Bit-Security Preserving Hardness Amplification

TCC2024@Milan, December 2024

Shun Watanabe (Tokyo Univ. of Agri. and Tech.)

Kenji Yasunaga (Institute of Science Tokyo)

Outline

- 1. Background on bit-security
- 2. Motivation: what is bit-security preserving hardness amplification
- 3. Technical results

What is bit security?

We shall quantify how much security a certain system provide…

Roughly, a system is λ bit secure if 2^{λ} operations are needed to break the system.

Bit security of one-way function

Given one-way function (permutation)

a representative of search primitive

$$
f: \{0,1\}^n \to \{0,1\}^n
$$

and an attack with cost T such that

$$
\Pr\big(A(f(x))=x\big)=\varepsilon_A
$$

how much bit security is guaranteed?

Bit security of one-way function

Given one-way function (permutation)

a representative of search primitive

$$
f: \{0,1\}^n \to \{0,1\}^n
$$

and an attack with cost T such that

$$
\Pr\big(A(f(x))=x\big)=\varepsilon_A
$$

how much bit security is guaranteed?

The success probability can be amplified to $\simeq N \varepsilon_A$

Total cost is
$$
\mathcal{O}(N \cdot T_A) = \mathcal{O}\left(\frac{T_A}{\varepsilon_A}\right) \implies BS = \min_A \left\{\log_2\left(\frac{T_A}{\varepsilon_A}\right)\right\}
$$

How should we define bit security of decision primitives/assumptions.

(PRG, encryption, DDH)

How should we define bit security of decision primitives/assumptions.

(PRG, encryption, DDH)

Micciancio-Walter (EUROCRYPT 2018) introduced a notion of bit security. Search/decision primitives are treated in a unified manner. It is compatible with known facts.

How should we define bit security of decision primitives/assumptions.

(PRG, encryption, DDH)

Micciancio-Walter (EUROCRYPT 2018) introduced a notion of bit security. Search/decision primitives are treated in a unified manner. It is compatible with known facts.

Watanabe-Yasunaga (ASIACRYPT 2021) introduced an alternative notion of bit security.

Operational meaning is clearer.

How should we define bit security of decision primitives/assumptions.

(PRG, encryption, DDH)

Micciancio-Walter (EUROCRYPT 2018) introduced a notion of bit security. Search/decision primitives are treated in a unified manner. It is compatible with known facts.

Watanabe-Yasunaga (ASIACRYPT 2021) introduced an alternative notion of bit security.

Operational meaning is clearer.

It turned out that MW18 and WY21 are essentially equivalent (ASIACRYPT 2023).

Consider a construction of PRG using one-way permutation.

Given one-way permutation

$$
f: \{0,1\}^n \to \{0,1\}^n
$$

and its hard-core predicate

$$
h: \{0,1\}^n \to \{0,1\}
$$

Seed: $x \in_R \{0,1\}^n$ Output: $G(x) = (f(x), h(x))$

Consider a construction of PRG using one-way permutation.

Given one-way permutation

$$
f: \{0,1\}^n \to \{0,1\}^n
$$

and its hard-core predicate

$$
h: \{0,1\}^n \to \{0,1\}
$$

$$
\text{Seed: } x \in_R \{0, 1\}^n \qquad \text{Output: } G(x) = (f(x), h(x))
$$

Indistinguishability game:

$$
PRG: \qquad u = 0 \qquad (y, z) = (f(x), h(x))
$$

$$
\text{TRG:} \qquad u = 1 \qquad (y, z) = (f(x), \sigma) \qquad \sigma \in_R \{0, 1\}
$$

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$
v \in \{0,1\}^{n+1}
$$
, output $\hat{u} = 0$ if $\langle v, (y, z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \geq 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert $f(x)$, and output $\hat{u} = 0$ if it succeed and $h(x) = z$.

