
1/17

Information-Theoretic Multi-Server Client Preprocessing PIR

Jaspal Singh
Purdue University
Georgia Tech

Yu Wei
Georgia Tech

Vassilis Zikas
Georgia Tech

TCC 2024



2/17

Private Information Retrieval

Client

Server1 Server 2 ▶ interactive protocol between client and
server(s)

▶ server(s) input database D of size n
▶ client inputs index i ∈ {0, 1, . . . , n − 1}

▶ Correctness: Client outputs D[i]
▶ Privacy: Server learns nothing about i



2/17

Private Information Retrieval

Client

Server1 Server 2 ▶ interactive protocol between client and
server(s)

▶ server(s) input database D of size n
▶ client inputs index i ∈ {0, 1, . . . , n − 1}

▶ Correctness: Client outputs D[i]
▶ Privacy: Server learns nothing about i



2/17

Private Information Retrieval

Client

Server1 Server 2 ▶ interactive protocol between client and
server(s)

▶ server(s) input database D of size n
▶ client inputs index i ∈ {0, 1, . . . , n − 1}

▶ Correctness: Client outputs D[i]
▶ Privacy: Server learns nothing about i



3/17

Private Information Retrieval

Client

Server1 Server 2 ▶ Traditional goal of PIR - reduce the
communication complexity

▶ [CKGS98] show an Ω(n) computation
lower bound for server complexity

Need for different PIR models to overcome
this lower bound!



3/17

Private Information Retrieval

Client

Server1 Server 2 ▶ Traditional goal of PIR - reduce the
communication complexity

▶ [CKGS98] show an Ω(n) computation
lower bound for server complexity

Need for different PIR models to overcome
this lower bound!



3/17

Private Information Retrieval

Client

Server1 Server 2 ▶ Traditional goal of PIR - reduce the
communication complexity

▶ [CKGS98] show an Ω(n) computation
lower bound for server complexity

Need for different PIR models to overcome
this lower bound!



4/17

PIR with Client Preprocessing

Client

Server1 Server 2 ▶ Protocol has two phases: offline and
online

▶ expensive offline phase with linear
computation overhead

▶ Client stores a local state
▶ Sub-linear online phase



4/17

PIR with Client Preprocessing

Client

Server1 Server 2 ▶ Protocol has two phases: offline and
online

▶ expensive offline phase with linear
computation overhead

▶ Client stores a local state

▶ Sub-linear online phase



4/17

PIR with Client Preprocessing

Client

Server1 Server 2 ▶ Protocol has two phases: offline and
online

▶ expensive offline phase with linear
computation overhead

▶ Client stores a local state
▶ Sub-linear online phase



5/17

Previous Works (PIR with Client Preprocessing)

constructions (# servers) communication computation client storage assumptions
PRP-PIR [CGK20] (2) Õ(n1/2)1 Õ(

√
n) Õ(

√
n) OWF

Shi et al. [SACM21] (2) (poly(log n)) Õ(
√
n) Õ(

√
n) LWE

TreePIR [LP23] (2) (poly(log n)) Õ(
√
n) Õ(

√
n) DDH

Ghoshal et al. [GZS24] (2) Õ(n1/4) Õ(
√
n) Õ(

√
n) OWF

Does there exist non-trivial protocols for unconditional multi-server PIR with client
preprocessing?

1 Õ notation hides poly log factors



5/17

Previous Works (PIR with Client Preprocessing)

constructions (# servers) communication computation client storage assumptions
PRP-PIR [CGK20] (2) Õ(n1/2)1 Õ(

√
n) Õ(

√
n) OWF

Shi et al. [SACM21] (2) (poly(log n)) Õ(
√
n) Õ(

√
n) LWE

TreePIR [LP23] (2) (poly(log n)) Õ(
√
n) Õ(

√
n) DDH

Ghoshal et al. [GZS24] (2) Õ(n1/4) Õ(
√
n) Õ(

√
n) OWF

Does there exist non-trivial protocols for unconditional multi-server PIR with client
preprocessing?

