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P interacts with V convincing him that a proposition is true

Secrets in Interactive Proof

Zero-knowledge: 
protect prover’s private info
 

Instance-hiding: 
protect verifier’s private info

• Input Instance
• Result of the protocol

• NP Witness
• Secret Keys



𝑃(|𝑥|) 𝑉(𝑥)

…

Accept/Reject

Instance-hiding Interactive Proofs [Beavor-Feigenbaum-Shoup90]



• Completeness/Soundness: 
• 𝑥 ∈ 𝐿, 𝑃 makes 𝑉 accept w.h.p
• 𝑥 ∉ 𝐿, NO 𝑷∗ makes 𝑉 accept w.h.p

𝑃(|𝑥|) 𝑉(𝑥)

…

Accept/Reject

Instance-hiding Interactive Proofs [Beavor-Feigenbaum-Shoup90]



𝑃(|𝑥|) 𝑉(𝑥)

…

Accept/Reject

𝑆𝑖𝑚𝑃∗(|𝑥|)
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Prover P Verifier V

P interacts with V convincing him that a proposition is true

Instance-hiding Interactive Proofs [BFS90]

Make the proof without knowing the exact 
statement you are proving

 
Instance 𝑥
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Consider a cyclic group g, 𝔾 , define the language 𝐿 of group element with 
most significant bit of the discrete logarithm equal to 1:

𝐿 = 𝑥 ∈ 𝔾 𝑚𝑠𝑏 𝐷𝐿𝑔(𝑥) = 1}
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IHIP Example

Consider a cyclic group g, 𝔾 , define the language 𝐿 of group element with 
most significant bit of the discrete logarithm equal to 1:

𝐿 = 𝑥 ∈ 𝔾 𝑚𝑠𝑏 𝐷𝐿𝑔(𝑥) = 1}

Instance-Hiding Interactive Proofs for 𝐿

P V(x)
𝑟 ←  ℤ|𝔾|

𝑥′ ← 𝑥 ∙ 𝑔𝑟𝑥′

Find 𝑧′ s.t. 𝑔𝑧′
= 𝑥′ 𝑧′

Completeness and Soundness: (𝑧′ − 𝑟) is NP witness for 𝑥
Instance-hiding: 𝑥′ follows uniform distribution over 𝔾, independent of 𝑥

Check  x= 𝑔𝑧′−𝑟  and 𝑚𝑠𝑏 𝑧′ − 𝑟 = 1



Instance-hiding Interactive Proofs:

Definition [BFS90] ۦ𝑃, ۧ𝑉  is instance-hiding IP for 𝐿: 
 

𝑃∗(|𝑥|) 𝑉(𝑥)

…

Accept/Reject

• 𝝐-Instance-Hiding: for any 𝑃∗, ∃ 𝑆𝑖𝑚𝑃∗   

• Completeness/Soundness: 
• 𝑥 ∈ 𝐿, 𝑃 makes 𝑉 accept w.h.p
• 𝑥 ∉ 𝐿, NO 𝑷∗ makes 𝑉 accept w.h.p

𝑆𝑖𝑚𝑃∗(|𝑥|) ≈𝜖

• 𝝐-IHIP= 𝐿 𝐿 ℎ𝑎𝑠 𝝐−instance−hiding IP}

• SimP is efficient: simulatable IHIP.



Zero-Knowledge Proofs [GMR85]

𝑃(|𝑥|) 𝑉(𝑥)

…

𝑆𝑖𝑚𝑃∗(|𝑥|) ≈

Instance-Hiding [BFS90]: 
∀𝑃∗, ∃ 𝑆𝑖𝑚𝑃∗ ,  ∀𝑥:

𝑆𝑖𝑚𝑃∗ 𝑥 ≈ 𝑉𝑖𝑒𝑤𝑝∗(𝑃, 𝑉(𝑥)) 

  

≈ 𝑆𝑖𝑚𝑉∗(𝑥, 1{𝑥 ∈ 𝐿? })

Zero-Knowledge [GMR85]: 
∀𝑉∗, ∃ PPT 𝑆𝑖𝑚𝑉∗ , ∀𝑥:

𝑆𝑖𝑚𝑉∗ 𝑥, 1{𝑥 ∈ 𝐿? } ≈ 𝑉𝑖𝑒𝑤𝑉∗(𝑃, 𝑉(𝑥)) 
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Natural Questions

• The Power of IHIP
• Can NP-complete problem have IHIP?

