
/

Jan Bobolz

Pooya Farshim

Markulf Kohlweiss

Akira Takahashi

Slides in courtesy of Jan Bobolz ia.cr/2024/818TCC 2024

The Brave New World

of Global Generic Groups

and UC-Secure Zero-Overhead

SNARKs

https://ia.cr/2024/818

zkSNARKs𝖯𝗋𝗈𝗏𝖾(𝑥, 𝑤)
→ 𝜋

Zero-Knowledge

𝜋 does not reveal

any information about 𝑤.

𝖵𝖾𝗋𝗂𝖿𝗒(𝑥, 𝜋) → 𝑏

Proof of knowledge

In order to compute valid

𝜋, prover must know 𝑤.

Efficient Extractor

ℰ(𝑥, 𝜋) → 𝑤
Efficient Simulator

𝒮(𝑥) → 𝜋

Malicious prover

can run 𝒮

to compute 𝜋

without knowing 𝑤

Malicious verifier

can run ℰ

to learn

full information on 𝑤

Simulator and extractor need a

superpower
that malicious provers/verifiers don’t have.

2

𝖯𝗋𝗈𝗏𝖾(𝑥, 𝑤)
→ 𝜋

𝖵𝖾𝗋𝗂𝖿𝗒(𝑥, 𝜋) → 𝑏

Simulation Extractability

In order to compute valid 𝜋,

prover must know 𝑤, even after

observing simulated proofs

Efficient Extractor

ℰ(𝑥′, 𝜋′) → 𝑤

Efficient Simulator

𝒮(𝑥) → 𝜋

zkSNARKs

𝒜𝒮 𝑥′, 𝜋′

Sim-Ext is often a precondition of

UC-secure NIZK

• Generic compilers turning NIZK with

standalone proofs of security into UC-

secure ones: [KZM+15] [ARS20] [BS21]

[LR22] [CSW22] [AGRS23] [GKO+23]

• Incur overhead in proof sizes and/or

prover time!

• Exception: [CF24] for hash-based,

already-straightline-extractable SNARKs

(previous talk)
Efficient and Straightline

Extractor

ℰ(𝑥′, 𝜋′) → 𝑤

Efficient Simulator

𝒮(𝑥) → 𝜋

UC-Secure zkSNARKs

𝒜𝒮 𝑥′, 𝜋′

Can we design a group-based idealized model allowing for

UC-secure SNARKs without overhead?

Let’s spin the PoK wheel

Observe
ROM CRS

Trapdoor

The UC RO hybrid model

Environment

Adversary

Environment

Ideal Adversary

Simulator

ℱNIZK

6

eval(𝑥):

If 𝑄(𝑥) =⊥:

𝑄 𝑥 ← {0,1}𝑛

return 𝑄(𝑥)

Is this a good model?

Prover Verifier

Random oracle

Real world Ideal world

𝒪
𝒪

Environment

Random Oracle

Adversary

Is this a good model?

Random Oracle

Adversary

RO(123) = a03ab19b866fc RO(123) = 7106b623725f

What’s RO(123) ?What’s RO(123) ?

Let’s have two sessions of the protocol

7

𝒪 𝒪
Does not model sharing of 𝒪

with other protocols.

Superpower 1:
Global Random Oracles

From

Practical UC security

with a global random oracle
Ran Canetti, Abhishek Jain, Alessandra Scafuro

CCS 2014

The Wonderful World

of Global Random Oracles
Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven

Eurocrypt 2018

Environment

Global Random Oracle

Adversary Adversary

RO(123) = a03ab19b866fc

What’s RO(123) ?What’s RO(123) ?

The better model: Global ROM

9

All protocols share the same

idealized resource! Observability via domain separation:

Party in session 𝑠′queries RO 𝑠, 123
→ observable to everyone

Let’s spin the PoK wheel

Observe
GGM

10

The generic group model

• Goal: model “idealized” group with no “extra” structure (just

group operations[, pairing]).

• Similar to random oracles, which model “idealized” hash function

with no structure.

• Idea: group elements get random encoding

(= no structure), but oracle enables group ops.

• Corollary: oracle sees all group ops.

• PoK Extractor recovers witness from observed group ops

11

The generic group model

12

private random injective 𝜏: 𝔾 → 𝑆
public generator 𝑔

op(𝑔1, 𝑔2):

return 𝜏(𝜏−1(𝑔1) + 𝜏−1(𝑔2))𝒪 =

Environment

Global Generic Group Oracle

Adversary Adversary

What’s op 𝑔1, 𝑔2 ?

First Step: “Strict” Global GGM in UC

13

All protocols share the same

idealized group!

What’s op 𝑔1, 𝑔2 ?

𝑔3⃪ op 𝑔1, 𝑔2

But PoK extractor can’t observe ops!

Can we design observable GGG?