1 Õ notation hides poly log factors



5/17

Previous Works (PIR with Client Preprocessing)

constructions (# servers) communication computation client storage assumptions
PRP-PIR [CGK20] (2) Õ(n1/2)1 Õ(

√
n) Õ(

√
n) OWF

Shi et al. [SACM21] (2) (poly(log n)) Õ(
√
n) Õ(

√
n) LWE

TreePIR [LP23] (2) (poly(log n)) Õ(
√
n) Õ(

√
n) DDH

Ghoshal et al. [GZS24] (2) Õ(n1/4) Õ(
√
n) Õ(

√
n) OWF

Does there exist non-trivial protocols for unconditional multi-server PIR with client
preprocessing?

1 Õ notation hides poly log factors



6/17

Previous Works (PIR with Client Preprocessing)

constructions (# servers) communication computation client storage assumptions
PRP-PIR [CGK20] (2) Õ(n1/2) Õ(

√
n) Õ(

√
n) OWF

Shi et al. [SACM21] (2) (poly(log n)) Õ(
√
n) Õ(

√
n) LWE

TreePIR [LP23] (2) (poly(log n)) Õ(
√
n) Õ(

√
n) DDH

Ghoshal et al. [GZS24] (2) Õ(n1/4) Õ(
√
n) Õ(

√
n) OWF

Our Work (2t) Õ(n1/2) Õ(
√
n) Õ(n1/2+1/2t) –

Set t = 1/2 log n (log n) Õ(n1/2) Õ(
√
n) Õ(n1/2) –



7/17

CGK Paradigm: Privately Puncturable Pseudo-random Sets

PPPS (Gen, Set, Test, Punc)
▶ k ← Gen()
▶ S ← Set(k)
▶ b← Test(k, x)
▶ k̂ ← Punc(k, x)

Security properties:
▶ S � random subset of size

√
n

▶ Test(k, x) = [x ?∈ Set(k)]
▶ Set(Punc(k, x)) = Set(k) \ {x}
▶ Punctured key k̂ hides x



7/17

CGK Paradigm: Privately Puncturable Pseudo-random Sets

PPPS (Gen, Set, Test, Punc)
▶ k ← Gen()
▶ S ← Set(k)
▶ b← Test(k, x)
▶ k̂ ← Punc(k, x)

Security properties:
▶ S � random subset of size

√
n

▶ Test(k, x) = [x ?∈ Set(k)]
▶ Set(Punc(k, x)) = Set(k) \ {x}
▶ Punctured key k̂ hides x



7/17

CGK Paradigm: Privately Puncturable Pseudo-random Sets

PPPS (Gen, Set, Test, Punc)
▶ k ← Gen()
▶ S ← Set(k)
▶ b← Test(k, x)
▶ k̂ ← Punc(k, x)

Security properties:
▶ S � random subset of size

√
n

▶ Test(k, x) = [x ?∈ Set(k)]
▶ Set(Punc(k, x)) = Set(k) \ {x}
▶ Punctured key k̂ hides x



7/17

CGK Paradigm: Privately Puncturable Pseudo-random Sets

PPPS (Gen, Set, Test, Punc)
▶ k ← Gen()
▶ S ← Set(k)
▶ b← Test(k, x)
▶ k̂ ← Punc(k, x)

Security properties:
▶ S � random subset of size

√
n

▶ Test(k, x) = [x ?∈ Set(k)]

▶ Set(Punc(k, x)) = Set(k) \ {x}
▶ Punctured key k̂ hides x



7/17

CGK Paradigm: Privately Puncturable Pseudo-random Sets

PPPS (Gen, Set, Test, Punc)
▶ k ← Gen()
▶ S ← Set(k)
▶ b← Test(k, x)
▶ k̂ ← Punc(k, x)

Security properties:
▶ S � random subset of size

√
n

▶ Test(k, x) = [x ?∈ Set(k)]
▶ Set(Punc(k, x)) = Set(k) \ {x}

▶ Punctured key k̂ hides x



7/17

CGK Paradigm: Privately Puncturable Pseudo-random Sets

PPPS (Gen, Set, Test, Punc)
▶ k ← Gen()
▶ S ← Set(k)
▶ b← Test(k, x)
▶ k̂ ← Punc(k, x)

Security properties:
▶ S � random subset of size

√
n

▶ Test(k, x) = [x ?∈ Set(k)]
▶ Set(Punc(k, x)) = Set(k) \ {x}
▶ Punctured key k̂ hides x