• Relationship between IHIP and cryptography primitives?

• Relationship between IHIP and SZK?

• Closure properties of IHIP

• Complete Problems
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Upperbound

Theorem [Abadi-Feigenbaum-Kilian90] 
 Perfect-instance-hiding IHIP ⊆ NP/Poly ∩ coNP/Poly

Theorem [This Work]  
   𝜀-IHIP ⊆ NP/Poly ∩ coNP/Poly         𝜀 <

1

32

Theorem [This Work]  
   𝜀-simulatable IHIP ⊆ AM ∩ coAM             negligible 𝜀

Theorem [Fortnow87]  
   SZK ⊆ AM ∩ coAM



Bridge Heuristica, Pessiland and Minicrypt 

Theorem [This Work]  
If ∃ 𝐿 that is average-case hard, and has constant-round IHIP protocol, then there exist 
infinitely-often non-uniform one-way functions (OWF*). 



Bridge Heuristica, Pessiland and Minicrypt 

Theorem [This Work]  
If ∃ 𝐿 that is average-case hard, and has constant-round IHIP protocol, then there exist 
infinitely-often non-uniform one-way functions (OWF*). 

Theorem [This Work]  
If ∃ 𝐿 that is worst-case hard, and has Simulatable-IHIP protocol, then there exist one-
way functions (OWF). 



IHIP/SZK/SRE

IHIP/Simulatable-IHIP SZK/SRE

Avg-Hard + constant-round IHIP ⇒ io-OWF
[Ostrovsky91]: 

Avg-Hard + SZK ⇒ io-OWF

Worst-Hard + Simulatable-IHIP ⇒ OWF
[Applebaum-Raykov16]: 

Worst-Hard + SRE ⇒ io-OWF

Simulatable-IHIP ⊆ IHIP [Applebaum14]:
SRE⊆ SZK

Simulatable-IHIP ⊆ AM∩ coAM
IHIP ⊆ AM/Poly∩ coAM/Poly

[Fortnow87]:
SZK ⊆ AM∩ coAM

SRE = Statistical Randomized Encodings [Ishai-Kushilevitz00], [Applebaum-Ishai-Kushilevitz04]
IHIP is also connected to interactive version of randomized encoding [Applebaum-Ishai-Kushilevitz10]
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Oracle Separation

Given The Similarity between SZK and IHIP:
What’s the relationship between SZK and IHIP?

Oracle Separation of IHIP from SZK:

Theorem [This work]
There exists an oracle 𝒪 with respect to which there exists a 
language that has a IHIP but not a SZK. In short:

𝐼𝐻𝐼𝑃𝒪 ⊈  𝑆𝑍𝐾𝒪



Closure Property

Theorem [This work]:
 𝐿 has IHIP,   and 𝑔: {0,1}𝑘 → 0,1  is a poly-size circuit, then 𝐿′ = 𝑔 ∘ 𝐿⊗𝑘  also 
has IHIP.

(𝑥1, … , 𝑥𝑚) in L′?
𝑔

𝑥1 ∈ 𝐿?
…

output

𝑥2 ∈ 𝐿? 𝑥3 ∈ 𝐿? 𝑥𝑘 ∈ 𝐿?



Closure Property

Theorem [This work]:
 𝐿 has IHIP,   and 𝑔: {0,1}𝑘 → 0,1  is a poly-size circuit, then 𝐿′ = 𝑔 ∘ 𝐿⊗𝑘  also 
has IHIP.

Theorem [Sahai-Vadhan97]:
 𝐿 has SZK,   and 𝑔: {0,1}𝑘 → 0,1  is a poly-size formula, then 𝐿′ = 𝑔 ∘ 𝐿⊗𝑘  also 
has SZK.



