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Limitations on the communication complexity of interactive proofs no longer hold.

Further relaxation: Expected-time 
computational soundness  

against adversaries with bounded 
expected running time .

ϵ⋆
𝖠𝖱𝖦

t⋆
𝖠𝖱𝖦



Why study succinct interactive arguments?

4



Why study succinct interactive arguments?

4

A fundamental primitive known to exist assuming only simple cryptography (e.g. collision-resistant hash functions).



Why study succinct interactive arguments?

4

A fundamental primitive known to exist assuming only simple cryptography (e.g. collision-resistant hash functions).

The savings in communication ( ) or even verification ( ) are remarkably useful.𝖼𝖼 ≪ |w | 𝗍𝗂𝗆𝖾(V) ≪ |w |



Why study succinct interactive arguments?

4

A fundamental primitive known to exist assuming only simple cryptography (e.g. collision-resistant hash functions).

Succinct arguments play a key role in notable applications 

(e.g., zero-knowledge with non-black-box simulation, malicious MPC, ...).

The savings in communication ( ) or even verification ( ) are remarkably useful.𝖼𝖼 ≪ |w | 𝗍𝗂𝗆𝖾(V) ≪ |w |



Why study succinct interactive arguments?

4

A fundamental primitive known to exist assuming only simple cryptography (e.g. collision-resistant hash functions).

Succinct arguments play a key role in notable applications 

(e.g., zero-knowledge with non-black-box simulation, malicious MPC, ...).

They also serve as a stepping stone towards succinct non-interactive arguments (SNARGs).

The savings in communication ( ) or even verification ( ) are remarkably useful.𝖼𝖼 ≪ |w | 𝗍𝗂𝗆𝖾(V) ≪ |w |



Why study succinct interactive arguments?

4

A fundamental primitive known to exist assuming only simple cryptography (e.g. collision-resistant hash functions).

Succinct arguments play a key role in notable applications 

(e.g., zero-knowledge with non-black-box simulation, malicious MPC, ...).

They also serve as a stepping stone towards succinct non-interactive arguments (SNARGs).

Recall: SNARGs for NP cannot be realized via a black-box reduction to a falsifiable assumption [GW11].
Often (though not always): SNARG = succinct interactive argument + non-falsifiable assumption / idealized model

The savings in communication ( ) or even verification ( ) are remarkably useful.𝖼𝖼 ≪ |w | 𝗍𝗂𝗆𝖾(V) ≪ |w |



Why study succinct interactive arguments?

4

A fundamental primitive known to exist assuming only simple cryptography (e.g. collision-resistant hash functions).

Succinct arguments play a key role in notable applications 

(e.g., zero-knowledge with non-black-box simulation, malicious MPC, ...).

They also serve as a stepping stone towards succinct non-interactive arguments (SNARGs).

Recall: SNARGs for NP cannot be realized via a black-box reduction to a falsifiable assumption [GW11].
Often (though not always): SNARG = succinct interactive argument + non-falsifiable assumption / idealized model

The savings in communication ( ) or even verification ( ) are remarkably useful.𝖼𝖼 ≪ |w | 𝗍𝗂𝗆𝖾(V) ≪ |w |

Kilian's protocol, the first and simplest succinct argument



Kilian’s protocol

5

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

Building block #2: vector commitment scheme (VC)

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

Commit phase

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Commit phase
Commit

cm

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Open phase

Commit phase
Commit

cm

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Query set Q ⊆ [l]
Open phase

If  then .𝖺𝗇𝗌 := m[Q] 𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1

𝖺𝗇𝗌

Commit phase
Commit

cm

Open from cm 𝗉𝖿

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Query set Q ⊆ [l]
Open phase

If  then .𝖺𝗇𝗌 := m[Q] 𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1

𝖺𝗇𝗌

Commit phase

(Expected-time) position binding

Commit
cm

Open from cm 𝗉𝖿

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

[Kilian92]



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Query set Q ⊆ [l]
Open phase