8/17

PIR with client preprocessing [CGK20]

Offline:
▶ Client sends Õ(

√
n) PPPS keys

k1, k2, . . . to server 1

▶ server responds with hint bits h1, h2, . . .
Si ← Set(ki)
ht = ⊕j∈StD[j]

Online: (Client inputs x)
▶ Client finds k = ki with Test(k, x) =true

and send k̂ = Punc(k, x) to server 2

▶ server 2 responds with y ← ⊕j∈SD[j]
where S = Set(k̂)

▶ Client outputs y ⊕ hi = D[x]

Client

Server1 Server 2

k1, k2, . . .h1, h2, . . . k̂y = ⊕j∈Set(k̂)D[j]

Online complexity:
▶ Client computation: Õ(

√
n)

▶ Server computation: Õ(
√
n)

▶ bandwidth: Õ(
√
n)



8/17

PIR with client preprocessing [CGK20]
Offline:
▶ Client sends Õ(

√
n) PPPS keys

k1, k2, . . . to server 1

▶ server responds with hint bits h1, h2, . . .
Si ← Set(ki)
ht = ⊕j∈StD[j]

Online: (Client inputs x)
▶ Client finds k = ki with Test(k, x) =true

and send k̂ = Punc(k, x) to server 2

▶ server 2 responds with y ← ⊕j∈SD[j]
where S = Set(k̂)

▶ Client outputs y ⊕ hi = D[x]

Client

Server1 Server 2

k1, k2, . . .

h1, h2, . . . k̂y = ⊕j∈Set(k̂)D[j]

Online complexity:
▶ Client computation: Õ(

√
n)

▶ Server computation: Õ(
√
n)

▶ bandwidth: Õ(
√
n)



8/17

PIR with client preprocessing [CGK20]
Offline:
▶ Client sends Õ(

√
n) PPPS keys

k1, k2, . . . to server 1
▶ server responds with hint bits h1, h2, . . .

Si ← Set(ki)
ht = ⊕j∈StD[j]

Online: (Client inputs x)
▶ Client finds k = ki with Test(k, x) =true

and send k̂ = Punc(k, x) to server 2

▶ server 2 responds with y ← ⊕j∈SD[j]
where S = Set(k̂)

▶ Client outputs y ⊕ hi = D[x]

Client

Server1 Server 2

k1, k2, . . .

h1, h2, . . .

k̂y = ⊕j∈Set(k̂)D[j]

Online complexity:
▶ Client computation: Õ(

√
n)

▶ Server computation: Õ(
√
n)

▶ bandwidth: Õ(
√
n)



8/17

PIR with client preprocessing [CGK20]
Offline:
▶ Client sends Õ(

√
n) PPPS keys

k1, k2, . . . to server 1
▶ server responds with hint bits h1, h2, . . .

Si ← Set(ki)
ht = ⊕j∈StD[j]

Online: (Client inputs x)
▶ Client finds k = ki with Test(k, x) =true

and send k̂ = Punc(k, x) to server 2

▶ server 2 responds with y ← ⊕j∈SD[j]
where S = Set(k̂)

▶ Client outputs y ⊕ hi = D[x]

Client

Server1 Server 2

k1, k2, . . .h1, h2, . . .

k̂

y = ⊕j∈Set(k̂)D[j]

Online complexity:
▶ Client computation: Õ(

√
n)

▶ Server computation: Õ(
√
n)

▶ bandwidth: Õ(
√
n)



8/17

PIR with client preprocessing [CGK20]
Offline:
▶ Client sends Õ(

√
n) PPPS keys

k1, k2, . . . to server 1
▶ server responds with hint bits h1, h2, . . .

Si ← Set(ki)
ht = ⊕j∈StD[j]

Online: (Client inputs x)
▶ Client finds k = ki with Test(k, x) =true

and send k̂ = Punc(k, x) to server 2
▶ server 2 responds with y ← ⊕j∈SD[j]

where S = Set(k̂)

▶ Client outputs y ⊕ hi = D[x]

Client

Server1 Server 2

k1, k2, . . .h1, h2, . . . k̂

y = ⊕j∈Set(k̂)D[j]

Online complexity:
▶ Client computation: Õ(

√
n)

▶ Server computation: Õ(
√
n)

▶ bandwidth: Õ(
√
n)



8/17

PIR with client preprocessing [CGK20]
Offline:
▶ Client sends Õ(

√
n) PPPS keys

k1, k2, . . . to server 1
▶ server responds with hint bits h1, h2, . . .

