Rate-1 Arithmetic Garbling From Homomorphic Secret Sharing

Pierre Meyer Claudio Orlandi Lawrence Roy Peter Scholl

Arithmetic Garbling

Arithmetic Garbling

Boolean GC

$$\mathsf{Garble}(C)
ightarrow (\widetilde{C}, (L_{i,0}, L_{i,1})_{i \in [n]})$$

$$(L_{i,1} \leftarrow \mathsf{sk}_i + L_{i,0})$$
 $\mathsf{Eval}(\widetilde{C}, (L_{i,x_i})_{i \in [n]})
ightarrow C(x_1, \dots, x_n)$

Arithmetic Garbling

 $\text{Eval}(\widetilde{C},(L_{i,x_i})_{i\in[n]}) \rightarrow C(x_1,\ldots,x_n)$

 $\text{Eval}(\widetilde{C},(L_{x_i})_{i\in[n]}) \rightarrow C(x_1,\ldots,x_n)$

Arithmetic Garbling With Free Addition

Boolean GC			Arithmetic GC		
Garble(C)	\rightarrow	$(\widetilde{C},(L_{i,0},L_{i,1})_{i\in[n]})$	Garble(C)	\rightarrow	$(\widetilde{C},(a_i,b_i)_{i\in[n]})$
$(L_{i,1}$	\leftarrow	$sk + L_{i,0})$	$(L_{x_i}$	\leftarrow	$sk \cdot x_i + K_i)$
$Eval(\widetilde{C},(L_{i,x_i})_{i\in[n]})$	\rightarrow	$C(x_1,\ldots,x_n)$	$Eval(\widetilde{C},(L_{x_i})_{i\in[n]})$	\rightarrow	$C(x_1,\ldots,x_n)$

Arithmetic Garbling Over Bounded Integers

$$\mathsf{rate} = \frac{(|C| + n)\ell}{\mathsf{size}(\widetilde{C}) + \mathsf{size}(\boldsymbol{\mathit{L}})} = \frac{\mathsf{total\ size\ of\ all\ integers\ in\ circuit}}{\mathsf{total\ size\ of\ garbled\ circuit}}$$

Arithmetic Garbling Over Bounded Integers

$$\mathsf{rate} = \frac{(|C| + n)\ell}{\mathsf{size}(\widetilde{C}) + \mathsf{size}(\boldsymbol{L})} = \frac{\mathsf{total\ size\ of\ all\ integers\ in\ circuit}}{\mathsf{total\ size\ of\ garbled\ circuit}}$$

Construction	Security	Rate	Free addition
Yao	OWF	$\Theta(1/\lambda \log \ell)$	X
BMR16	RO	$\Theta(\log \ell/\lambda \ell)$	✓
Heath24	CCR hash	$\Theta(1/\lambda)$	X
AIK11	LWE	$\Theta(1/\lambda_{LWE})$	X
BLLL23	DCR	1/12	X
This work	DCR + KDM	1	✓
This work	DCR	1/2	✓

Summary of bounded integer arithmetic garbling schemes for ℓ -bit integers, as $\ell \to \infty$.

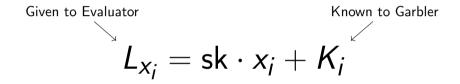
Arithmetic Garbling Over Bounded Integers

$$\mathsf{rate} = \frac{(|C| + n)\ell}{\mathsf{size}(\widetilde{C}) + \mathsf{size}(\boldsymbol{L})} = \frac{\mathsf{total\ size\ of\ all\ integers\ in\ circuit}}{\mathsf{total\ size\ of\ garbled\ circuit}}$$

Construction	Security	Rate	Free addition
Yao	OWF	$\Theta(1/\lambda\log\ell)$	X
BMR16	RO	$\Theta(\log \ell/\lambda \ell)$	✓
Heath24	CCR hash	$\Theta(1/\lambda)$	×
AIK11	LWE	$\Theta(1/\lambda_{LWE})$	×
BLLL23	DCR	1/12	×
This work	DCR + KDM	1	/
This work	DCR	1/2	✓

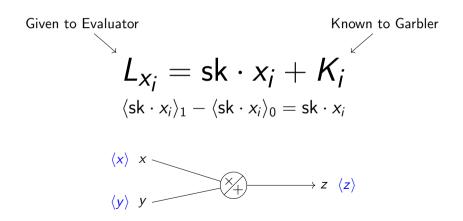
Summary of bounded integer arithmetic garbling schemes for ℓ -bit integers, as $\ell \to \infty$.

$$L_{x_i} = \operatorname{sk} \cdot x_i + K_i$$



Given to Evaluator Known to Garbler
$$L_{X_i} = \mathsf{sk} \cdot x_i + K_i$$
 $\langle \mathsf{sk} \cdot x_i
angle_1 = \mathsf{sk} \cdot x_i + \langle \mathsf{sk} \cdot x_i
angle_0$