If the success probability of inversion is $2\varepsilon_2$,

$$
A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \qquad A_1 = (\varepsilon_2, 1 - \varepsilon_2)
$$

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$
v \in \{0,1\}^{n+1}
$$
, output $\hat{u} = 0$ if $\langle v, (y, z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \geq 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert $f(x)$, and output $\hat{u} = 0$ if it succeed and $h(x) = z$.

If the success probability of inversion is $2\varepsilon_2$,

$$
A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \qquad A_1 = (\varepsilon_2, 1 - \varepsilon_2)
$$

Note that the advantage is

$$
2\big(\Pr(\hat{u}=u)-1/2\big)=\varepsilon_i,\;\;i=1,2
$$

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$
v \in \{0,1\}^{n+1}
$$
, output $\hat{u} = 0$ if $\langle v, (y, z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \geq 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert $f(x)$, and output $\hat{u} = 0$ if it succeed and $h(x) = z$.

If the success probability of inversion is $2\varepsilon_2$,

$$
A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \qquad A_1 = (\varepsilon_2, 1 - \varepsilon_2)
$$

Note that the advantage is

$$
2\big(\Pr(\hat{u}=u)-1/2\big)=\varepsilon_i,\;\;i=1,2
$$

The standard advantage cannot capture the difference of biased and unbiased adversaries.

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$
v \in \{0,1\}^{n+1}
$$
, output $\hat{u} = 0$ if $\langle v, (y, z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \geq 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert $f(x)$, and output $\hat{u} = 0$ if it succeed and $h(x) = z$.

If the success probability of inversion is $2\varepsilon_2$,

$$
A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \qquad A_1 = (\varepsilon_2, 1 - \varepsilon_2)
$$

Note that the advantage is

$$
2\big(\Pr(\hat{u}=u)-1/2\big)=\varepsilon_i,\;\;i=1,2
$$

l

The standard advantage cannot capture the difference of biased and unbiased adversaries.

For advantage ε , should we define

$$
\log \frac{T}{\varepsilon^2} \qquad \quad \text{or} \qquad \quad \log \frac{T}{\varepsilon} \quad ?
$$

Bit security framework of Micciancio-Walter

Bit security framework of Micciancio-Walter

$$
y \in \{0, 1\} \cup \{\perp\}
$$

Bit security is defined as
$$
\min_{A} \left\{ \log \frac{T_A}{\text{adv}_A^{\text{CS}}} \right\} \text{ for } \text{adv}_A^{\text{CS}} := \alpha_A \cdot (2\beta_A - 1)^2
$$

where

$$
\alpha_A := \Pr\left(A \text{ outputs } Y \neq \bot\right) \quad \beta_A := \Pr\left(Y = U | A \text{ outputs } Y \neq \bot\right)
$$

 $U \in \{0,1\}$ is a random secret of game

 Y is the adversary's output

Bit security framework of Micciancio-Walter

$$
y \in \{0, 1\} \cup \{\perp\}
$$

Bit security is defined as
$$
\min_{A} \left\{ \log \frac{T_A}{\text{adv}_A^{\text{CS}}} \right\} \text{ for } \text{adv}_A^{\text{CS}} := \alpha_A \cdot (2\beta_A - 1)^2
$$

where

$$
\alpha_A := \Pr\big(A \text{ outputs } Y \neq \bot\big) \quad \beta_A := \Pr\big(Y = U | A \text{ outputs } Y \neq \bot\big)
$$

 $U \in \{0,1\}$ is a random secret of game

 Y is the adversary's output

1) Linear test attack: $\alpha_A = 1$, $\beta_A = \varepsilon_1^2 \Longrightarrow \text{adv}^{\text{CS}}_A = \varepsilon_1^2$

2) Inversion attack: $\alpha_A = 2\varepsilon_2$, $\beta_A = 1/4 \Longrightarrow \text{adv}^{\text{CS}}_A = \varepsilon_2/2$

Characterization of Bit security of WY21

Bit security was operationally defined as a cost for winning with high probability.

