Bit-Security Preserving Hardness Amplification

TCC2024@Milan, December 2024

Shun Watanabe (Tokyo Univ. of Agri. and Tech.)

Kenji Yasunaga (Institute of Science Tokyo)

Outline

- 1. Background on bit-security
- 2. Motivation: what is bit-security preserving hardness amplification
- 3. Technical results

What is bit security?

We shall quantify how much security a certain system provide...

Roughly, a system is λ bit secure if 2^{λ} operations are needed to break the system.

Bit security of one-way function

Given one-way function (permutation)

a representative of search primitive

$$f: \{0,1\}^n \to \{0,1\}^n$$

and an attack with cost T such that

$$\Pr\left(A(f(x)) = x\right) = \varepsilon_A$$

how much bit security is guaranteed?

Bit security of one-way function

Given one-way function (permutation)

a representative of search primitive

$$f: \{0,1\}^n \to \{0,1\}^n$$

and an attack with cost T such that

$$\Pr\left(A(f(x)) = x\right) = \varepsilon_A$$

how much bit security is guaranteed?

The success probability can be amplified to $\simeq N \varepsilon_A$

Total cost is
$$\mathcal{O}(N \cdot T_A) = \mathcal{O}\left(\frac{T_A}{\varepsilon_A}\right) \implies BS = \min_A \left\{ \log_2\left(\frac{T_A}{\varepsilon_A}\right) \right\}$$

How should we define bit security of decision primitives/assumptions.

(PRG, encryption, DDH)

How should we define bit security of decision primitives/assumptions.

(PRG, encryption, DDH)

Micciancio-Walter (EUROCRYPT 2018) introduced a notion of bit security. Search/decision primitives are treated in a unified manner. It is compatible with known facts.

How should we define bit security of decision primitives/assumptions.

(PRG, encryption, DDH)

Micciancio-Walter (EUROCRYPT 2018) introduced a notion of bit security. Search/decision primitives are treated in a unified manner. It is compatible with known facts.

Watanabe-Yasunaga (ASIACRYPT 2021) introduced an alternative notion of bit security.

Operational meaning is clearer.

How should we define bit security of decision primitives/assumptions.

(PRG, encryption, DDH)

Micciancio-Walter (EUROCRYPT 2018) introduced a notion of bit security. Search/decision primitives are treated in a unified manner. It is compatible with known facts.

Watanabe-Yasunaga (ASIACRYPT 2021) introduced an alternative notion of bit security.

Operational meaning is clearer.

It turned out that MW18 and WY21 are essentially equivalent (ASIACRYPT 2023).

Consider a construction of PRG using one-way permutation.

Given one-way permutation

$$f: \{0,1\}^n \to \{0,1\}^n$$

and its hard-core predicate

$$h: \{0,1\}^n \to \{0,1\}$$

Seed: $x \in_R \{0,1\}^n$ Output: G(x) = (f(x), h(x))

Consider a construction of PRG using one-way permutation.

Given one-way permutation

$$f: \{0,1\}^n \to \{0,1\}^n$$

and its hard-core predicate

$$h: \{0,1\}^n \to \{0,1\}$$

Seed:
$$x \in_R \{0,1\}^n$$
 Output: $G(x) = (f(x),h(x))$

Indistinguishability game:

PRG:
$$u = 0$$
 $(y, z) = (f(x), h(x))$

TRG:
$$u = 1$$
 $(y, z) = (f(x), \sigma)$ $\sigma \in_R \{0, 1\}$

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$v \in \{0,1\}^{n+1}$$
, output $\hat{u} = 0$ if $\langle v, (y,z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \ge 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert f(x), and output $\hat{u} = 0$ if it succeed and h(x) = z.

If the success probability of inversion is $2\varepsilon_2$,

$$A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \quad A_1 = (\varepsilon_2, 1 - \varepsilon_2)$$

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$v \in \{0,1\}^{n+1}$$
, output $\hat{u} = 0$ if $\langle v, (y,z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \ge 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert f(x), and output $\hat{u} = 0$ if it succeed and h(x) = z.

