Reducing the Share Size of Weighted Threshold Secret Sharing Schemes via Chow Parameters Approximation TCC 2024, Milan

Oriol Farràs — Miquel Guiot

Universitat Rovira i Virgili

6 December 2024

MINISTERIO PARA LA TRANSFORMACIÓN DIGITA Y DE LA FUNCIÓN PÚBLICA

Miquel Guiot (URV)

Theory of Cryptography Conference 2024, Milan

6 December 2024

Secret Sharing Scheme

Secret Sharing Scheme

Secret Sharing Scheme

Secret Sharing Scheme

Secret Sharing Scheme

Secret Sharing Scheme

Secret Sharing Scheme

Cryptographic primitive that allows a dealer to **share** a secret among a set of parties, so that only **authorized** subsets of them can **recover** it.

Access Structure

Family of authorized subsets of a secret sharing scheme. It is denoted by Γ .

Secret Sharing Scheme

Cryptographic primitive that allows a dealer to **share** a secret among a set of parties, so that only **authorized** subsets of them can **recover** it.

Access Structure Family of **authorized subsets** of a secret sharing scheme. It is denoted by Γ.

Secret Sharing Scheme

Cryptographic primitive that allows a dealer to **share** a secret among a set of parties, so that only **authorized** subsets of them can **recover** it.

Access Structure

Family of authorized subsets of a secret sharing scheme. It is denoted by Γ .

Remark: Access structures are expressed as monotone Boolean functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$.

Secret Sharing Scheme

Cryptographic primitive that allows a dealer to **share** a secret among a set of parties, so that only **authorized** subsets of them can **recover** it.

Access Structure Family of **authorized subsets** of a secret sharing scheme. It is denoted by Γ.

Remark: Access structures are expressed as monotone Boolean functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$.

Theory of Cryptography Conference 2024, Mila

Secret Sharing Scheme

Cryptographic primitive that allows a dealer to **share** a secret among a set of parties, so that only **authorized** subsets of them can **recover** it.

Access Structure Family of **authorized subsets** of a secret sharing scheme. It is denoted by Γ.

Remark: Access structures are expressed as monotone Boolean functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$.

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Shamir Secret Sharing Scheme

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Shamir Secret Sharing Scheme

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Shamir Secret Sharing Scheme

Theory of Cryptography Conference 2024, Milan

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Shamir Secret Sharing Scheme

Theory of Cryptography Conference 2024, Milan

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Shamir Secret Sharing Scheme

Miquel Guiot (URV)

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Shamir Secret Sharing Scheme

Miquel Guiot (URV)

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Shamir Secret Sharing Scheme

Miquel Guiot (URV)

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Theorem [Shamir'79]

Weighted threshold access structures admit schemes with share size $O(w_i \log W)$.

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Theorem [Shamir'79]

Weighted threshold access structures admit schemes with share size $O(w_i \log W)$.

Problem [Håstadt'94]

There exists a weighted threshold access structure requiring weights of exponential size.

Weighted Threshold Access Structure (WTAS)

Each party *i* has a weight w_i and Γ is given by a Weighted Threshold Function: (WTF).

$$\Gamma = \{ X \subseteq [n] : \sum_{i \in X} w_i \ge \sigma \}.$$

Theorem [Shamir'79]

Weighted threshold access structures admit schemes with share size $O(w_i \log W)$.

Problem [Håstadt'94]

There exists a weighted threshold access structure requiring weights of exponential size.

Theorem [Beimel, Weinreb'06]

Weighted threshold access structures admit schemes with share size $n^{O(\log n)}$.

Miquel Guiot (URV)

Theory of Cryptography Conference 2024, Milan

Problem

Multiparty computation protocols and consensus mechanisms require efficient schemes for weighted threshold access structures.

Problem

Multiparty computation protocols and consensus mechanisms require efficient schemes for weighted threshold access structures.

Idea

To relax the restrictions on the access structure to obtain more efficient schemes.

Problem

Multiparty computation protocols and consensus mechanisms require efficient schemes for weighted threshold access structures.

Idea

To relax the restrictions on the access structure to obtain more efficient schemes.

(t, T)-Ramp Weighted Threshold Access Structure

Generalization in which subsets **below** t are forbidden and subsets **above** T are authorized.

Problem

Multiparty computation protocols and consensus mechanisms require efficient schemes for weighted threshold access structures.

Idea

To relax the restrictions on the access structure to obtain more efficient schemes.

(t, T)-Ramp Weighted Threshold Access Structure

Generalization in which subsets **below** t are forbidden and subsets **above** T are authorized.

