The Power of NAPSs

Compressing OR-Proofs via Collision-Resistant Hashing

Katharina Boudgoust & Mark Simkin

2 -Protocols

2 -Protocols

X € L?

2 -Protocols

2 -Protocols

_—) Verifier

0/1

2 -Protocols

2 -Protocols

Hownesk

Q e
AlA
Z o
Prover —_—) Verifier

‘ Completeness

N/
2 -Protocols “
o

Howhest Accepting

e\

N
Q e
Ah
L oA
Prover —_— Verifier

l

]

‘ Completeness

2 -Protocols

_—m _—m
e e’

-— —
Z Z’

—nm—— —_—

Completeness

Special soundness

2 -Protocols

Extractor
a a
—_—m —_—m
e e’

— -—
Z Z’
—_—m _—
W

Completeness

Special soundness

2 -Protocols

Accepting
Ng Extractor

a a

———— ——————_ ———— ——————_
e e’

— —
Z z’

————— —_—

W
Completeness

Special soundness

2 -Protocols

Accepting
g Extractor

a a

— ——
e e’

— —
Z z’

— —

Completeness

Special soundness

2 -Protocols

Simulator

Completeness
Special soundness

‘ Honest verifier zero-knowledge

2 -Protocols

e —p Simulator — (a, e, z)

Completeness
Special soundness

‘ Honest verifier zero-knowledge

2 -Protocols

e —» Simulator

Indistinguishable from real execution

Completeness
Special soundness

‘ Honest verifier zero-knowledge

2 -Protocols

e —» Simulator

Indistinguishable from real execution

Completeness
Special soundness

‘ Strong honest verifier zero-knowledge

2 -Protocols

DPeberminiskic

e,z —» Simulator

Indistinguishable from real execution

Completeness
Special soundness

‘ Strong honest verifier zero-knowledge

Disjunctive Statements

Is x1 € L or xp € L?

-
Aih

Prover Verifier

2.

Disjunctive Statements

Is x1 € L or xp € L?

-
Aih

Prover Verifier

‘ Prove that one out of several statements is true

Disjunctive Statements

Is x1 € L or xp € L?

-
Aih

Prover Verifier

‘ Prove that one out of several statements is true

Specific enough to be solved more efficiently

Disjunctive Statements

Is x1 € L or xp € L?

-
Aih

Prover Verifier

Prove that one out of several statements is true
Specific enough to be solved more efficiently

‘ General enough to be useful (ring signatures, electronic voting, ..)

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

2 -Protocol — 2-Protocol

for disjunctive statements

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

2 -Protocol — 2-Protocol

for disjunctive statements

“~Linear communication overhead

- How Much Communication Needed?

- How Much Communication Needed?

From structured hardness assumptions

Small communication complexity, but stronger assumptions

- How Much Communication Needed?

From structured hardness assumptions

Small communication complexity, but stronger assumptions

Via MPC-in-the-head

Unstructured assumptions, but large communication complexity

O

- How Much Communication Needed?

From structured hardness assumptions

Small communication complexity, but stronger assumptions

Via MPC-in-the-head

Unstructured assumptions, but large communication complexity

O

(O Via PCPs/IOPs and collision-resistant hashing

Complex, heavy machinery with polylog communication

Our Contribution

2.-Protocols with strong HVZK 2.-Protocol
N ﬁ

collision-resistant hashing for disjunctive statements

Logari&kmw communicakion overhead

Our Contribution

2.-Protocols with strong HVZK 2.-Protocol
N ﬁ

collision-resistant hashing for disjunctive statements

™~ Logarithmic communication overhead

New Notion of non-adaptively programmable functions (NAPs)

Our Contribution

2.-Protocols with strong HVZK 2.-Protocol
N ﬁ

collision-resistant hashing for disjunctive statements

™~ Logarithmic communication overhead

New Notion of non-adaptively programmable functions (NAPs)

Rejection sampling can be explained

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

-

S

Prover Verifier

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

-

S

Prover Verifier

o sk e

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

-

S

Prover Verifier

o sk e

: 4 a2, €2, z
sinmulated me (a2, €2, z2)

(an, en, Zn)

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

a1)] coe 9 an

-

S

Prover Verifier

hone sk el

- 4 a2, €2, Z
sinmulated me (a2, €2, z2)

(an, en, Zn)

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

a1)] coe 9 an

Prover Verifier

hoesk m——pp

: 4 ar, €1, Z
sinmulabted (a2, e2, z2)

(an, en, Zn)

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

dl, .., dn

Prover Verifier

hoesk m——pp

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

dl, .., dn

Prover Verifier

hoesk m——pp

honest mem g

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

Prover Z1, e, Zn Verifier

hoesk m——pp

howneskt me

Constructing OR-Proofs

[Cramer, Damgard, Schoenmakers 1994]

af y eeey dn
e
-—e
€1 y eeey €n
L A S
Prover Z1, e, Zn Verifier
(a1, er, z1)
. | a e y4) ’
(an, €n, Zn) (an, €n, Zn)

honest mmp

[Cramer, Damgard, Schoenmakers 1994]

@
Constructing OR-Proofs ‘
4

Al,y ., dn
e
——————————————————————
€1, .., €En
—>
Prover Z1, e, Zn Verifier
Checle each Er&mscripﬁ
(a1, e1, z1)
. 1 a2, €2, Z y =1
simulabed m_y (32 &2 22 .
(an, €n,) (an, €n, Zn)

hownesk mem.

Constructing OR-Proofs

Our Construction

a1, coe y dn
e
—
61, coe €n
_ .
Prover Z1, e, Zn Verifier
al
(az, €2, Z2) (81, e1, Z1)
(an, €n, Zn) (an, €n, Zn)

Constructing OR-Proofs

Our Construction

2.

e
——m——
€1, .., €En
-_—
Prover Z1, ., Zn
ar

- Jusk send hash

Verifier

(a1, e1, z1)

(an, en, Zn)

@
%

Constructing OR-Proofs

- Jusk send hash

Our Construction

Prover Z1, e, Zn Verifier
—— ol
F?seuc{oramdom (a1, €1, z1)

(an, en, Zn)

@
%

Our Construction

@
Constructing OR-Proofs ‘
8.

- Jusk send hash

Prover Verifier
N TSend seeds
s Picle
F?seuc{oramdom (a1, €1, z1)

(an, €n, Zn)

Our Construction

@
Constructing OR-Proofs ‘
9.

- Jusk send hash

Prover Verifier
N TSend seeds
s Picle
F?seuc{oramdom (a1, €1, z1)

(an, en, Zn)

“ Need to program seeds

NAPS

@
Non-Adaptively Programmable Functions ‘

@
Non-Adaptively Programmable Functions

NAPS

Privately programmable PRFs are hard
Require 10 or FHE

NAPS

@
Non-Adaptively Programmable Functions ‘

Privately programmable PRFs are hard
Require 10 or FHE

Know programming location during key generation

Massively simplifies the problem

O

@
Non-Adaptively Programmable Functions

NAPS

Privately programmable PRFs are hard
Require 10 or FHE

Know programming location during key generation

Massively simplifies the problem

O

O Can be constructed from one-way functions

Via distributed point functions

@
Non-Adaptively Programmable Functions

NAPS

Privately programmable PRFs are hard
Require 10 or FHE

Know programming location during key generation

Massively simplifies the problem

O

O Can be constructed from one-way functions

Via distributed point functions (and explainable samplers)

‘ Questions?

1a.cr/2024/1482

http://ia.cr/2024/1482