Given to Evaluator Known to Garbler
$$L_{x_i} = \mathsf{sk} \cdot x_i + K_i$$
 $\langle \mathsf{sk} \cdot x_i
angle_1 - \langle \mathsf{sk} \cdot x_i
angle_0 = \mathsf{sk} \cdot x_i$



$$\mathbb{G}=\langle g
angle$$

Subtractive shares
$$x = \langle x \rangle_1 - \langle x \rangle_0$$

$$g^{\langle x \rangle} \quad \stackrel{!}{\longmapsto} \quad \langle x \rangle$$

$$\mathbb{G}=\langle g \rangle$$

Subtractive shares
$$x = \langle x \rangle_1 - \langle x \rangle_0$$

$$g^{\langle x \rangle} \quad \stackrel{\mathsf{DLog}}{\longmapsto} \quad \langle x \rangle$$

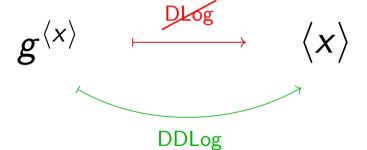
$$\mathbb{G}=\langle g
angle$$

Subtractive shares
$$x = \langle x \rangle_1 - \langle x \rangle_0$$

$$g^{\langle x \rangle} \longrightarrow$$

$$\mathbb{G}=\langle g
angle$$

Subtractive shares
$$x = \langle x \rangle_1 - \langle x \rangle_0$$



$$\mathbb{G}=\langle g \rangle$$

Subtractive shares
$$x = \langle x \rangle_1 - \langle x \rangle_0$$

$$x \cdot y = \langle x \rangle_1 \cdot \langle y \rangle_1 - x \cdot \langle y \rangle_0 - y \cdot \langle x \rangle_0 - \langle x \rangle_0 \cdot \langle y \rangle_0$$

$$x \cdot y = \langle x \rangle_1 \cdot \langle y \rangle_1 - x \cdot \langle y \rangle_0 - y \cdot \langle x \rangle_0 - \langle x \rangle_0 \cdot \langle y \rangle_0$$

$$= -\langle x \rangle_0 \cdot (y + \langle y \rangle_0)$$

$$= -\langle x \rangle_0 \cdot \langle y \rangle_1$$

$$x \cdot y = \langle x \rangle_{1} \cdot \langle y \rangle_{1} - x \cdot \langle y \rangle_{0} - y \cdot \langle x \rangle_{0} - \langle x \rangle_{0} \cdot \langle y \rangle_{0}$$

$$= -\langle x \rangle_{0} \cdot (y + \langle y \rangle_{0})$$

$$= -\langle x \rangle_{0} \cdot \langle y \rangle_{1}$$

$$= \langle y \rangle_{1} \cdot (\langle x \rangle_{1} - \langle x \rangle_{0})$$

$$= \langle y \rangle_{1} \cdot x$$

$$x \cdot y = \langle x \rangle_{1} \cdot \langle y \rangle_{1} - x \cdot \langle y \rangle_{0} - y \cdot \langle x \rangle_{0} - \langle x \rangle_{0} \cdot \langle y \rangle_{0}$$

$$= -\langle x \rangle_{0} \cdot (y + \langle y \rangle_{0})$$

$$= -\langle x \rangle_{0} \cdot \langle y \rangle_{1}$$

$$= \langle y \rangle_{1} \cdot (\langle x \rangle_{1} - \langle x \rangle_{0})$$

$$= \langle y \rangle_{1} \cdot x$$

$$= x \cdot (\langle y \rangle_{1} - \langle y \rangle_{0})$$

$$= x \cdot y$$

$$x \cdot y = \langle x \rangle_1 \cdot \langle y \rangle_1 - x \cdot \langle y \rangle_0 - y \cdot \langle x \rangle_0 - \langle x \rangle_0 \cdot \langle y \rangle_0$$

$$\langle x \rangle, g^{\langle y \rangle_0} \qquad \longmapsto \qquad \mathsf{DDLog}\left((g^{\langle y \rangle_0})^{\langle x \rangle}\right) \equiv \langle x \cdot \langle y \rangle_0 \rangle$$

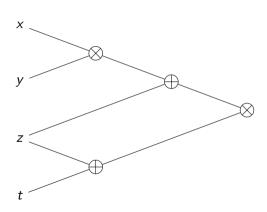
$$\langle y \rangle, g^{\langle x \rangle_0} \qquad \longmapsto \qquad \mathsf{DDLog}\left((g^{\langle x \rangle_0})^{\langle y \rangle} \right) \equiv \langle y \cdot \langle x \rangle_0 \rangle$$

$$\langle x \cdot y \rangle \leftarrow \langle x \rangle \cdot \langle y \rangle - \langle x \cdot \langle y \rangle_0 \rangle - \langle y \cdot \langle x \rangle_0 \rangle$$

Thought Experiment " g^x is an encryption of x"

At circuit-garbling time

At input-garbling time

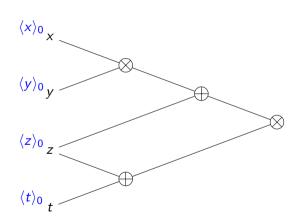


Thought Experiment " g^x is an encryption of x"