Example: Groth16 PoK in GGM

𝐴 = ∑
𝑖=0

𝑚

𝑎𝑖[𝑢𝑖] + [𝛼] + 𝑟[𝛿]

𝐵 = ∑
𝑖=0

𝑚

𝑎𝑖 𝑣𝑖 + [𝛽] + 𝑟′[𝛿]

𝐶 = ⋯

CRS: group elements [𝑢𝑖], 𝛼 , 𝛽 , [𝛿]
Witness: wire values 𝑎𝑖 ∈ ℤ𝑝

Extractor

14

[Check some pairing

equations on A,B,C]

Prover
Verifier

Design challenges

• Requirements:

• Simulator/Extractor must see group operations

made by environment

• Required to extract

• Environment must not see what group

operations simulator makes

• Would immediately reveal that we simulate

• First glance: Impossible

• Do partial observability via domain separation

Design challenges

• Requirements:

• Simulator/Extractor must see group operations

made by environment

• Required to extract

• Environment must not see what group

operations simulator makes

• Would immediately reveal that we simulate

• First glance: Impossible

• Do partial observability via domain separation

Observation rules (intuition)

• Every session 𝑠 gets its

own group generator ℎ𝑠

• Legal/unobservable:

Session 𝑠 operates on ℎ𝑠

• Illegal/observable:

Session 𝑠′ operates on ℎ𝑠

}relevant

G-oGG: Observable Global Generic Group

(Simplified)

17

Example ops with caller session 𝑠

-17𝑋𝑠op𝑋𝑠′ observable

-(17𝑋𝑠 + 3𝑋𝑠′)op𝑋𝑠 observable

-17𝑋𝑠op4𝑋𝑠 unobservable

-(17𝑋𝑠 + 0𝑋𝑠′)op𝑋𝑠

unobservable

private random inj. 𝜏: 𝔾 → 𝑆
public rnd generator ℎ𝑠 for each session 𝑠
public poly variable 𝑋𝑠 for gen of each session 𝑠
private representation 𝑅[𝑒] for each 𝑒 ∈ 𝑆, initially 𝑅[ℎ𝑠]
= 𝑋𝑠

op(𝑔1, 𝑔2):

𝑠 = caller session
𝑟𝑒𝑠𝑢𝑙𝑡 = 𝜏(𝜏−1(𝑔1) + 𝜏−1(𝑔2))
𝑅[𝑟𝑒𝑠𝑢𝑙𝑡] = 𝑅[𝑔1] + 𝑅[𝑔2] //bookkeep sum of
polynomials

if 𝑅[𝑟𝑒𝑠𝑢𝑙𝑡] ∉ ℤ𝑝[𝑋𝑠]: //invalid in caller session

 Add (𝑔1, 𝑔2, 𝑟𝑒𝑠𝑢𝑙𝑡) to public observation list

return 𝑟𝑒𝑠𝑢𝑙𝑡

Intuition

Cross-session operations

are observable

Actual G-oGG

- Multiple generators per session

- Oblivious Sampling

- Pairing operations

18

Summary: ROM vs GGM in UC

Local ROM: bad model
Both sessions use SHA-3, why am I getting different hashes?

Local GGM: bad model
Both sessions use BLS12-381, why are elements incompatible?

Global ROM: lose observability. Remodel.
Environment/other protocols can access global ROM

without going through the simulator.

Global GGM: lose observability. Remodel.
Environment/other protocols can access global GGM

without going through the simulator.

Domain separation:

RO(𝑠, 𝑥) is “valid/in-session”

iff caller is in session 𝑠.
Invalid queries are observable.

ZK: honest parties only make “valid” unobservable queries within their domain.

PoK: when environment / protocol in session 𝑠′ ≠ 𝑠 queries related to domain 𝑠, it’s observable.

Domain separation:

op(𝑔1, 𝑔2) is “valid/in-session” iff 𝑔1, 𝑔2 are

based on caller session’s generator ℎ𝑠

19

Groth16 proof challenges
Extraction Simulation

Challenge

Cannot observe everything

(only my session’s generator(s))

Challenge

Prover/Simulator GGM ops must

not be observable

 Solution

Argue that valid proofs cannot

contain foreign generators

 Solution

Prover/simulator only operates on

CRS elements

Idea

Extract dlog representation of

proof elements

Idea

Use CRS trapdoor to generate

proofs without witness

20

Takeaways

• New design of global generic groups in UC

• To prove SNARKs UC-secure in GGGM,

we need to explicitly model observability

• Not trivial!

• Unlike UC-AGM [ABK+21], we introduce a

global GG functionality while the original

UC(GS) framework remains unchanged

• Case study: Get Groth16 SNARK in UC

(against static corruptions) without

modifications

21

Algebraic Adversaries in the Universal Composability Framework. Michel Abdalla, Manuel

Barbosa, Jonathan Katz, Julian Loss, and Jiayu Xu. Asiacrypt’21

	Slide 1
	Slide 2: zkSNARKs
	Slide 3
	Slide 4
	Slide 5: Let’s spin the PoK wheel 🎰
	Slide 6: The UC RO hybrid model
	Slide 7
	Slide 8: Superpower 1: Global Random Oracles
	Slide 9: The better model: Global ROM
	Slide 10: Let’s spin the PoK wheel 🎰
	Slide 11: The generic group model
	Slide 12: The generic group model
	Slide 13: First Step: “Strict” Global GGM in UC
	Slide 14: Example: Groth16 PoK in GGM
	Slide 15: Design challenges
	Slide 16: Design challenges
	Slide 17: G-oGG: Observable Global Generic Group (Simplified)
	Slide 18: Actual G-oGG
	Slide 19: Summary: ROM vs GGM in UC
	Slide 20: Groth16 proof challenges
	Slide 21: Takeaways