Work	Share Size	Access structure
GJMSWZ'23	$w_i = 2^{O(n \log n)}$	$(t, t + \Omega(\lambda))$ -ramp WTAS
BHS'23 Rounding, TF'24	$O\left(\frac{n}{\beta-\alpha}\right)$	$(\alpha W, \beta W)$ -ramp WTAS
BHS'23 BS Channels	$\max\left\{\lambda^2, \operatorname{poly}\left(\frac{1}{\beta-\alpha}\right)\right\}$	$(\alpha W, \beta W)$ -ramp WTAS

Question: How many subsets change their condition from Γ to Γ' ?

Introduction: Our Results

Goal: To find a good tradeoff between the efficiency and the accuracy of approximation.

Introduction: Our Results

Goal: To find a good tradeoff between the efficiency and the accuracy of approximation.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose weighted threshold access structure Γ' is o(1)-close to Γ .
Goal: To find a good tradeoff between the efficiency and the accuracy of approximation.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose weighted threshold access structure Γ' is o(1)-close to Γ .

Goal: To find a good tradeoff between the efficiency and the accuracy of approximation.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose weighted threshold access structure Γ' is o(1)-close to Γ .

Goal: To find a good tradeoff between the efficiency and the accuracy of approximation.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose weighted threshold access structure Γ' is o(1)-close to Γ .

Goal: To find a good tradeoff between the efficiency and the accuracy of approximation.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose weighted threshold access structure Γ' is o(1)-close to Γ .

Goal: To find a good tradeoff between the efficiency and the accuracy of approximation.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose weighted threshold access structure Γ' is o(1)-close to Γ .

Goal: To find a good tradeoff between the efficiency and the accuracy of approximation.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose weighted threshold access structure Γ' is o(1)-close to Γ .

Goal: To find a good tradeoff between the efficiency and the accuracy of approximation.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose weighted threshold access structure Γ' is o(1)-close to Γ .

Goal: To find a good tradeoff between the efficiency and the accuracy of approximation.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose weighted threshold access structure Γ' is o(1)-close to Γ .

The n + 1 values $\hat{f}(0) = \mathbb{E}[f(x)]$ and $\hat{f}(i) = \mathbb{E}[f(x)x_i]$ taking uniform distribution on its domain. The Chow vector is given by $\chi_f = (\hat{f}(0), \dots, \hat{f}(n))$.

The n + 1 values $\hat{f}(0) = \mathbb{E}[f(x)]$ and $\hat{f}(i) = \mathbb{E}[f(x)x_i]$ taking uniform distribution on its domain. The Chow vector is given by $\chi_f = (\hat{f}(0), \dots, \hat{f}(n))$.

Theorem [Chow'61]

Any WTF is uniquely determined in the space of Boolean functions by its Chow parameters.

The n + 1 values $\hat{f}(0) = E[f(x)]$ and $\hat{f}(i) = E[f(x)x_i]$ taking uniform distribution on its domain. The Chow vector is given by $\chi_f = (\hat{f}(0), \dots, \hat{f}(n))$.

Theorem [Chow'61]

Any WTF is uniquely determined in the space of Boolean functions by its Chow parameters.

Function & Chow Distance

• dist(f,g) = E[|f(x) - g(x)|]

The n + 1 values $\hat{f}(0) = \mathbb{E}[f(x)]$ and $\hat{f}(i) = \mathbb{E}[f(x)x_i]$ taking uniform distribution on its domain. The Chow vector is given by $\chi_f = (\hat{f}(0), \dots, \hat{f}(n))$.

Theorem [Chow'61]

Any WTF is uniquely determined in the space of Boolean functions by its Chow parameters.

Function & Chow Distance

• dist(f,g) = E[|f(x) - g(x)|]

•
$$\operatorname{dist}_{\operatorname{Chow}}(f,g) = \left\|\chi_f - \chi_g\right\|$$

The n + 1 values $\hat{f}(0) = \mathbb{E}[f(x)]$ and $\hat{f}(i) = \mathbb{E}[f(x)x_i]$ taking uniform distribution on its domain. The Chow vector is given by $\chi_f = (\hat{f}(0), \dots, \hat{f}(n))$.

Theorem [Chow'61]

Any WTF is uniquely determined in the space of Boolean functions by its Chow parameters.

Function & Chow Distance

$$\operatorname{dist}(f,g) = \operatorname{E}[|f(x) - g(x)|] \quad \bullet \operatorname{dist}_{\operatorname{Chow}}(f,g) = \left\|\chi_f - \chi_g\right\|$$

Theorem [O'Donnell, Servedio'11 + De, Diakonikolas, Feldman, Servedio'14]

For any two Boolean functions f and g, $\operatorname{dist}(f,g) = o(1) \iff \operatorname{dist}_{\operatorname{Chow}}(f,g) = o(1)$.

The n + 1 values $\hat{f}(0) = \mathbb{E}[f(x)]$ and $\hat{f}(i) = \mathbb{E}[f(x)x_i]$ taking uniform distribution on its domain. The Chow vector is given by $\chi_f = (\hat{f}(0), \dots, \hat{f}(n))$.