At circuit-garbling time

sample $\langle in \rangle_0$ for each input in

At input-garbling time

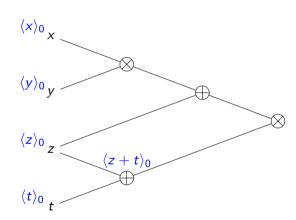


Thought Experiment " g^x is an encryption of x"

At circuit-garbling time

sample $\langle in \rangle_0$ for each input in

At input-garbling time

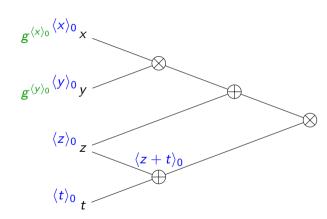


Thought Experiment " g^x is an encryption of x"

At circuit-garbling time

sample $\langle \text{in} \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At input-garbling time

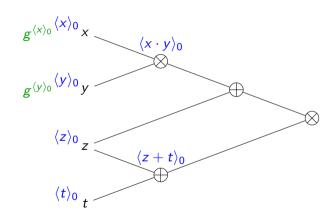


Thought Experiment " g^x is an encryption of x"

At circuit-garbling time

sample $\langle \text{in} \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At input-garbling time

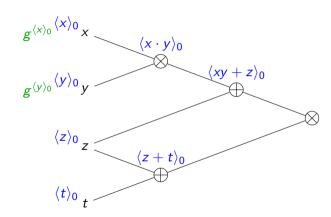


Thought Experiment " g^x is an encryption of x"

At circuit-garbling time

sample $\langle \text{in} \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At input-garbling time

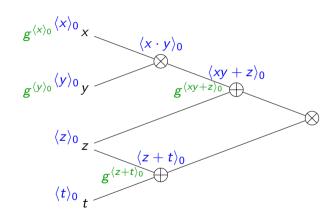


Thought Experiment " g^x is an encryption of x"

At circuit-garbling time

sample $\langle \text{in} \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At input-garbling time

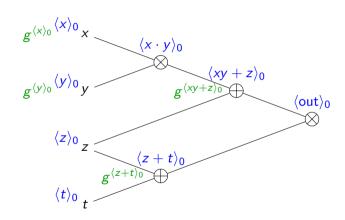


Thought Experiment " g^{x} is an encryption of x"

At circuit-garbling time

sample $\langle \text{in} \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At input-garbling time



Thought Experiment " g^x is an encryption of x"

At circuit-garbling time sample $\langle in \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At evaluation time

At input-garbling time

 $\langle z \rangle_0$

Garbled circuit: $g^{\langle L \rangle_0}, g^{\langle R \rangle_0}$

for each mult $L \times R$

 $\langle x \cdot y \rangle_0$

 $\langle out \rangle_0$

Decoding info: $\langle out \rangle_0$ for each output out, 61

Thought Experiment " g^{x} is an encryption of x"

At circuit-garbling time sample $\langle in \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At input-garbling time $\langle \text{in} \rangle_1 \leftarrow \text{in} + \langle \text{in} \rangle_0$

Labels/Garbled inputs: (in)₁

for each input in

 $\langle x \cdot y \rangle_0$

 $\langle out \rangle_0$

Garbled circuit: $g^{\langle L \rangle_0}$, $g^{\langle R \rangle_0}$

Decoding info: $\langle out \rangle_0$

for each output out, 61

for each mult $L \times R$

for each input in At evaluation time

At circuit-garbling time

Thought Experiment " g^{x} is an encryption of x"

sample $\langle in \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult wAt input-garbling time $\langle in \rangle_1 \leftarrow in + \langle in \rangle_0$

for each input in

At evaluation time

Labels/Garbled inputs: (in)₁

for each input in

 $\langle x \cdot y \rangle_0$

Garbled circuit: $g^{\langle L \rangle_0}$, $g^{\langle R \rangle_0}$

for each mult $L \times R$

compute $\langle \cdot \rangle_1$ gate-by-gate

 $\langle out \rangle_0$

Decoding info: $\langle out \rangle_0$ for each output out out

Thought Experiment " g^{x} is an encryption of x"

At circuit-garbling time sample $\langle in \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At input-garbling time

for each input in

At evaluation time compute $\langle \cdot \rangle_1$ gate-by-gate

Labels/Garbled inputs: (in)₁

for each input in

 $\langle in \rangle_1 \leftarrow in + \langle in \rangle_0$

 $\langle x \cdot y \rangle_0$

Garbled circuit: $g^{\langle L \rangle_0}$, $g^{\langle R \rangle_0}$

for each mult $L \times R$

 $\langle out \rangle_0$

Decoding info: $\langle out \rangle_0$

for each output out/61

 $\langle x \cdot y \rangle_0$

Thought Experiment " g^{x} is an encryption of x"

At circuit-garbling time sample $\langle in \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