If the success probability of inversion is $2\varepsilon_2$,

$$A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \quad A_1 = (\varepsilon_2, 1 - \varepsilon_2)$$

Note that the advantage is

$$2(\Pr(\hat{u} = u) - 1/2) = \varepsilon_i, \quad i = 1, 2$$

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$v \in \{0,1\}^{n+1}$$
, output $\hat{u} = 0$ if $\langle v, (y,z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \ge 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert f(x), and output $\hat{u} = 0$ if it succeed and h(x) = z.

If the success probability of inversion is $2\varepsilon_2$,

$$A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \quad A_1 = (\varepsilon_2, 1 - \varepsilon_2)$$

Note that the advantage is

$$2(\Pr(\hat{u} = u) - 1/2) = \varepsilon_i, \quad i = 1, 2$$

The standard advantage cannot capture the difference of biased and unbiased adversaries.

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$v \in \{0,1\}^{n+1}$$
, output $\hat{u} = 0$ if $\langle v, (y,z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \ge 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert f(x), and output $\hat{u} = 0$ if it succeed and h(x) = z.

If the success probability of inversion is $2\varepsilon_2$,

$$A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \quad A_1 = (\varepsilon_2, 1 - \varepsilon_2)$$

Note that the advantage is

$$2(\Pr(\hat{u} = u) - 1/2) = \varepsilon_i, \quad i = 1, 2$$

1

The standard advantage cannot capture the difference of biased and unbiased adversaries.

For advantage ε , should we define

og
$$\frac{T}{\varepsilon^2}$$
 or $\log \frac{T}{\varepsilon}$?

Bit security framework of Micciancio-Walter

Bit security framework of Micciancio-Walter

$$\begin{array}{c} & \overbrace{\vdots} & \overbrace{\bullet} \\ & \downarrow \\ & \downarrow \\ \\ & y \in \{0,1\} \cup \{\bot\} \\ \\ & \text{Bit security is defined as } \min_{A} \left\{ \log \frac{T_A}{\operatorname{adv}_A^{\operatorname{CS}}} \right\} \text{ for } \operatorname{adv}_A^{CS} := \alpha_A \cdot (2\beta_A - 1)^2 \end{array}$$

where

$$\alpha_A := \Pr(A \text{ outputs } Y \neq \bot) \quad \beta_A := \Pr(Y = U | A \text{ outputs } Y \neq \bot)$$

 $U \in \{0,1\}$ is a random secret of game

Y is the adversary's output

Bit security framework of Micciancio-Walter

$$\begin{array}{c} & \overbrace{\vdots} & \overbrace{\bullet} \\ & \downarrow \\ & \downarrow \\ \\ & y \in \{0,1\} \cup \{\bot\} \\ \\ & \text{Bit security is defined as } \min_{A} \left\{ \log \frac{T_A}{\operatorname{adv}_A^{\operatorname{CS}}} \right\} \text{ for } \operatorname{adv}_A^{CS} := \alpha_A \cdot (2\beta_A - 1)^2 \end{array}$$

where

$$\alpha_A := \Pr(A \text{ outputs } Y \neq \bot) \quad \beta_A := \Pr(Y = U | A \text{ outputs } Y \neq \bot)$$

 $U \in \{0,1\}$ is a random secret of game

Y is the adversary's output

1) Linear test attack: $\alpha_A = 1$, $\beta_A = \varepsilon_1^2 \Longrightarrow \operatorname{adv}_A^{\operatorname{CS}} = \varepsilon_1^2$

2) Inversion attack: $\alpha_A = 2\varepsilon_2$, $\beta_A = 1/4 \Longrightarrow \operatorname{adv}_A^{\operatorname{CS}} = \varepsilon_2/2$

Characterization of Bit security of WY21

Bit security was operationally defined as a cost for winning with high probability.

Bit security can be characterized as

$$BS_G^{\mu} := \min_A \left\{ \log \left(\frac{T_A}{\text{adv}_A} \right) \right\} + \mathcal{O}(1)$$

where $adv_A = adv_A^{Renyi} := D_{1/2}(A_0 || A_1)$

 A_u : probability distribution of output a by A when secret is u

 $D_{1/2}(A_0 || A_1) = -2 \ln \sum_a \sqrt{A_0(a) A_1(a)}$ Rényi divergence of order 1/2

Characterization of Bit security of WY21

Bit security was operationally defined as a cost for winning with high probability.