If  then .𝖺𝗇𝗌 := m[Q] 𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1

𝖺𝗇𝗌

Commit phase

(𝖼𝗆, Q, Q′ , 𝖺𝗇𝗌, 𝖺𝗇𝗌′ , 𝗉𝖿, 𝗉𝖿′ ) Adv
(Expected-time) position binding

Pr

𝖢𝗁𝖾𝖼𝗄(cm, Q′ , 𝖺𝗇𝗌′ , 𝗉𝖿′ ) = 1

≤ ϵ𝖵𝖢

Commit
cm

Open from cm 𝗉𝖿

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

[Kilian92]

𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Query set Q ⊆ [l]
Open phase

If  then .𝖺𝗇𝗌 := m[Q] 𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1

𝖺𝗇𝗌

Commit phase

(𝖼𝗆, Q, Q′ , 𝖺𝗇𝗌, 𝖺𝗇𝗌′ , 𝗉𝖿, 𝗉𝖿′ ) Adv
(Expected-time) position binding

Pr

𝖢𝗁𝖾𝖼𝗄(cm, Q′ , 𝖺𝗇𝗌′ , 𝗉𝖿′ ) = 1

≤ ϵ𝖵𝖢

Commit
cm

Open from cm 𝗉𝖿

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

The protocol:

[Kilian92]

𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Query set Q ⊆ [l]
Open phase

If  then .𝖺𝗇𝗌 := m[Q] 𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1

𝖺𝗇𝗌

Commit phase

(𝖼𝗆, Q, Q′ , 𝖺𝗇𝗌, 𝖺𝗇𝗌′ , 𝗉𝖿, 𝗉𝖿′ ) Adv
(Expected-time) position binding

Pr

𝖢𝗁𝖾𝖼𝗄(cm, Q′ , 𝖺𝗇𝗌′ , 𝗉𝖿′ ) = 1

≤ ϵ𝖵𝖢

Commit
cm

Open from cm 𝗉𝖿

Prover P

P

Verifier V

V

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

The protocol:

[Kilian92]

𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Query set Q ⊆ [l]
Open phase

If  then .𝖺𝗇𝗌 := m[Q] 𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1

𝖺𝗇𝗌

Commit phase

(𝖼𝗆, Q, Q′ , 𝖺𝗇𝗌, 𝖺𝗇𝗌′ , 𝗉𝖿, 𝗉𝖿′ ) Adv
(Expected-time) position binding

Pr

𝖢𝗁𝖾𝖼𝗄(cm, Q′ , 𝖺𝗇𝗌′ , 𝗉𝖿′ ) = 1

≤ ϵ𝖵𝖢

Commit
cm

Open from cm 𝗉𝖿

cm := 𝖢𝗈𝗆𝗆𝗂𝗍(Π)
Prover P

P

Verifier V

V

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

The protocol:

[Kilian92]

𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Query set Q ⊆ [l]
Open phase

If  then .𝖺𝗇𝗌 := m[Q] 𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1

𝖺𝗇𝗌

Commit phase

(𝖼𝗆, Q, Q′ , 𝖺𝗇𝗌, 𝖺𝗇𝗌′ , 𝗉𝖿, 𝗉𝖿′ ) Adv
(Expected-time) position binding

Pr

𝖢𝗁𝖾𝖼𝗄(cm, Q′ , 𝖺𝗇𝗌′ , 𝗉𝖿′ ) = 1

≤ ϵ𝖵𝖢

Commit
cm

Open from cm 𝗉𝖿

cm := 𝖢𝗈𝗆𝗆𝗂𝗍(Π)

PCP verifier randomness ρ
Prover P

P

Verifier V

V

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

The protocol:

[Kilian92]

𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)

5

PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Query set Q ⊆ [l]
Open phase

If  then .𝖺𝗇𝗌 := m[Q] 𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1

𝖺𝗇𝗌

Commit phase

(𝖼𝗆, Q, Q′ , 𝖺𝗇𝗌, 𝖺𝗇𝗌′ , 𝗉𝖿, 𝗉𝖿′ ) Adv
(Expected-time) position binding

Pr

𝖢𝗁𝖾𝖼𝗄(cm, Q′ , 𝖺𝗇𝗌′ , 𝗉𝖿′ ) = 1

≤ ϵ𝖵𝖢

Commit
cm

Open from cm 𝗉𝖿

cm := 𝖢𝗈𝗆𝗆𝗂𝗍(Π)

