The Power of NAPSs

Compressing OR-Proofs via Collision-Resistant Hashing
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Disjunctive Statements

Is x1 € L or xp € L?

-
Aih

Prover Verifier

Prove that one out of several statements is true
Specific enough to be solved more efficiently

‘ General enough to be useful (ring signatures, electronic voting, ..)
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- How Much Communication Needed?

From structured hardness assumptions

Small communication complexity, but stronger assumptions

Via MPC-in-the-head

Unstructured assumptions, but large communication complexity

O

(O  Via PCPs/IOPs and collision-resistant hashing

Complex, heavy machinery with polylog communication
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Our Contribution

2.-Protocols with strong HVZK 2.-Protocol
N ﬁ

collision-resistant hashing for disjunctive statements

™~ Logarithmic communication overhead

New Notion of non-adaptively programmable functions (NAPs)

Rejection sampling can be explained
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“ Need to program seeds
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Non-Adaptively Programmable Functions

NAPS

Privately programmable PRFs are hard
Require 10 or FHE

Know programming location during key generation

Massively simplifies the problem

O

O Can be constructed from one-way functions

Via distributed point functions (and explainable samplers)
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