Bit security can be characterized as

$$BS_G^{\mu} := \min_A \left\{ \log \left(\frac{T_A}{\text{adv}_A} \right) \right\} + \mathcal{O}(1)$$

where $adv_A = adv_A^{Renyi} := D_{1/2}(A_0 || A_1)$

 A_u : probability distribution of output a by A when secret is u

 $D_{1/2}(A_0 \| A_1) = -2 \ln \sum_a \sqrt{A_0(a)A_1(a)}$ Rényi divergence of order 1/2

Theorem [WY23]

The bit security notions of MW18 and WY21 are essentially equivalent, i.e.,

$$\operatorname{adv}_A^{\operatorname{CS}} \simeq \operatorname{adv}_A^{\operatorname{Renyi}}$$

up to a constant (with some modification of adversary).

We shall discuss hardness of computing a function

$$f: \{0,1\}^n \to \{0,1\}$$

by a Boolean circuits.

We shall discuss hardness of computing a function

 $f: \{0,1\}^n \to \{0,1\}$

by a Boolean circuits.

 $(s,1-\delta)$ -mildly hard

For a given $f: \{0,1\}^n \to \{0,1\}$, suppose that

$$\Pr_{x \sim U_n} \left(C(x) = f(x) \right) \le 1 - \delta$$

for any circuit C of size S.

We shall discuss hardness of computing a function

 $f: \{0,1\}^n \to \{0,1\}$

by a Boolean circuits.

 $ig(s,1-\deltaig)$ -mildly hard For a given $f:\{0,1\}^n o\{0,1\}$, suppose that $\Pr_{x\sim U_n}ig(C(x)=f(x)ig)\leq 1-\delta$

for any circuit C of size s.

We shall prove that

$$f^{\oplus k}(x_1,\ldots,x_k) := f(x_1) \oplus \cdots \oplus f(x_k)$$

is very hard.

Proposition (Xor lemma)

If
$$f: \{0,1\}^n \to \{0,1\}$$
 is $(s,1-\delta)$ -mildly hard and $\varepsilon \geq 2(1-\delta)^k$, then

$$\Pr_{x_1,\ldots,x_k\sim U_n}\left(C(x_1,\ldots,x_k)=f^{\oplus k}(x_1,\ldots,x_k)\right)\leq \frac{1}{2}+\varepsilon$$

for any circuit
$$C$$
 of size $s' = \Omega\left(\frac{\varepsilon^2}{\ln(1/\delta)}\right)s$.

The circuit size of adversary is reduced by the factor of

Proposition (Xor lemma)

If
$$f: \{0,1\}^n \to \{0,1\}$$
 is $(s,1-\delta)$ -mildly hard and $\varepsilon \geq 2(1-\delta)^k$, then

$$\Pr_{x_1,\ldots,x_k\sim U_n}\left(C(x_1,\ldots,x_k)=f^{\oplus k}(x_1,\ldots,x_k)\right)\leq \frac{1}{2}+\varepsilon$$

for any circuit
$$C$$
 of size $s' = \Omega\left(\frac{\varepsilon^2}{\ln(1/\delta)}\right)s$.

The circuit size of adversary is reduced by the factor of

It only guarantees

$$BS_{s'}(G_{f^{\oplus k}}) \ge \log \frac{s'}{\varepsilon} = \log s - \mathcal{O}\left(\log \frac{\ln(1/\delta)}{\varepsilon}\right)$$

initial bit security

loss of bit security

Outline of our results

Bit security is preserved in the hardness amplification?

Not guaranteed by the standard hardness amplification ...

We derive a hardness amplification result for the Renyi advantage.

It guarantees that the bit security is preserved.

The proof is based on the hardcore lemma for CS advantage.

It uses a boosting algorithm with \perp .