Main Results Overview

• IHIP ⊆ NP/Poly ∩ coNP/Poly
• simulatable IHIP ⊆ AM ∩ coAM

• Avg-Hard + constant-round IHIP ⇒ io-OWF
• Worst-Hard + Simulatable-IHIP ⇒ OWF

• ∃𝒪, 𝐼𝐻𝐼𝑃𝒪 ⊈  𝑆𝑍𝐾𝒪

• IHIP is closed under polynomial circuit

Upper Bound

Hardness 
Implication

Oracle 
Separation

Closure 
Property



Proof in the talk 

• IHIP ⊆ NP/Poly ∩ coNP/Poly
• simulatable IHIP ⊆ AM ∩ coAM

• Avg-Hard + constant-round IHIP ⇒ io-OWF
• Worst-Hard + Simulatable-IHIP ⇒ OWF

• ∃𝒪, 𝐼𝐻𝐼𝑃𝒪 ⊈  𝑆𝑍𝐾𝒪

• IHIP is closed under polynomial circuit

Upper Bound

Hardness 
Implication

Oracle 
Separation

Closure 
Property



Bird’s Eyes’ View

• Avg-Hard + 1-round Simulatable-IHIP ⇒ distributionally OWF



Def (Distributionally One-Way Function [Impagliazzo-Luby89])

𝑋 𝑓(𝑋)

easy

HARD to invert uniformly 

Avg-Hard 1-round Simulatable IHIP ⇒ OWF 

Def (Hardness on average)
𝐿 is Avg-hard if there exists an efficiently sampleable distribution 𝑋 such that for any PPT 
A, ∃ 𝑛𝑒𝑔𝑙:

𝑃𝑟𝑥←𝑋 𝐴 𝑥 = 𝐿 𝑥 ≤
1

2
+ 𝑛𝑒𝑔𝑙(|𝑥|) 

Uniform for this talk



Avg-Hard 1-round Simulatable IHIP ⇒ Distributionally OWF 

𝑃(|𝑥|) 𝑉(𝑥; 𝑟)
𝑢1

𝑦1

V’s View: (𝑥, 𝑟, 𝑢1, 𝑦1)

V
Simulatable IHIP for L

P 𝑆𝑖𝑚𝑃
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Avg-Hard 1-round Simulatable IHIP ⇒ Distributionally OWF 

𝑃(|𝑥|) 𝑉(𝑥; 𝑟)
𝑢1

𝑦1

V’s View: (𝑥, 𝑟, 𝑢1, 𝑦1)

𝑆𝑖𝑚𝑃
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Avg-Hard 1-round Simulatable IHIP ⇒ Distributionally OWF 

𝑃(|𝑥|) 𝑉(𝑥; 𝑟)
𝑢1

𝑦1

Distributional OWF Candidate:

𝐹1 𝑥, 𝑟 = (𝑥, 𝑉1(𝑥, 𝑟))

𝑢1 ← 𝑉1(𝑥, 𝑟)

𝑢1



Avg-Hard 1-round Simulatable IHIP ⇒ Distributionally OWF 

Suppose 𝐹1 is not distributionally one-way
∃ 𝑃𝑃𝑇 Inverter:

Inverter(𝑥, 𝑢1) (𝑥, 𝑟)
Uniform Random seed consistent 
with (𝑥, 𝑢1, 𝑦1) 

𝑃(|𝑥|) 𝑉(𝑥; 𝑟)
𝑢1

𝑦1

Distributional OWF Candidate:

𝐹1 𝑥, 𝑟 = (𝑥, 𝑉1(𝑥, 𝑟))

𝑢1 ← 𝑉1(𝑥, 𝑟)

𝑢1
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𝑆𝑖𝑚𝑃 Inverter(𝑥, 𝑢1) (𝑥, 𝑟)
Uniform Random seed consistent 
with (𝑥, 𝑢1, 𝑦1) 
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𝑥, 𝑟
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𝑥, 𝑟