 $\langle in \rangle_1 \leftarrow in + \langle in \rangle_0$ for each input in

Labels/Garbled inputs: (in)₁

for each input in

At evaluation time

compute $\langle \cdot \rangle_1$ gate-by-gate

At input-garbling time

Garbled circuit: $g^{\langle L \rangle_0}$, $g^{\langle R \rangle_0}$

for each mult $L \times R$

 $\langle out \rangle_0$

Decoding info: $\langle out \rangle_0$ for each output out, 61

Arithmetic Garbling from DDLog

Thought Experiment " g^{x} is an encryption of x"

At circuit-garbling time sample $\langle in \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At input-garbling time

 $\langle in \rangle_1 \leftarrow in + \langle in \rangle_0$ for each input in

At evaluation time

compute $\langle \cdot \rangle_1$ gate-by-gate

Labels/Garbled inputs: (in)₁

for each input in

 $\langle x \cdot y \rangle_0$

Garbled circuit: $g^{\langle L \rangle_0}$, $g^{\langle R \rangle_0}$

for each mult $L \times R$

 $\langle \mathsf{out} \rangle_1$

 $\langle out \rangle_0$

Decoding info: $\langle out \rangle_0$ for each output out, 61

Arithmetic Garbling from DDLog

Thought Experiment " g^{x} is an encryption of x"

At circuit-garbling time sample $\langle in \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At input-garbling time

 $\langle in \rangle_1 \leftarrow in + \langle in \rangle_0$ for each input in

At evaluation time compute $\langle \cdot \rangle_1$ gate-by-gate output $\langle out \rangle_1 - \langle out \rangle_0$

Labels/Garbled inputs: (in)₁

for each input in

 $\langle x \cdot y \rangle_0$

Garbled circuit: $g^{\langle L \rangle_0}$, $g^{\langle R \rangle_0}$

for each mult $L \times R$

 $\langle out \rangle_0$ $\langle \mathsf{out} \rangle_1$

Decoding info: $\langle out \rangle_0$ for each output out out

Arithmetic Garbling from DDLog

At circuit-garbling time

Thought Experiment " g^{x} is an encryption of x"

sample $\langle in \rangle_0$ for each input in compute $g^{\langle w \rangle_0}$ for input to a mult w

At input-garbling time

 $\langle in \rangle_1 \leftarrow in + \langle in \rangle_0$ for each input in At evaluation time compute $\langle \cdot \rangle_1$ gate-by-gate

output $\langle out \rangle_1 - \langle out \rangle_0$

Labels/Garbled inputs: $\langle in \rangle_1, g^{\langle in \rangle_0}$

for each input in

 $\langle x \cdot y \rangle_0$

Garbled circuit: $g^{\langle L \cdot R \rangle_0}$

for each mult $L \times R$

 $\langle \mathsf{out} \rangle_1$

Decoding info: $\langle out \rangle_0$ for each output out out

 $\langle out \rangle_0$

$$\mathbb{G}\simeq \overset{\mathsf{easy}}{\mathbb{F}} \times \mathbb{H}^{\overset{\mathsf{hard}}{\mathbb{F}}}$$

$$\mathbb{F} = \langle f \rangle$$
; $|\mathbb{F}| = q$

$$\frac{\text{Promise}}{g_1/g_0 = f^x}$$

$$\mathsf{DDLog}(g_1) - \mathsf{DDLog}(g_0) \equiv x \pmod{q}$$

$$\overset{\mathsf{easy}}{\mathsf{DLog}}\overset{\mathsf{hard}}{\mathsf{DLog}}$$
 $\overset{\mathsf{DLog}}{\mathbb{G}}\simeq\overset{\mathsf{L}}{\mathbb{F}}\times\overset{\mathsf{L}}{\mathbb{H}}$

$$\mathbb{F} = \langle f \rangle$$
; $|\mathbb{F}| = N^2$

$$\frac{\text{Promise}}{g_1/g_0 = f^x}$$

$$\mathsf{DDLog}(g_1) - \mathsf{DDLog}(g_0) \equiv x \pmod{N^2}$$

Damgård-Jurik Cryptosystem

Public-key: RSA modulus NDJ.Enc $_N(x) \rightarrow r^{N^2} \cdot \exp(x)$ $\in \mathbb{Z}/N^3\mathbb{Z}$

$$\mathbb{G}\simeq \mathbb{F} imes \mathbb{H}^{hard}$$

$$\exp(X) = 1 + NX + \frac{(Nx)^2}{2}$$

$$\mathbb{F} = \langle f \rangle$$
; $|\mathbb{F}| = N^2$

$$\frac{\text{Promise}}{g_1/g_0 = f^x}$$

$$DDLog(g_1) - DDLog(g_0) \equiv x \pmod{N^2}$$

Damgård-Jurik Cryptosystem

Public-key: RSA modulus NDJ.Enc $_N(x) \rightarrow r^{N^2} \cdot \exp(x)$ $\in \mathbb{Z}/N^3\mathbb{Z}$

$$\exp(X) = 1 + NX + rac{(Nx)^2}{2}$$
 $\mathbb{F} \coloneqq \langle \exp(1)
angle$