Theorem [Chow'61]

Any WTF is uniquely determined in the space of Boolean functions by its Chow parameters.

Function & Chow Distance

•
$$\operatorname{dist}(f,g) = \operatorname{E}[|f(x) - g(x)|]$$
 • $\operatorname{dist}_{\operatorname{Chow}}(f,g) = ||\chi_f - \chi_g|$

Theorem [O'Donnell, Servedio'11 + De, Diakonikolas, Feldman, Servedio'14]

For any two Boolean functions f and g, $\operatorname{dist}(f,g) = o(1) \iff \operatorname{dist}_{\operatorname{Chow}}(f,g) = o(1)$.

Idea

To use the Chow parameters as the **building block** for approximating WTFs.

Miquel Guiot (URV)

Theorem

For any $\varepsilon \in (0, 1)$, there exists a **randomized algorithm** ApproximateWTF that given any monotone WTF over *n* variables *f*, outputs a monotone WTF *g* with the following properties:

Theorem

For any $\varepsilon \in (0, 1)$, there exists a **randomized algorithm** ApproximateWTF that given any monotone WTF over *n* variables *f*, outputs a monotone WTF *g* with the following properties: • *g* is ε -close to *f*,

Theorem

For any $\varepsilon \in (0, 1)$, there exists a **randomized algorithm** ApproximateWTF that given any monotone WTF over *n* variables *f*, outputs a monotone WTF *g* with the following properties:

• g is ε -close to f,

• g has weights of size
$$O\left(\sqrt{n}\left(\frac{1}{\varepsilon}\right)^{O\left(\log^2\left(\frac{1}{\varepsilon}\right)\right)}\right)$$
.

Theorem

For any $\varepsilon \in (0, 1)$, there exists a **randomized algorithm** ApproximateWTF that given any monotone WTF over *n* variables *f*, outputs a monotone WTF *g* with the following properties:

• g is ε -close to f,

• g has weights of size
$$O\left(\sqrt{n}\left(\frac{1}{\varepsilon}\right)^{O\left(\log^2\left(\frac{1}{\varepsilon}\right)\right)}\right)$$
.

Remarks

Theorem

For any $\varepsilon \in (0, 1)$, there exists a **randomized algorithm** ApproximateWTF that given any monotone WTF over *n* variables *f*, outputs a monotone WTF *g* with the following properties:

• g is ε -close to f,

• g has weights of size
$$O\left(\sqrt{n}\left(\frac{1}{\varepsilon}\right)^{O\left(\log^2\left(\frac{1}{\varepsilon}\right)\right)}\right)$$
.

Remarks

• It is an adaptation of the work of De, Diakonikolas, Feldman, Servedio'14 to the monotone setting.

Theorem

For any $\varepsilon \in (0, 1)$, there exists a **randomized algorithm** ApproximateWTF that given any monotone WTF over *n* variables *f*, outputs a monotone WTF *g* with the following properties:

• g is ε -close to f,

• g has weights of size
$$O\left(\sqrt{n}\left(\frac{1}{\varepsilon}\right)^{O\left(\log^2\left(\frac{1}{\varepsilon}\right)\right)}\right)$$
.

Remarks

- It is an adaptation of the work of De, Diakonikolas, Feldman, Servedio'14 to the monotone setting.
- The approximation preserves the influence of the coordinates and the weight hierarchy.

 $f(x) = sign(w_1x_1 + ... + w_nx_n - t)$

$$f(x) = \operatorname{sign}(w_1 x_1 + \ldots + w_n x_n - t)$$

$$\downarrow$$

$$\chi_f$$

$$f(x) = \operatorname{sign}(w_1 x_1 + \dots + w_n x_n - t)$$

$$\downarrow$$

$$\chi_f$$

$$\downarrow$$

$$g(x) = \operatorname{sign}(\hat{f}(1) x_1 + \dots + \hat{f}(n) x_n - \hat{f}(0))$$

$$f(x) = \operatorname{sign}(w_1 x_1 + \dots + w_n x_n - t)$$

$$\downarrow$$

$$\chi_f$$

$$\downarrow$$

$$g(x) = \operatorname{sign}(\hat{f}(1) x_1 + \dots + \hat{f}(n) x_n - \hat{f}(0))$$

$$\downarrow$$

$$\chi_g$$

$$f(x) = \operatorname{sign}(w_1 x_1 + \dots + w_n x_n - t)$$

$$\downarrow$$

$$\chi_f$$

$$\downarrow$$

$$g(x) = \operatorname{sign}(\hat{f}(1)x_1 + \dots + \hat{f}(n)x_n - \hat{f}(0))$$

$$\downarrow$$

$$\chi_g \longrightarrow \|\chi_f - \chi_g\| \le 2\varepsilon?$$

$$h(x) = \hat{g}(0) - \hat{f}(0) + \sum_{i=1}^n (\hat{f}(i) - \hat{g}(i))x_i \longleftarrow \mathsf{No}$$

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose access structure Γ' is o(1)-close to Γ .