V’s View



Avg-Hard 1-round Simulatable IHIP ⇒ Distributionally OWF 

𝑃(|𝑥|) 𝑉(𝑥; 𝑟)
𝑢1

𝑦1

Distributional OWF Candidate:

𝐹1 𝑥, 𝑟 = (𝑥, 𝑉1(𝑥, 𝑟))

𝑢1 ← 𝑉1(𝑥, 𝑟)

𝑢1

𝑢1, 𝑦1
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𝑥

Uniform Random seed consistent 
with (𝑥, 𝑢1, 𝑦1) 
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V’s View

Decide language efficiently!



Avg-Hard 1-round Simulatable IHIP ⇒ Distributionally OWF 

𝑢1, 𝑦1

𝑆𝑖𝑚𝑃 Inverter
𝑥

Uniform Random seed consistent 
with (𝑥, 𝑢1, 𝑦1) 

𝑢1

𝑥, 𝑟

V’s View

Decide language efficiently!

Contradict Assumption 
that L is hard on average

Distributional OWF Candidate:

𝐹1 𝑥, 𝑟 = (𝑥, 𝑉1(𝑥, 𝑟))

Suppose 𝐹1 is not 
distributionally one-way



Avg-Hard 2-round Simulatable IHIP ⇒ Distributionally OWF 

𝑃(|𝑥|) 𝑉(𝑥; 𝑟)
𝑢1

𝑦1

Distributional OWF Candidate:

𝐹1 𝑥, 𝑟 = (𝑥, Υ1(𝑥, 𝑟))

𝑢1 ← Υ1(𝑥, 𝑟)

𝑢2

𝑦2

First-round 
message

𝑆𝑖𝑚𝑃 Inverter
𝑥

𝑢1

𝑥, 𝑟𝑢1, 𝑦1

𝑟 consistent with only the 
first-round interaction



Avg-Hard 2-round Simulatable IHIP ⇒ Distributionally OWF 

𝑃(|𝑥|) 𝑉(𝑥; 𝑟)
𝑢1

𝑦1

Distributional OWF Candidate:

𝐹1 𝑥, 𝑟 = (𝑥, Υ1(𝑥, 𝑟))

𝑢1 ← Υ1(𝑥, 𝑟)

𝑢2

𝑦2

First-round 
message

𝑆𝑖𝑚𝑃 Inverter
𝑥

𝑢1

𝑥, 𝑟𝑢1, 𝑦1

𝑟 consistent with only the 
first-round interaction

NOT V’s View



Use adversary for construction [Komargodski-Yogev18, Rothblum-Vasudevan22]

𝐹1

Avg-Hard 2-round Simulatable IHIP ⇒ Distributionally OWF 

Inverter1
Not d-OWF

d-OWF !

𝐹2

Inverter1



Use adversary for construction [Komargodski-Yogev18, Rothblum-Vasudevan22]

𝐹1

Avg-Hard 2-round Simulatable IHIP ⇒ Distributionally OWF 

Inverter1
Not d-OWF

d-OWF !

𝐹2

Inverter1

Not d-OWF

Inverter2

d-OWF !

Decide language!



Main Results

• 𝜀-IHIP ⊆ NP/Poly ∩ coNP/Poly
• 𝜀-simulatable IHIP ⊆ AM ∩ coAM

• Avg-Hard + constant-round IHIP ⇒ OWF*
• Worst-Hard + Simulatable-IHIP ⇒ OWF

• ∃𝒪, 𝐼𝐻𝐼𝑃𝒪 ⊈  𝑆𝑍𝐾𝒪

• IHIP is closed under polynomial circuit

Upper Bound

Hardness 
Implication

Oracle 
Separation

Closure 
Property



Open Problems

• Are there natural complete problems for the class of 
languages that have instance-hiding proofs?

• Are there other cryptographic consequences of the 
existence of hard problems in this class, beyond one-way 
functions?

• What is power of computational instance-hiding 
interactive proof?
• What is the correct definition?
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