$$\mathbb{F} = \langle f \rangle$$
; $|\mathbb{F}| = N^2$

$$\frac{\text{Promise}}{g_1/g_0 = f^{\times}}$$

$$\mathsf{DDLog}(g_1) - \mathsf{DDLog}(g_0) \equiv x \pmod{N^2}$$

Damgård-Jurik Cryptosystem

Public-key: RSA modulus N DJ. $\mathsf{Enc}_N(x) \to r^{N^2} \cdot \mathsf{exp}(x) \in \mathbb{Z}/N^3\mathbb{Z}$

$$\overset{\mathsf{easy}}{\overset{\mathsf{DLog}}{\mathsf{DLog}}}\overset{\mathsf{hard}}{\overset{\mathsf{DLog}}{\mathsf{DLog}}}$$

$$\mathbb{F}=\langle f
angle; \ |\mathbb{F}|=N^2$$

$$\frac{\text{Promise}}{g_1/g_0 = f^x}$$

$$\mathsf{DDLog}(g_1) - \mathsf{DDLog}(g_0) \equiv x \pmod{N^2}$$

$$\exp(X) = 1 + NX + \frac{(Nx)^2}{2}$$

$$\mathbb{F} := \langle \exp(1) \rangle$$

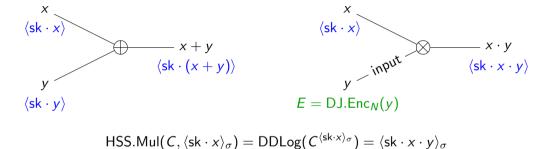
$$\forall h \in \mathbb{F}, \mathsf{DLog}(1 + \mathsf{N} x) = x - \frac{\mathsf{N} x^2}{2}$$

Damgård-Jurik Cryptosystem

Public-key: RSA modulus N DJ.Enc $_N(x) \rightarrow r^{N^2} \cdot \exp(x)$ $\in \mathbb{Z}/N^3\mathbb{Z}$

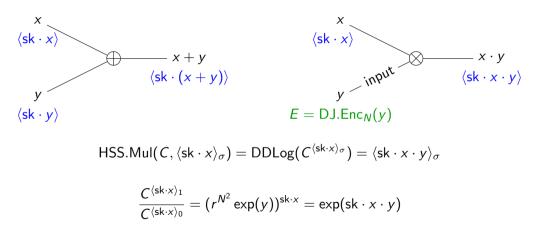
Homomorphic Secret Sharing from Damgård-Jurik

Set $sk = \varphi(N)$.



Homomorphic Secret Sharing from Damgård-Jurik

Set
$$sk = \varphi(N)$$
.



Homomorphic Secret Sharing from Damgård-Jurik

Set $sk = \varphi(N)$.

$$\langle \mathsf{sk} \cdot x \rangle$$

$$\langle \mathsf{sk} \cdot x$$

Can multiply with DJ. $Enc_N(sk^{-1} \mod N^2)$ to remove sk from shares.

$$\langle x \rangle_1 \cdot \langle y \rangle_1 = (x + \langle x \rangle_0)(y + \langle y \rangle_0)$$

$$\langle x \rangle_1 \cdot \langle y \rangle_1 = (x + \langle x \rangle_0)(y + \langle y \rangle_0) = x \cdot y + x \cdot \langle y \rangle_0 + \langle x \rangle_0 \cdot y + \langle x \rangle_0 \cdot \langle y \rangle_0$$

$$\langle x \rangle_{1} \cdot \langle y \rangle_{1} = (x + \langle x \rangle_{0})(y + \langle y \rangle_{0})$$

$$= x \cdot y + x \cdot \langle y \rangle_{0} + \langle x \rangle_{0} \cdot y + \langle x \rangle_{0} \cdot \langle y \rangle_{0}$$

$$x \cdot y = \langle x \rangle_{1} \cdot \langle y \rangle_{1} - x \cdot \langle y \rangle_{0} - \langle x \rangle_{0} \cdot y - \langle x \rangle_{0} \cdot \langle y \rangle_{0}$$

$$\langle x \rangle_{1} \cdot \langle y \rangle_{1} = (x + \langle x \rangle_{0})(y + \langle y \rangle_{0})$$

$$= x \cdot y + x \cdot \langle y \rangle_{0} + \langle x \rangle_{0} \cdot y + \langle x \rangle_{0} \cdot \langle y \rangle_{0}$$

$$x \cdot y = \underbrace{\langle x \rangle_{1} \cdot \langle y \rangle_{1}}_{\text{Known to Evaluator}} - x \cdot \langle y \rangle_{0} - \langle x \rangle_{0} \cdot y - \underbrace{\langle x \rangle_{0} \cdot \langle y \rangle_{0}}_{\text{Known to Garbler}}$$

$$\langle x \rangle_1 \cdot \langle y \rangle_1 = \big(x + \langle x \rangle_0 \big) \big(y + \langle y \rangle_0 \big) \\ = x \cdot y + x \cdot \langle y \rangle_0 + \langle x \rangle_0 \cdot y + \langle x \rangle_0 \cdot \langle y \rangle_0 \\ x \cdot y = \underbrace{\langle x \rangle_1 \cdot \langle y \rangle_1}_{\text{Known to Evaluator}} - \underbrace{x \cdot \langle y \rangle_0}_{\text{HSS.Mul}(C_{\langle x \rangle_0}, \langle \text{sk} \cdot y \rangle)} - \underbrace{\langle x \rangle_0 \cdot \langle y \rangle_0}_{\text{Known to Garbler}}$$

