o(1)

≤ log log s

o(1)

depth1−o(1)
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< x > < y > < z > < t >

< x + y > < z · t >

< (x + y) · z · t >

1 bit per gate per party
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Communication: s
Computation: s

Communication: s · ϵ
Computation: s · 22k

Gate-by-gate “truth-table-by-truth-table”

©
Works with correlated randomness, Homomorphic Secret
Sharing, Somewhat Homomorphic Encryption, low-rate
PIR. . .
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▶ Take the underlying DAG G

▶ Remove all input and output nodes

▶ Find a size-ϵ (log k)-path hitting set

▶ Return the inputs and outputs

ℓ-path hitting set:
Vertex set intersecting every
chain u1 → · · · → uℓ
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< log k

≤ k

each black node can be
computed as a function
of ≤ k black nodes

≤ k

The size-s fan-in-2 circuit can be computed by a size-(ϵ · s) fan-in-k circuit
IF there exists a size-ϵ (log k)-path hitting set
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2-degenerate ≈ fan-in 2

FVS:
Vertex set whose removal
yields a forest

1. ∀ℓ > 1, ℓ-path hitting set is NP-hard in general graphs. . .
(ℓ = 2 is “Vertex Cover”)

2. . . . but NOT always hard in 2-degenerate graphs
▶ 3-colouring-based algorithm:

ϵ = 2/3, k = 4

▶ Feedback Vertex Set (FVS)-based algorithm:

ϵ = 2/5 · (1 + 3/5

k
), any k ≤ d

▶ Valiant’s edge-partitioning algorithm:

ϵ = n · (1− log k

log d
), any k ≤ d
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First algorithm, based on 3-colouring

▶ Colour greedily in topological order
(fan-in 2 implies there is always one
of the three colours available)

▶ The union of the two smallest
partitions is a vertex cover of size
≤ ⌊2s/3⌋

(the complement—i.e. the largest
colour—is an independent set of size
at least ⌈s/3⌉)
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Breaking the circuit-size barrier for information-theoretic MPC in the
correlated randomness model

Selected Result: Fractionally linear-communication MPC for all circuits

Any size-s circuit can be securely computed in the correlated randomness model
using 2s/5 + o(s) bits of communication per party and poly(s) bits of computa-
tion.

1. Ring- and basis-agnostic (but no free-xor)

2. Not just asymptotic (explicit constants), and linear-time algorithms

3. Also in the paper: Applications to the “Bootstrapping Problem” for FHE
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https://ia.cr/2024/1473

(more applications than presented here)
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