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose access structure Γ' is o(1)-close to Γ .

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose access structure Γ' is o(1)-close to Γ .

Idea

• Define a new access structure f' from f by discarding all parties with $\hat{f}(i) < \frac{1}{2n \log^k(n)}$.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose access structure Γ' is o(1)-close to Γ .

- Define a new access structure f' from f by discarding all parties with $\hat{f}(i) < \frac{1}{2n\log^k(n)}$.
- **Q** Approximate f' using the algorithm ApproximateWTF to obtain g.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose access structure Γ' is o(1)-close to Γ .

- Define a new access structure f' from f by discarding all parties with $\hat{f}(i) < \frac{1}{2n \log^k(n)}$.
- **2** Approximate f' using the algorithm ApproximateWTF to obtain g.
- So The weighted threshold access structure given by g has weights of size $n^{1+o(1)}$.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose access structure Γ' is o(1)-close to Γ .

- Define a new access structure f' from f by discarding all parties with $\hat{f}(i) < \frac{1}{2n \log^{k}(n)}$.
- **2** Approximate f' using the algorithm ApproximateWTF to obtain g.
- **③** The weighted threshold access structure given by g has weights of size $n^{1+o(1)}$.
- Apply Shamir secret sharing scheme to g.

Theorem

For any weighted threshold access structure Γ , there exists a secret sharing scheme with share size $n^{1+o(1)}$ whose access structure Γ' is o(1)-close to Γ .

Idea

- Define a new access structure f' from f by discarding all parties with $\hat{f}(i) < \frac{1}{2n \log^k(n)}$.
- **2** Approximate f' using the algorithm ApproximateWTF to obtain g.
- **③** The weighted threshold access structure given by g has weights of size $n^{1+o(1)}$.
- Apply Shamir secret sharing scheme to g.

Side Note

Efficient schemes for **any** weighted threshold access structure can be build from **computational assumptions**.
Closing Remarks

• The share size of existing schemes for weighted threshold access structures have a strong dependency on the size of the weights.

- The share size of existing schemes for weighted threshold access structures have a strong dependency on the size of the weights.
- The state-of-the-art solution is to find a good tradeoff between efficiency and accuracy.

- The share size of existing schemes for weighted threshold access structures have a strong dependency on the size of the weights.
- The state-of-the-art solution is to find a good tradeoff between efficiency and accuracy.
- Our proposal ensures almost linear share size at the cost of o(1) error.

- The share size of existing schemes for weighted threshold access structures have a strong dependency on the size of the weights.
- The state-of-the-art solution is to find a good tradeoff between efficiency and accuracy.
- Our proposal ensures almost linear share size at the cost of o(1) error.
- Moving towards the computational setting allows more efficient schemes.

Closing Remarks

- The share size of existing schemes for weighted threshold access structures have a strong dependency on the size of the weights.
- The state-of-the-art solution is to find a good tradeoff between efficiency and accuracy.
- Our proposal ensures almost linear share size at the cost of o(1) error.
- Moving towards the computational setting allows more efficient schemes.

Open Questions

Closing Remarks

- The share size of existing schemes for weighted threshold access structures have a strong dependency on the size of the weights.
- The state-of-the-art solution is to find a good tradeoff between efficiency and accuracy.
- Our proposal ensures almost linear share size at the cost of o(1) error.
- Moving towards the computational setting allows more efficient schemes.

Open Questions

• Is there any scheme with polynomial share size for weighted threshold access structures?

Closing Remarks

- The share size of existing schemes for weighted threshold access structures have a strong dependency on the size of the weights.
- The state-of-the-art solution is to find a good tradeoff between efficiency and accuracy.
- Our proposal ensures almost linear share size at the cost of o(1) error.
- Moving towards the computational setting allows more efficient schemes.

Open Questions

- Is there any scheme with polynomial share size for weighted threshold access structures?
- Can we improve the $\Omega(\sqrt{n})$ lower bound for these access structures?

Closing Remarks

- The share size of existing schemes for weighted threshold access structures have a strong dependency on the size of the weights.
- The state-of-the-art solution is to find a good tradeoff between efficiency and accuracy.
- Our proposal ensures almost linear share size at the cost of o(1) error.
- Moving towards the computational setting allows more efficient schemes.

Open Questions

- Is there any scheme with polynomial share size for weighted threshold access structures?
- Can we improve the $\Omega(\sqrt{n})$ lower bound for these access structures?
- Can we relate the notion of distance with the ramp criteria?

Thank You!

Check the Full Version of our Paper!