PCP verifier randomness ρ

 from (Q, 𝖺𝗇𝗌, 𝗉𝖿) 𝖮𝗉𝖾𝗇

Prover P

P

Verifier V

V

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

The protocol:

[Kilian92]

𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1



Fundamental question: 
What is the security of Kilian’s protocol?



What is the security of Kilian’s protocol?

7

Prover P(x, w)

P

Verifier V(x)

V

: Commitment to a PCP string with Merkle treecm

: PCP verifier randomnessρ

:

Query set, answers, and their authentication paths
(Q, 𝖺𝗇𝗌, 𝗉𝖿)



What is the security of Kilian’s protocol?

7

Previously:

Prover P(x, w)

P

Verifier V(x)

V

: Commitment to a PCP string with Merkle treecm

: PCP verifier randomnessρ

:

Query set, answers, and their authentication paths
(Q, 𝖺𝗇𝗌, 𝗉𝖿)



What is the security of Kilian’s protocol?

7

Previously:

Prover P(x, w)

P

Verifier V(x)

V

: Commitment to a PCP string with Merkle treecm

: PCP verifier randomnessρ

:

Query set, answers, and their authentication paths
(Q, 𝖺𝗇𝗌, 𝗉𝖿)

• Folklore: well-understood, if  and  if negligible, then  is negligible.ϵ𝖯𝖢𝖯 ϵ𝖵𝖢 ϵ𝖠𝖱𝖦



What is the security of Kilian’s protocol?

7

Previously:

Prover P(x, w)

P

Verifier V(x)

V

: Commitment to a PCP string with Merkle treecm

: PCP verifier randomnessρ

:

Query set, answers, and their authentication paths
(Q, 𝖺𝗇𝗌, 𝗉𝖿)

• [Kilian92] gives an informal analysis. 
• Folklore: well-understood, if  and  if negligible, then  is negligible.ϵ𝖯𝖢𝖯 ϵ𝖵𝖢 ϵ𝖠𝖱𝖦



What is the security of Kilian’s protocol?

7

Previously:

Prover P(x, w)

P

Verifier V(x)

V

: Commitment to a PCP string with Merkle treecm

: PCP verifier randomnessρ

:

Query set, answers, and their authentication paths
(Q, 𝖺𝗇𝗌, 𝗉𝖿)

• [Kilian92] gives an informal analysis. 

• [BG08] proves security of Kilian’s protocol assuming the underlying PCP is non-adaptive and reverse-samplable.

• Folklore: well-understood, if  and  if negligible, then  is negligible.ϵ𝖯𝖢𝖯 ϵ𝖵𝖢 ϵ𝖠𝖱𝖦



What is the security of Kilian’s protocol?

7

Previously:

Prover P(x, w)

P

Verifier V(x)

V

: Commitment to a PCP string with Merkle treecm

: PCP verifier randomnessρ

:

Query set, answers, and their authentication paths
(Q, 𝖺𝗇𝗌, 𝗉𝖿)

non-trivial restrictions on the PCP.• [Kilian92] gives an informal analysis. 

• [BG08] proves security of Kilian’s protocol assuming the underlying PCP is non-adaptive and reverse-samplable.

• Folklore: well-understood, if  and  if negligible, then  is negligible.ϵ𝖯𝖢𝖯 ϵ𝖵𝖢 ϵ𝖠𝖱𝖦



What is the security of Kilian’s protocol?

7

Previously:

Prover P(x, w)

P

Verifier V(x)

V

: Commitment to a PCP string with Merkle treecm

: PCP verifier randomnessρ

:

Query set, answers, and their authentication paths
(Q, 𝖺𝗇𝗌, 𝗉𝖿)

non-trivial restrictions on the PCP.• [Kilian92] gives an informal analysis. 