$$C_{\langle x\rangle_0}=\mathsf{DJ.Enc}(\mathsf{sk}^{-1}\langle x\rangle_0)$$
 G contains:
$$C_{\langle y\rangle_0}=\mathsf{DJ.Enc}(\mathsf{sk}^{-1}\langle y\rangle_0)$$

$$\langle x \rangle_1 \cdot \langle y \rangle_1 = (x + \langle x \rangle_0)(y + \langle y \rangle_0) \\ = x \cdot y + x \cdot \langle y \rangle_0 + \langle x \rangle_0 \cdot y + \langle x \rangle_0 \cdot \langle y \rangle_0 \\ x \cdot y = \underbrace{\langle x \rangle_1 \cdot \langle y \rangle_1}_{\text{Known to Evaluator}} - \underbrace{x \cdot \langle y \rangle_0}_{\text{HSS.Mul}(C_{\langle y \rangle_0}, \langle \text{sk} \cdot x \rangle)} - \underbrace{\langle x \rangle_0 \cdot y}_{\text{HSS.Mul}(C_{\langle x \rangle_0}, \langle \text{sk} \cdot y \rangle)} - \underbrace{\langle x \rangle_0 \cdot \langle y \rangle_0}_{\text{Known to Garbler}} \\ \text{sk} \cdot x \cdot y = \underbrace{\langle x \rangle_1 \cdot \langle \text{sk} \cdot y \rangle_1}_{\text{Known to Evaluator}} - \underbrace{x \cdot \langle \text{sk} \cdot y \rangle_0}_{\text{HSS.Mul}(C_{\langle sk \cdot y \rangle_0}, \langle \text{sk} \cdot x \rangle)} - \underbrace{\langle x \rangle_0 \cdot \langle \text{sk} \cdot y \rangle_0}_{\text{Known to Garbler}} \\ \text{HSS.Mul}(C_{\langle x \rangle_0}, \langle \text{sk} \cdot y \rangle)} - \underbrace{\langle x \rangle_0 \cdot \langle \text{sk} \cdot y \rangle_0}_{\text{Known to Garbler}}$$

$$C_{\langle x
angle_0} = \mathsf{DJ.Enc}(\mathsf{sk}^{-1}\langle x
angle_0)$$
 $C_{\langle y
angle_0} = \mathsf{DJ.Enc}(\mathsf{sk}^{-1}\langle y
angle_0)$
 $C'_{\langle x
angle_0} = \mathsf{DJ.Enc}(\langle x
angle_0)$
 $C_{\langle \mathsf{sk} \cdot y
angle_0} = \mathsf{DJ.Enc}(\mathsf{sk}^{-1}\langle \mathsf{sk} \cdot y
angle_0)$

$$\langle x \rangle_{1} \cdot \langle y \rangle_{1} = (x + \langle x \rangle_{0})(y + \langle y \rangle_{0})$$

$$= x \cdot y + x \cdot \langle y \rangle_{0} + \langle x \rangle_{0} \cdot y + \langle x \rangle_{0} \cdot \langle y \rangle_{0}$$

$$x \cdot y = \underbrace{\langle x \rangle_{1} \cdot \langle y \rangle_{1}}_{\text{Known to Evaluator}} - \underbrace{x \cdot \langle y \rangle_{0}}_{\text{HSS.Mul}(C_{\langle y \rangle_{0}}, \langle \text{sk} \cdot x \rangle)} - \underbrace{\langle x \rangle_{0} \cdot y}_{\text{HSS.Mul}(C_{\langle x \rangle_{0}}, \langle \text{sk} \cdot y \rangle)} - \underbrace{\langle x \rangle_{0} \cdot \langle y \rangle_{0}}_{\text{Known to Garbler}}$$

$$\text{sk} \cdot x \cdot y = \underbrace{\langle x \rangle_{1} \cdot \langle \text{sk} \cdot y \rangle_{1}}_{\text{Known to Evaluator}} - \underbrace{x \cdot \langle \text{sk} \cdot y \rangle_{0}}_{\text{HSS.Mul}(C_{\langle \text{sk} \cdot y \rangle_{0}}, \langle \text{sk} \cdot x \rangle)} - \underbrace{\langle x \rangle_{0} \cdot \langle \text{sk} \cdot y \rangle_{0}}_{\text{Known to Garbler}}$$

$$\text{HSS.Mul}(C_{\langle \text{sk} \cdot y \rangle_{0}}, \langle \text{sk} \cdot x \rangle) - \underbrace{\langle x \rangle_{0} \cdot \langle \text{sk} \cdot y \rangle_{0}}_{\text{Known to Garbler}}$$

$$C_{\langle x
angle_0} = \mathsf{DJ}.\mathsf{Enc}(\mathsf{sk}^{-1}\langle x
angle_0)$$
 $C_{\langle y
angle_0} = \mathsf{DJ}.\mathsf{Enc}(\mathsf{sk}^{-1}\langle y
angle_0)$
 $C'_{\langle x
angle_0} = \mathsf{DJ}.\mathsf{Enc}(\langle x
angle_0)$
 $C_{\langle \mathsf{sk} \cdot y
angle_0} = \mathsf{DJ}.\mathsf{Enc}(\mathsf{sk}^{-1}\langle \mathsf{sk} \cdot y
angle_0)$