Bit security can be characterized as

$$
BS_G^{\mu} := \min_A \left\{ \log \left(\frac{T_A}{\text{adv}_A} \right) \right\} + \mathcal{O}(1)
$$

where $\mathrm{adv}_{A} = \mathrm{adv}_{A}^{\mathrm{Renyi}} := D_{1/2}(A_0||A_1)$

 A_u : probability distribution of output a by A when secret is u

 $D_{1/2}(A_0||A_1) = -2\ln \sum \sqrt{A_0(a)A_1(a)}$ Rényi divergence of order 1/2

Characterization of Bit security of WY21

Bit security was operationally defined as a cost for winning with high probability.

Bit security can be characterized as

$$
\mathrm{BS}_{G}^{\mu} := \min_{A} \left\{ \log \left(\frac{T_{A}}{\mathrm{adv}_{A}} \right) \right\} + \mathcal{O}(1)
$$

where $\mathrm{adv}_{A} = \mathrm{adv}_{A}^{\mathrm{Renyi}} := D_{1/2}(A_0||A_1)$

 A_u : probability distribution of output a by A when secret is u

 $D_{1/2}(A_0||A_1) = -2\ln\sum \sqrt{A_0(a)A_1(a)}$ Rényi divergence of order 1/2

Theorem [WY23]

The bit security notions of MW18 and WY21 are essentially equivalent, i.e.,

$$
\mathrm{adv}^{\mathrm{CS}}_{A} \simeq \mathrm{adv}^{\mathrm{Renyi}}_{A}
$$

up to a constant (with some modification of adversary).

We shall discuss hardness of computing a function

$$
f: \{0,1\}^n \to \{0,1\}
$$

by a Boolean circuits.

We shall discuss hardness of computing a function

 $f: \{0,1\}^n \to \{0,1\}$

by a Boolean circuits.

 $\Gamma(s,1-\delta)$ -mildly hard

For a given $f: \{0,1\}^n \rightarrow \{0,1\}$, suppose that

$$
\Pr_{x \sim U_n} \left(C(x) = f(x) \right) \le 1 - \delta
$$

for any circuit C of size S .

We shall discuss hardness of computing a function

 $f: \{0,1\}^n \to \{0,1\}$

by a Boolean circuits.

 $\{(s,1-\delta)$ -mildly hard For a given $f: \{0,1\}^n \rightarrow \{0,1\}$, suppose that $\Pr_{x \sim U_n} (C(x) = f(x)) \leq 1 - \delta$

for any circuit C of size S .

We shall prove that

$$
f^{\oplus k}(x_1,\ldots,x_k):=f(x_1)\oplus\cdots\oplus f(x_k)
$$

is very hard.

Proposition (Xor lemma)

If
$$
f: \{0,1\}^n \to \{0,1\}
$$
 is $(s, 1-\delta)$ -mildly hard and $\varepsilon \geq 2(1-\delta)^k$, then

$$
\Pr_{x_1,\ldots,x_k \sim U_n} \left(C(x_1,\ldots,x_k) = f^{\oplus k}(x_1,\ldots,x_k) \right) \le \frac{1}{2} + \varepsilon
$$

for any circuit C of size
$$
s' = \Omega\left(\frac{\varepsilon^2}{\ln(1/\delta)}\right)s
$$
.

The circuit size of adversary is reduced by the factor of

Proposition (Xor lemma)

If
$$
f: \{0,1\}^n \to \{0,1\}
$$
 is $(s, 1-\delta)$ -mildly hard and $\varepsilon \geq 2(1-\delta)^k$, then

$$
\Pr_{x_1,\ldots,x_k \sim U_n} \left(C(x_1,\ldots,x_k) = f^{\oplus k}(x_1,\ldots,x_k) \right) \le \frac{1}{2} + \varepsilon
$$

for any circuit C of size
$$
s' = \Omega\left(\frac{\varepsilon^2}{\ln(1/\delta)}\right)s
$$
.

The circuit size of adversary is reduced by the factor of

It only guarantees

$$
BS_{s'}(G_{f^{\oplus k}}) \ge \log \frac{s'}{\varepsilon} = \log s - \mathcal{O}\left(\log \frac{\ln(1/\delta)}{\varepsilon}\right)
$$

initial bit security

Outline of our results

Bit security is preserved in the hardness amplification?