• [BG08] proves security of Kilian’s protocol assuming the underlying PCP is non-adaptive and reverse-samplable.
Their analysis is NOT tight: roughly  (multiplicative constant overhead).ϵ𝖠𝖱𝖦 ≤ 8 ⋅ ϵ𝖯𝖢𝖯 + 3 ϵ𝖵𝖢

• Folklore: well-understood, if  and  if negligible, then  is negligible.ϵ𝖯𝖢𝖯 ϵ𝖵𝖢 ϵ𝖠𝖱𝖦



What is the security of Kilian’s protocol?

7

Previously:

Prover P(x, w)

P

Verifier V(x)

V

: Commitment to a PCP string with Merkle treecm

: PCP verifier randomnessρ

:

Query set, answers, and their authentication paths
(Q, 𝖺𝗇𝗌, 𝗉𝖿)

non-trivial restrictions on the PCP.• [Kilian92] gives an informal analysis. 

• [BG08] proves security of Kilian’s protocol assuming the underlying PCP is non-adaptive and reverse-samplable.
Their analysis is NOT tight: roughly  (multiplicative constant overhead).ϵ𝖠𝖱𝖦 ≤ 8 ⋅ ϵ𝖯𝖢𝖯 + 3 ϵ𝖵𝖢

• Kilian's protocol is widely used across cryptography but lacks a security proof in the general case.

• Folklore: well-understood, if  and  if negligible, then  is negligible.ϵ𝖯𝖢𝖯 ϵ𝖵𝖢 ϵ𝖠𝖱𝖦



A similar protocol: Schnorr identification scheme

8



A similar protocol: Schnorr identification scheme

8

Prover P((G, p, g, h), w)

P

Verifier V(G, p, g)

V

: random α = gr r ∈ ℤp

: random challenge in β ℤp

γ = w ⋅ β + r mod p



A similar protocol: Schnorr identification scheme

8

Prover P((G, p, g, h), w)

P

Verifier V(G, p, g)

V

: random α = gr r ∈ ℤp

: random challenge in β ℤp

γ = w ⋅ β + r mod p

Numerous works study the security of Schnorr identification and its variants in different settings
[Sho97,PS00,BP02,FPS20,BD20,RS21,SSY23]



A similar protocol: Schnorr identification scheme

8

Prover P((G, p, g, h), w)

P

Verifier V(G, p, g)

V

: random α = gr r ∈ ℤp

: random challenge in β ℤp

γ = w ⋅ β + r mod p

Numerous works study the security of Schnorr identification and its variants in different settings
[Sho97,PS00,BP02,FPS20,BD20,RS21,SSY23]

Yet, there are gaps in our understanding of Schnorr’s protocol - challenging open questions



A similar protocol: Schnorr identification scheme

8

Our contribution:

Prover P((G, p, g, h), w)

P

Verifier V(G, p, g)

V

: random α = gr r ∈ ℤp

: random challenge in β ℤp

γ = w ⋅ β + r mod p

Numerous works study the security of Schnorr identification and its variants in different settings
[Sho97,PS00,BP02,FPS20,BD20,RS21,SSY23]

Yet, there are gaps in our understanding of Schnorr’s protocol - challenging open questions



A similar protocol: Schnorr identification scheme

8

Our contribution:
- Proving the security of Kilian’s protocol is as hard as that of Schnorr’s protocol.

Prover P((G, p, g, h), w)

P

Verifier V(G, p, g)

V

: random α = gr r ∈ ℤp

: random challenge in β ℤp

γ = w ⋅ β + r mod p

Numerous works study the security of Schnorr identification and its variants in different settings
[Sho97,PS00,BP02,FPS20,BD20,RS21,SSY23]

Yet, there are gaps in our understanding of Schnorr’s protocol - challenging open questions



A similar protocol: Schnorr identification scheme

8

Our contribution:
- Proving the security of Kilian’s protocol is as hard as that of Schnorr’s protocol.

- Is Kilian’s protocol really “well-understood”?