Bit security preserving hardness amplification

Theorem 1 (Xor lemma for Renyi advantage)

If $f: \{0,1\}^n \to \{0,1\}$ is $(s,1-\delta)$ -mildly hard and $\varepsilon \geq 2(1-\delta)^k$, then

$$\mathrm{Adv}_{A,G_{f^{\bigoplus k}}}^{\mathrm{Renyi}} \leq \varepsilon$$

for any circuit
$$A$$
 of size $s' = \Omega\left(\frac{\varepsilon}{\ln(1/\delta)}\right)s$.

Caveat: Theorem 1 is only valid for $s = \omega \left(\frac{\ln(1/\delta)}{\varepsilon^2} \right)$

This is due to that we use the weighted majority in the proof...

Bit security preserving hardness amplification

Theorem 1 (Xor lemma for Renyi advantage)

If $f: \{0,1\}^n \to \{0,1\}$ is $(s,1-\delta)$ -mildly hard and $\varepsilon \geq 2(1-\delta)^k$, then

$$\mathrm{Adv}_{A,G_{f^{\oplus k}}}^{\mathrm{Renyi}} \leq \varepsilon$$

for any circuit
$$A$$
 of size $s' = \Omega\left(\frac{\varepsilon}{\ln(1/\delta)}\right)s$.

Caveat: Theorem 1 is only valid for $s = \omega \left(\frac{\ln(1/\delta)}{\varepsilon^2} \right)$

This is due to that we use the weighted majority in the proof...

Theorem 1 guarantees that

$$BS_{s'}(G_{f^{\oplus k}}) \ge \log \frac{s'}{\varepsilon}$$
$$= \log s - \mathcal{O}(\log \ln(1/\delta))$$

bit security loss does not depend on $\, arepsilon \,$

Standard Hardcore lemma

Proposition (hardcore lemma [Impagliazzo])

If $f: \{0,1\}^n \to \{0,1\}$ is $(s,1-\delta)$ -mildly hard, then there exists H with density δ

such that

$$\Pr_{x \sim H} \left(C(x) = f(x) \right) \le \frac{1}{2} + \varepsilon$$

for any circuit
$$C$$
 of size $s' = \Omega\left(\frac{\varepsilon^2}{\ln(1/\delta)}\right)s$.

Hardcore lemma implies Xor lemma (rough idea):

To compute $f^{\oplus k}(x_1, \ldots, x_k) := f(x_1) \oplus \cdots \oplus f(x_k)$ strictly better than random guess,

 x_i 's must avoid hard instances for every coordinates, which occurs with $(1-\delta)^k$

Advantage cannot be much larger than $(1-\delta)^k$.

A novel hardcore lemma

Since the standard hardcore lemma is insufficient, we prove a novel hardcore lemma. For $C: \{0,1\}^n \to \{0,1,\bot\}$ and $x \sim P$

$$\operatorname{Adv}_{C,f|P}^{\operatorname{CS}} := \frac{\left(\operatorname{Pr}(C(x) = f(x)) - \operatorname{Pr}(C(x) = \overline{f(x)})\right)^2}{\operatorname{Pr}(C(x) \neq \bot)} \qquad \overline{f(x)} = f(x) \oplus 1$$

Lemma (hardcore lemma for CS advantage)

If $f: \{0,1\}^n \to \{0,1\}$ is $(s,1-\delta)$ -mildly hard, then there exists H with density δ

such that

$$\operatorname{Adv}_{C,f|H}^{\operatorname{CS}} \leq \varepsilon$$

for any circuit
$$C$$
 of size $s' = \Omega\left(\frac{\varepsilon}{\ln(1/\delta)}\right)s$.

Proof of hardcore lemma

Impagliazzo presented two proofs of hardcore lemma:

(1) minimax theorem (attributed to Nisan)

 $\mathrm{Adv}_{C,f|H}^{\mathrm{CS}}$ is not linear (may not be convex in H nor concave in P_C).

We cannot apply the minimax approach to the CS advantage...

(2) Boosting (connection pointed out in [Klivans-Servedio '03])

We prove the hardcore lemma for CS advantage using a modified boosting algorithm.

Alternative motivation

Goldreich-Levin theorem guarantees existence of hardcore predicate

for every (modified) one-way function.

A proof of GL theorem is related to list-decoding of the Hadamard code.