Not guaranteed by the standard hardness amplification …

We derive a hardness amplification result for the Renyi advantage.

It guarantees that the bit security is preserved.

The proof is based on the hardcore lemma for CS advantage.

It uses a boosting algorithm with \perp .

Bit security preserving hardness amplification

Theorem 1 (Xor lemma for Renyi advantage)

If $f: \{0,1\}^n \to \{0,1\}$ is $(s,1-\delta)$ -mildly hard and $\varepsilon \geq 2(1-\delta)^k$, then

$$
\mathrm{Adv}_{A,G_{f^{\oplus k}}}^{\mathrm{Renyi}} \leq \varepsilon
$$

for any circuit A of size
$$
s' = \Omega\left(\frac{\varepsilon}{\ln(1/\delta)}\right)s
$$
.

Caveat: Theorem 1 is only valid for $s = \omega \left(\frac{\ln(1/\delta)}{\epsilon^2} \right)$

This is due to that we use the weighted majority in the proof…

Bit security preserving hardness amplification

Theorem 1 (Xor lemma for Renyi advantage)

If $f: \{0,1\}^n \to \{0,1\}$ is $(s,1-\delta)$ -mildly hard and $\varepsilon \geq 2(1-\delta)^k$, then

$$
\mathrm{Adv}_{A,G_{f^{\oplus k}}}^{\mathrm{Renyi}} \leq \varepsilon
$$

for any circuit A of size
$$
s' = \Omega\left(\frac{\varepsilon}{\ln(1/\delta)}\right) s
$$
.

Caveat: Theorem 1 is only valid for $s = \omega \left(\frac{\ln(1/\delta)}{\epsilon^2} \right)$

This is due to that we use the weighted majority in the proof…

Theorem 1 guarantees that

$$
BS_{s'}(G_{f^{\oplus k}}) \ge \log \frac{s'}{\varepsilon}
$$

= log $s - \mathcal{O}(\log \ln(1/\delta))$

bit security loss does not depend on ϵ

Standard Hardcore lemma

Proposition (hardcore lemma [Impagliazzo])

If $f: \{0,1\}^n \to \{0,1\}$ is $(s,1-\delta)$ -mildly hard, then there exists H with density δ

such that

$$
\Pr_{x \sim H} (C(x) = f(x)) \le \frac{1}{2} + \varepsilon
$$

for any circuit C of size
$$
s' = \Omega\left(\frac{\varepsilon^2}{\ln(1/\delta)}\right)s
$$
.

Hardcore lemma implies Xor lemma (rough idea):

To compute $f^{\oplus k}(x_1,\ldots,x_k):=f(x_1)\oplus\cdots\oplus f(x_k)$ strictly better than random guess,

 x_i 's must avoid hard instances for every coordinates, which occurs with $(1-\delta)^k$

Advantage cannot be much larger than $(1 - \delta)^k$.

A novel hardcore lemma

Since the standard hardcore lemma is insufficient, we prove a novel hardcore lemma. For $C: \{0,1\}^n \rightarrow \{0,1,\perp\}$ and $x \sim P$

$$
Adv_{C,f|P}^{CS} := \frac{\left(\Pr(C(x) = f(x)) - \Pr(C(x) = \overline{f(x)})\right)^2}{\Pr(C(x) \neq \bot)} \qquad \qquad \overline{f(x)} = f(x) \oplus 1
$$

Lemma (hardcore lemma for CS advantage)

If $f: \{0,1\}^n \rightarrow \{0,1\}$ is $(s,1-\delta)$ -mildly hard, then there exists H with density δ

such that

$$
\mathrm{Adv}_{C,f|H}^{\mathrm{CS}} \leq \varepsilon
$$

for any circuit C of size
$$
s' = \Omega\left(\frac{\varepsilon}{\ln(1/\delta)}\right)s
$$
.