Prover P((G, p, g, h), w)

P

Verifier V(G, p, g)

V

: random α = gr r ∈ ℤp

: random challenge in β ℤp

γ = w ⋅ β + r mod p

Numerous works study the security of Schnorr identification and its variants in different settings
[Sho97,PS00,BP02,FPS20,BD20,RS21,SSY23]

Yet, there are gaps in our understanding of Schnorr’s protocol - challenging open questions



A similar protocol: Schnorr identification scheme

8

Our contribution:
- Proving the security of Kilian’s protocol is as hard as that of Schnorr’s protocol.

- Is Kilian’s protocol really “well-understood”?
- A general and tightest known security analysis of Kilian’s protocol. 

Prover P((G, p, g, h), w)

P

Verifier V(G, p, g)

V

: random α = gr r ∈ ℤp

: random challenge in β ℤp

γ = w ⋅ β + r mod p

Numerous works study the security of Schnorr identification and its variants in different settings
[Sho97,PS00,BP02,FPS20,BD20,RS21,SSY23]

Yet, there are gaps in our understanding of Schnorr’s protocol - challenging open questions



A similar protocol: Schnorr identification scheme

8

Our contribution:
- Proving the security of Kilian’s protocol is as hard as that of Schnorr’s protocol.

- Is Kilian’s protocol really “well-understood”?
- A general and tightest known security analysis of Kilian’s protocol. 

- Gaps and barriers remain.

Prover P((G, p, g, h), w)

P

Verifier V(G, p, g)

V

: random α = gr r ∈ ℤp

: random challenge in β ℤp

γ = w ⋅ β + r mod p

Numerous works study the security of Schnorr identification and its variants in different settings
[Sho97,PS00,BP02,FPS20,BD20,RS21,SSY23]

Yet, there are gaps in our understanding of Schnorr’s protocol - challenging open questions



Our results

9



Our results

9

Upper Bounds.



Our results

9

PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Upper Bounds.



Our results

9

PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with 

position binding error 

(or expected-time position binding error )

ϵ𝖵𝖢
ϵ⋆

𝖵𝖢

Upper Bounds.



Our results

9

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with 

position binding error 

(or expected-time position binding error )

ϵ𝖵𝖢
ϵ⋆

𝖵𝖢

Upper Bounds.



Our results

9

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with 

position binding error 

(or expected-time position binding error )

ϵ𝖵𝖢
ϵ⋆

𝖵𝖢

For every  and , x ∉ L ϵ > 0

Upper Bounds.



Our results

9

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with 

position binding error 

(or expected-time position binding error )

ϵ𝖵𝖢
ϵ⋆

𝖵𝖢

For every  and , x ∉ L ϵ > 0
, where ;ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ𝖵𝖢(λ, t𝖵𝖢)+ϵ t𝖵𝖢 = O (t𝖠𝖱𝖦 ⋅ l/ϵ)

Upper Bounds.



Our results

9

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with 

position binding error 

(or expected-time position binding error )

ϵ𝖵𝖢
ϵ⋆

𝖵𝖢

For every  and , x ∉ L ϵ > 0
, where ;ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ𝖵𝖢(λ, t𝖵𝖢)+ϵ t𝖵𝖢 = O (t𝖠𝖱𝖦 ⋅ l/ϵ)

, where .ϵ⋆
𝖠𝖱𝖦(λ, x, t⋆

𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ⋆
𝖵𝖢(λ, t⋆

𝖵𝖢)+ϵ t⋆
𝖵𝖢 = O (t⋆

𝖠𝖱𝖦 ⋅ log(𝗊/ϵ))

Upper Bounds.



Our results

9

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with 

position binding error 

(or expected-time position binding error )

ϵ𝖵𝖢
ϵ⋆

𝖵𝖢

For every  and , x ∉ L ϵ > 0
, where ;ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ𝖵𝖢(λ, t𝖵𝖢)+ϵ t𝖵𝖢 = O (t𝖠𝖱𝖦 ⋅ l/ϵ)

, where .ϵ⋆
𝖠𝖱𝖦(λ, x, t⋆

𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ⋆
𝖵𝖢(λ, t⋆

𝖵𝖢)+ϵ t⋆
𝖵𝖢 = O (t⋆

𝖠𝖱𝖦 ⋅ log(𝗊/ϵ))

Upper Bounds.