Rate: $\frac{1}{4}$?

$$\langle x \rangle_{1} \cdot \langle y \rangle_{1} = (x + \langle x \rangle_{0})(y + \langle y \rangle_{0})$$

$$= x \cdot y + x \cdot \langle y \rangle_{0} + \langle x \rangle_{0} \cdot y + \langle x \rangle_{0} \cdot \langle y \rangle_{0}$$

$$x \cdot y = \underbrace{\langle x \rangle_{1} \cdot \langle y \rangle_{1}}_{\text{Known to Evaluator}} - \underbrace{x \cdot \langle y \rangle_{0}}_{\text{HSS.Mul}(C_{\langle y \rangle_{0}}, \langle \text{sk} \cdot x \rangle)} - \underbrace{\langle x \rangle_{0} \cdot y}_{\text{HSS.Mul}(C_{\langle x \rangle_{0}}, \langle \text{sk} \cdot y \rangle)} - \underbrace{\langle x \rangle_{0} \cdot \langle y \rangle_{0}}_{\text{Known to Garbler}}$$

$$\text{sk} \cdot x \cdot y = \underbrace{\langle x \rangle_{1} \cdot \langle \text{sk} \cdot y \rangle_{1}}_{\text{Known to Evaluator}} - \underbrace{x \cdot \langle \text{sk} \cdot y \rangle_{0}}_{\text{HSS.Mul}(C_{\langle \text{sk} \cdot y \rangle_{0}}, \langle \text{sk} \cdot x \rangle)} - \underbrace{\langle x \rangle_{0} \cdot \langle \text{sk} \cdot y \rangle_{0}}_{\text{Known to Garbler}}$$

$$\text{HSS.Mul}(C_{\langle \text{sk} \cdot y \rangle_{0}}, \langle \text{sk} \cdot x \rangle) - \underbrace{\langle x \rangle_{0} \cdot \langle \text{sk} \cdot y \rangle_{0}}_{\text{Known to Garbler}}$$

$$\begin{aligned} C_{\langle x \rangle_0} &= \mathsf{DJ.Enc}(\mathsf{sk}^{-1}\langle x \rangle_0) \\ C_{\langle y \rangle_0} &= \mathsf{DJ.Enc}(\mathsf{sk}^{-1}\langle y \rangle_0) \\ C'_{\langle x \rangle_0} &= \mathsf{DJ.Enc}(\langle x \rangle_0) \\ C_{\langle \mathsf{sk} \cdot y \rangle_0} &= \mathsf{DJ.Enc}(\mathsf{sk}^{-1}\langle \mathsf{sk} \cdot y \rangle_0) \end{aligned}$$

Rate: $\frac{1}{3}$

$$\mathsf{sk} \cdot x \cdot \mathsf{sk} \cdot y = \underbrace{\langle \mathsf{sk} \cdot x \rangle_1 \cdot \langle \mathsf{sk} \cdot y \rangle_1}_{\mathsf{Known to Evaluator}} - \underbrace{\mathsf{sk} \cdot x \cdot \langle \mathsf{sk} \cdot y \rangle_0}_{\mathsf{HSS.Mul}(\mathcal{C}_{\langle \mathsf{sk} \cdot y \rangle_0}, \langle \mathsf{sk} \cdot x \rangle)} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0 \cdot \mathsf{sk} \cdot y}_{\mathsf{HSS.Mul}(\mathcal{C}_{\langle \mathsf{sk} \cdot x \rangle_0}, \langle \mathsf{sk} \cdot y \rangle)} \underbrace{\langle \mathsf{sk} \cdot x \rangle_0 \cdot \langle \mathsf{sk} \cdot y \rangle_0}_{\mathsf{Known to Garbler}}$$

$$\mathsf{sk} \cdot x \cdot \mathsf{sk} \cdot y = \underbrace{\langle \mathsf{sk} \cdot x \rangle_1 \cdot \langle \mathsf{sk} \cdot y \rangle_1}_{\mathsf{Known \ to \ Evaluator}} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0}_{\mathsf{HSS.Mul}(\mathcal{C}_{\langle \mathsf{sk} \cdot y \rangle_0}, \langle \mathsf{sk} \cdot x \rangle)} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0 \cdot \mathsf{sk} \cdot y}_{\mathsf{HSS.Mul}(\mathcal{C}_{\langle \mathsf{sk} \cdot x \rangle_0}, \langle \mathsf{sk} \cdot y \rangle)} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0 \cdot \langle \mathsf{sk} \cdot y \rangle_0}_{\mathsf{Known \ to \ Garbler}}$$