Proof of hardcore lemma

Impagliazzo presented two proofs of hardcore lemma:

(1) minimax theorem (attributed to Nisan)

 $\mathrm{Adv}_{C. f\mid H}^{\text{CS}}$ is not linear (may not be convex in H nor concave in P_C).

We cannot apply the minimax approach to the CS advantage...

(2) Boosting (connection pointed out in [Klivans-Servedio '03])

We prove the hardcore lemma for CS advantage using a modified boosting algorithm.

Alternative motivation

Goldreich-Levin theorem guarantees existence of hardcore predicate

for every (modified) one-way function.

A proof of GL theorem is related to list-decoding of the Hadamard code.

Hast '04 proposed a modified GL algorithm by taking into account an adversary with \perp

(erasure list-decoding of the Hadamard code)

The performance of Hast's algorithm is evaluated by the CS advantage.

It is natural to consider the hardcore lemma for CS advantage.

A difficulty is that the role of \perp is not clear in boosting algorithm...

Modified boosting algorithm

(contrapositive) assumption

For each P with density δ , there exists C_P of size s' such that

(*) existence of weak learners

Alrorithm Initialize $P^{(1)} = \text{unif}(\{0,1\}^n)$ For $1 \leq t \leq T$ (1) For $C_{P^{(t)}}$ satisfying (*) against $P^{(t)}$, set specified in the next page $\hat{P}^{(t+1)}(x) = \frac{P^{(t)}(x) \exp(-\widehat{\gamma_t} \mathbf{1}[C_{P^{(t)}}(x) = f(x)] - \mathbf{1}[C_{P^{(t)}}(x) = \overline{f(x)}]\})}{\left(\widehat{Z_{P^{(t)}}}\right)}$ normalizer

(2) For the set P_{δ} of all distributions with density δ , set

$$
P^{(t+1)} = \operatorname*{argmin}_{P \in \mathcal{P}_{\delta}} D(P || \hat{P}^{(t+1)})
$$

Modified boosting algorithm

The update weight is
$$
\gamma_t = \frac{\Delta_t}{4\alpha_t}
$$
 for
\n
$$
\alpha_t := \Pr_{x \sim P^{(t)}}(C_{P^{(t)}}(x) \neq \bot)
$$
\n
$$
\Delta_t := \Pr_{x \sim P^{(t)}}(C_{P^{(t)}}(x) = f(x)) - \Pr_{x \sim P^{(t)}}(C_{P^{(t)}}(x) = \overline{f(x)})
$$

Our algorithm is similar to the standard boosting, and it does not use \perp explicitly.

But, \perp is incorporated in the update weight γ_t .

Modified boosting algorithm

The update weight is
$$
\gamma_t = \frac{\Delta_t}{4\alpha_t}
$$
 for
\n
$$
\alpha_t := \Pr_{x \sim P^{(t)}}(C_{P^{(t)}}(x) \neq \bot)
$$
\n
$$
\Delta_t := \Pr_{x \sim P^{(t)}}(C_{P^{(t)}}(x) = f(x)) - \Pr_{x \sim P^{(t)}}(C_{P^{(t)}}(x) = \overline{f(x)})
$$

Our algorithm is similar to the standard boosting, and it does not use \perp explicitly.

But, \perp is incorporated in the update weight γ_t .

Roughly, our algorithm put more weight on

$$
\begin{pmatrix}\n\alpha_t \simeq \varepsilon \\
\Delta_t \simeq \varepsilon\n\end{pmatrix}
$$
 than
$$
\begin{pmatrix}\n\alpha_t \simeq 1 \\
\Delta_t \simeq \varepsilon\n\end{pmatrix}
$$

Untalkative weak learner is more reliable!

Conclusion

For balanced adversary, the bit-security is unchanged;

For unbalanced adversary, the bit-security is improved.

Open problems:

- Can we prove a uniform hardcore lemma for CS advantage?
- The circuit size loss ϵ of the hardcore lemma for CS advantage is unavoidable?