Lower Bounds. Bounding the soundness error of Kilian’s protocol is as hard as that of the Schnorr identification scheme.



Our results

9

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with 

position binding error 

(or expected-time position binding error )

ϵ𝖵𝖢
ϵ⋆

𝖵𝖢

For every  and , x ∉ L ϵ > 0
, where ;ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ𝖵𝖢(λ, t𝖵𝖢)+ϵ t𝖵𝖢 = O (t𝖠𝖱𝖦 ⋅ l/ϵ)

, where .ϵ⋆
𝖠𝖱𝖦(λ, x, t⋆

𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ⋆
𝖵𝖢(λ, t⋆

𝖵𝖢)+ϵ t⋆
𝖵𝖢 = O (t⋆

𝖠𝖱𝖦 ⋅ log(𝗊/ϵ))

Upper Bounds.

Lower Bounds. Bounding the soundness error of Kilian’s protocol is as hard as that of the Schnorr identification scheme.

There exists  and  such that, for every , 𝖯𝖢𝖯 𝖵𝖢 x ∉ L



Our results

9

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with 

position binding error 

(or expected-time position binding error )

ϵ𝖵𝖢
ϵ⋆

𝖵𝖢

For every  and , x ∉ L ϵ > 0
, where ;ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ𝖵𝖢(λ, t𝖵𝖢)+ϵ t𝖵𝖢 = O (t𝖠𝖱𝖦 ⋅ l/ϵ)

, where .ϵ⋆
𝖠𝖱𝖦(λ, x, t⋆

𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ⋆
𝖵𝖢(λ, t⋆

𝖵𝖢)+ϵ t⋆
𝖵𝖢 = O (t⋆

𝖠𝖱𝖦 ⋅ log(𝗊/ϵ))

Upper Bounds.

Lower Bounds. Bounding the soundness error of Kilian’s protocol is as hard as that of the Schnorr identification scheme.

There exists  and  such that, for every , 𝖯𝖢𝖯 𝖵𝖢 x ∉ L
, where ;ϵ𝖲𝖼𝗁𝗇𝗈𝗋𝗋(λ, t𝖲𝖼𝗁𝗇𝗈𝗋𝗋) ≤ ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) t𝖠𝖱𝖦 = O(t𝖲𝖼𝗁𝗇𝗈𝗋𝗋)



Our results

9

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with 

position binding error 

(or expected-time position binding error )

ϵ𝖵𝖢
ϵ⋆

𝖵𝖢

For every  and , x ∉ L ϵ > 0
, where ;ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ𝖵𝖢(λ, t𝖵𝖢)+ϵ t𝖵𝖢 = O (t𝖠𝖱𝖦 ⋅ l/ϵ)

, where .ϵ⋆
𝖠𝖱𝖦(λ, x, t⋆

𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ⋆
𝖵𝖢(λ, t⋆

𝖵𝖢)+ϵ t⋆
𝖵𝖢 = O (t⋆

𝖠𝖱𝖦 ⋅ log(𝗊/ϵ))

Upper Bounds.

Lower Bounds. Bounding the soundness error of Kilian’s protocol is as hard as that of the Schnorr identification scheme.

There exists  and  such that, for every , 𝖯𝖢𝖯 𝖵𝖢 x ∉ L
, where ;ϵ𝖲𝖼𝗁𝗇𝗈𝗋𝗋(λ, t𝖲𝖼𝗁𝗇𝗈𝗋𝗋) ≤ ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) t𝖠𝖱𝖦 = O(t𝖲𝖼𝗁𝗇𝗈𝗋𝗋)
, where .ϵ⋆

𝖲𝖼𝗁𝗇𝗈𝗋𝗋(λ, t⋆
𝖲𝖼𝗁𝗇𝗈𝗋𝗋) ≤ ϵ⋆

𝖠𝖱𝖦(λ, x, t⋆
𝖠𝖱𝖦) t⋆

𝖠𝖱𝖦 = O(t⋆
𝖲𝖼𝗁𝗇𝗈𝗋𝗋)



How tight are the bounds?