$$G$$
 contains: $C_{\langle \mathsf{sk}\cdot x\rangle_0} = \mathsf{DJ.Enc}_{\mathcal{N}}(\langle \mathsf{sk}\cdot x\rangle_0)$ $C_{\langle \mathsf{sk}\cdot y\rangle_0} = \mathsf{DJ.Enc}_{\mathcal{N}}(\langle \mathsf{sk}\cdot y\rangle_0)$

$$\mathsf{sk} \cdot x \cdot \mathsf{sk} \cdot y = \underbrace{\langle \mathsf{sk} \cdot x \rangle_1 \cdot \langle \mathsf{sk} \cdot y \rangle_1}_{\mathsf{Known to Evaluator}} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0}_{\mathsf{HSS.Mul}(\mathcal{C}_{\langle \mathsf{sk} \cdot y \rangle_0}, \langle \mathsf{sk} \cdot x \rangle)} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0 \cdot \mathsf{sk} \cdot y}_{\mathsf{HSS.Mul}(\mathcal{C}_{\langle \mathsf{sk} \cdot x \rangle_0}, \langle \mathsf{sk} \cdot y \rangle)} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0 \cdot \langle \mathsf{sk} \cdot y \rangle_0}_{\mathsf{Known to Garbler}}$$

$$G$$
 contains: $C_{\langle \mathsf{sk} \cdot x \rangle_0} = \mathsf{DJ}.\mathsf{Enc}_{\mathcal{N}}(\langle \mathsf{sk} \cdot x \rangle_0)$
 $C_{\langle \mathsf{sk} \cdot y \rangle_0} = \mathsf{DJ}.\mathsf{Enc}_{\mathcal{N}}(\langle \mathsf{sk} \cdot y \rangle_0)$

Multiply with DJ.Enc_N(sk⁻¹ mod N^2) to get $\langle sk \cdot x \cdot y \rangle$.

$$\mathsf{sk} \cdot x \cdot \mathsf{sk} \cdot y = \underbrace{\langle \mathsf{sk} \cdot x \rangle_1 \cdot \langle \mathsf{sk} \cdot y \rangle_1}_{\mathsf{Known to Evaluator}} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0}_{\mathsf{HSS.Mul}(C_{\langle \mathsf{sk} \cdot y \rangle_0}, \langle \mathsf{sk} \cdot x \rangle)} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0 \cdot \mathsf{sk} \cdot y}_{\mathsf{HSS.Mul}(C_{\langle \mathsf{sk} \cdot x \rangle_0}, \langle \mathsf{sk} \cdot y \rangle)} \underbrace{\langle \mathsf{sk} \cdot x \rangle_0 \cdot \langle \mathsf{sk} \cdot y \rangle_0}_{\mathsf{Known to Garbler}}$$

$$G$$
 contains: $C_{\langle \mathsf{sk} \cdot x \rangle_0} = \mathsf{DJ}.\mathsf{Enc}_{\mathcal{N}}(\langle \mathsf{sk} \cdot x \rangle_0)$
 $C_{\langle \mathsf{sk} \cdot y \rangle_0} = \mathsf{DJ}.\mathsf{Enc}_{\mathcal{N}}(\langle \mathsf{sk} \cdot y \rangle_0)$

Multiply with DJ.Enc_N(sk⁻¹ mod N^2) to get $\langle sk \cdot x \cdot y \rangle$.

Rate: $\frac{1}{2}$?

$$\mathsf{sk} \cdot x \cdot \mathsf{sk} \cdot y = \underbrace{\langle \mathsf{sk} \cdot x \rangle_1 \cdot \langle \mathsf{sk} \cdot y \rangle_1}_{\mathsf{Known \ to \ Evaluator}} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0}_{\mathsf{HSS.Mul}(\mathcal{C}_{\langle \mathsf{sk} \cdot y \rangle_0}, \langle \mathsf{sk} \cdot x \rangle)} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0 \cdot \mathsf{sk} \cdot y}_{\mathsf{HSS.Mul}(\mathcal{C}_{\langle \mathsf{sk} \cdot x \rangle_0}, \langle \mathsf{sk} \cdot y \rangle)} - \underbrace{\langle \mathsf{sk} \cdot x \rangle_0 \cdot \langle \mathsf{sk} \cdot y \rangle_0}_{\mathsf{Known \ to \ Garbler}}$$

$$G$$
 contains: $C_{\langle \mathsf{sk} \cdot x \rangle_0} = \mathsf{DJ}.\mathsf{Enc}_{\mathcal{N}}(\langle \mathsf{sk} \cdot x \rangle_0)$ $C_{\langle \mathsf{sk} \cdot y \rangle_0} = \mathsf{DJ}.\mathsf{Enc}_{\mathcal{N}}(\langle \mathsf{sk} \cdot y \rangle_0)$

Multiply with DJ.Enc_N(sk⁻¹ mod N^2) to get $\langle sk \cdot x \cdot y \rangle$.

Rate: 1

Damgård-Jurik Arithmetic Garbling: Pipeline