Hast '04 proposed a modified GL algorithm by taking into account an adversary with \perp (erasure list-decoding of the Hadamard code)

The performance of Hast's algorithm is evaluated by the CS advantage.

It is natural to consider the hardcore lemma for CS advantage.

A difficulty is that the role of \perp is not clear in boosting algorithm...

Modified boosting algorithm

(contrapositive) assumption

For each P with density δ , there exists $\ C_P$ of size s' such that

 $\mathrm{Adv}_{C_P,f|P}^{\mathrm{CS}} > \varepsilon$ (*) existence of weak learners

$\begin{array}{l} \underline{\text{Alrorithm}} \\ \text{Initialize } P^{(1)} = \text{unif}(\{0,1\}^n) \\ \text{For } 1 \leq t \leq T \\ \text{(1) For } C_{P^{(t)}} \text{ satisfying (*) against } P^{(t)}, \text{ set} \\ \hat{P}^{(t+1)}(x) = \frac{P^{(t)}(x) \exp\left(-\gamma_t \{\mathbf{1}[C_{P^{(t)}}(x) = f(x)] - \mathbf{1}[C_{P^{(t)}}(x) = \overline{f(x)}]\}\right)}{Z_{P^{(t)}}} \\ \end{array}$

(2) For the set \mathcal{P}_{δ} of all distributions with density δ , set

$$P^{(t+1)} = \operatorname*{argmin}_{P \in \mathcal{P}_{\delta}} D(P \| \hat{P}^{(t+1)})$$

Modified boosting algorithm

The update weight is
$$\gamma_t = \frac{\Delta_t}{4\alpha_t}$$
 for
 $\alpha_t := \Pr_{x \sim P^{(t)}} (C_{P^{(t)}}(x) \neq \bot)$
 $\Delta_t := \Pr_{x \sim P^{(t)}} (C_{P^{(t)}}(x) = f(x)) - \Pr_{x \sim P^{(t)}} (C_{P^{(t)}}(x) = \overline{f(x)})$

Our algorithm is similar to the standard boosting, and it does not use \perp explicitly.

But, \perp is incorporated in the update weight γ_t .

Modified boosting algorithm

The update weight is
$$\gamma_t = \frac{\Delta_t}{4\alpha_t}$$
 for
 $\alpha_t := \Pr_{x \sim P^{(t)}} (C_{P^{(t)}}(x) \neq \bot)$
 $\Delta_t := \Pr_{x \sim P^{(t)}} (C_{P^{(t)}}(x) = f(x)) - \Pr_{x \sim P^{(t)}} (C_{P^{(t)}}(x) = \overline{f(x)})$

Our algorithm is similar to the standard boosting, and it does not use \perp explicitly.

But, \perp is incorporated in the update weight γ_t .

Roughly, our algorithm put more weight on

$$\begin{array}{c} \alpha_t \simeq \varepsilon \\ \Delta_t \simeq \varepsilon \end{array} \quad \text{than} \quad \begin{array}{c} \alpha_t \simeq 1 \\ \Delta_t \simeq \varepsilon \end{array}$$

Untalkative weak learner is more reliable!

Conclusion

Adversary	Adv^{TV}	${\tt Adv}^{ m CS}/{\tt Adv}^{ m Renyi}$	bit-security of standard Xor lemma	bit-security of our Xor lemma
Balanced eg) Linear test attack	ε	$\Theta(arepsilon^2)$	$\log\left(\frac{\varepsilon^2 s}{\varepsilon^2}\right)$	$\log\left(\frac{\varepsilon^2 s}{\varepsilon^2}\right)$
Unbalanced eg) Inversion attack	${\cal E}$	$\Theta(arepsilon)$	$\log\left(\frac{\varepsilon^2 s}{\varepsilon}\right)$	$\log\left(rac{arepsilon s}{arepsilon} ight)$

For balanced adversary, the bit-security is unchanged;

For unbalanced adversary, the bit-security is improved.

Open problems:

- Can we prove a uniform hardcore lemma for CS advantage?
- The circuit size loss ε of the hardcore lemma for CS advantage is unavoidable?