10

Strict-time setting. 
- Setting .ϵ𝖣𝖫𝖮𝖦(λ, t) ≤ O(t2/2λ)
- Best known analysis of the Schnorr identification scheme:

.ϵ𝖲𝖼𝗁𝗇𝗈𝗋𝗋(λ, t𝖲𝖼𝗁𝗇𝗈𝗋𝗋) ≤ ϵ𝖣𝖫𝖮𝖦(λ, O(t𝖲𝖼𝗁𝗇𝗈𝗋𝗋)) ≤ O ( t2
𝖲𝖼𝗁𝗇𝗈𝗋𝗋 /2λ)

- Our bound:

.ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ 2−λ + ϵ𝖣𝖫𝖮𝖦(λ, t𝖠𝖱𝖦 ⋅ l/ϵ) + ϵ ≤ 2−λ + l2/3 ⋅ O ( 3 t2
𝖠𝖱𝖦/2λ)

Polynomial gap

Expected-time setting. 
- Best known analysis of the Schnorr identification scheme:

.ϵ⋆
𝖲𝖼𝗁𝗇𝗈𝗋𝗋(λ, t⋆

𝖲𝖼𝗁𝗇𝗈𝗋𝗋) ≤ ϵ⋆
𝖣𝖫𝖮𝖦(λ, O(t⋆

𝖲𝖼𝗁𝗇𝗈𝗋𝗋))
- Our bound:

.ϵ⋆
𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ 2−λ + ϵ⋆

𝖣𝖫𝖮𝖦(λ, t⋆
𝖠𝖱𝖦 ⋅ log(𝗊/ϵ)) + ϵ

Polylogarithmic gap 
Almost tight
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Thank you!


https://eprint.iacr.org/2024/1434

Our followup: Quantum Rewinding for IOP-Based Succinct Arguments


Alessandro Chiesa, Marcel Dall’Agnol, Zijing Di, Ziyi Guan, Nick Spooner

https://eprint.iacr.org/2024/1434
https://arxiv.org/abs/2411.05360


On the price of rewinding
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• Suppose  with .ϵ𝖯𝖢𝖯 = 2−42 l = 230

• Suppose  (achieved by ideal Merkle trees). ϵ𝖵𝖢 = (λ, l, 𝗊, t𝖵𝖢) ≤ t2
𝖵𝖢
2λ

• Setting :ϵ := 2−42

- t𝖵𝖢 ≤ 4 ⋅ 230

2−42 ⋅ t𝖠𝖱𝖦 < 280 ⋅ t𝖠𝖱𝖦

- ϵ𝖵𝖢 ≤ (280 ⋅ t𝖠𝖱𝖦)2

2λ = 2160−λ ⋅ t2
𝖠𝖱𝖦 = 2280−λ

• Set  to achieve the desired bound. λ = 322

For every  and , 
.

x ∉ L ϵ > 0
ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x) + ϵ𝖵𝖢(λ, l(x), 𝗊(x), t𝖵𝖢) + ϵ

t𝖵𝖢 = O ( l
ϵ

⋅ t𝖠𝖱𝖦) For every , 


.

x ∉ L
ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x) + t2

𝖠𝖱𝖦
2λ

• Suppose ϵ𝖯𝖢𝖯 = 2−42

• ϵ𝖵𝖢 ≤ t2
𝖠𝖱𝖦
2λ = 2120−λ

• Set  to achieve the desired bound. λ = 162

Standard model Random oracle model

- If the hash function is assumed ideal then extraction is straightline.

- If the hash function is merely collision-resistant then extraction is rewinding.

These computations illustrate the PRICE OF REWINDING.

[CY24]

Goal: achieve  against adversaries of size  for Kilian's protocol.ϵ𝖠𝖱𝖦 = 2−40 260