Si ← Set(ki)
ht = ⊕j∈StD[j]

Online: (Client inputs x)
▶ Client finds k = ki with Test(k, x) =true

and send k̂ = Punc(k, x) to server 2
▶ server 2 responds with y ← ⊕j∈SD[j]

where S = Set(k̂)
▶ Client outputs y ⊕ hi = D[x]

Client

Server1 Server 2

k1, k2, . . .h1, h2, . . . k̂y = ⊕j∈Set(k̂)D[j]

Online complexity:
▶ Client computation: Õ(

√
n)

▶ Server computation: Õ(
√
n)

▶ bandwidth: Õ(
√
n)



8/17

PIR with client preprocessing [CGK20]
Offline:
▶ Client sends Õ(

√
n) PPPS keys

k1, k2, . . . to server 1
▶ server responds with hint bits h1, h2, . . .

Si ← Set(ki)
ht = ⊕j∈StD[j]

Online: (Client inputs x)
▶ Client finds k = ki with Test(k, x) =true

and send k̂ = Punc(k, x) to server 2
▶ server 2 responds with y ← ⊕j∈SD[j]

where S = Set(k̂)
▶ Client outputs y ⊕ hi = D[x]

Client

Server1 Server 2

k1, k2, . . .h1, h2, . . . k̂y = ⊕j∈Set(k̂)D[j]

Online complexity:
▶ Client computation: Õ(

√
n)

▶ Server computation: Õ(
√
n)

▶ bandwidth: Õ(
√
n)



9/17

Key Challenge

▶ Design PPPS from information-theoretic primitives
▶ Short PPPS key representation that supports efficient test, puncturing and set

enumeration

Key insights:
▶ For PIR correctness, only need each random set to contain indivdual elements from

domain with probability 1/
√
n

▶ Multi-server PIR scheme is compatible with a weaker PPPS: puncturing a PPPS key
gives multiple disjoint keys/sets



9/17

Key Challenge

▶ Design PPPS from information-theoretic primitives
▶ Short PPPS key representation that supports efficient test, puncturing and set

enumeration

Key insights:
▶ For PIR correctness, only need each random set to contain indivdual elements from

domain with probability 1/
√
n

▶ Multi-server PIR scheme is compatible with a weaker PPPS: puncturing a PPPS key
gives multiple disjoint keys/sets



10/17

Privately Multi-Puncturable Random Sets (PMPRS)

(n, t)-PMPRS (Gen, Set, Test, Punc
, SerEval)
▶ k ← Gen()
▶ S ← Set(k)
▶ b← Test(k, x)
▶ ((S0, k0, ind0), , . . . ,
(St−1, kt−1, indt−1)) ← Punc(k, x)

▶ ®vi ← SerEval(i, ki,DB)

Security properties:
▶ randomness For any x ∈ [n],

Pr (x ∈ S) = 1/
√
n

▶ Privacy: key ki hides x
▶ Correctness:

▶ S \ {x} = ¤⋃Si
▶ for i ∈ [t],
®vi [indi] = ⊕j∈SiDB[j]

Efficient PMPRS: Õ(1) Test and Õ(
√
n)

SerEval complexity; Õ(n1/2t) key-size



10/17

Privately Multi-Puncturable Random Sets (PMPRS)

(n, t)-PMPRS (Gen, Set, Test, Punc
, SerEval)
▶ k ← Gen()
▶ S ← Set(k)
▶ b← Test(k, x)
▶ ((S0, k0, ind0), , . . . ,
(St−1, kt−1, indt−1)) ← Punc(k, x)

▶ ®vi ← SerEval(i, ki,DB)

Security properties:
▶ randomness For any x ∈ [n],

Pr (x ∈ S) = 1/
√
n

▶ Privacy: key ki hides x
▶ Correctness:

▶ S \ {x} = ¤⋃Si
▶ for i ∈ [t],
®vi [indi] = ⊕j∈SiDB[j]

Efficient PMPRS: Õ(1) Test and Õ(
√
n)

SerEval complexity; Õ(n1/2t) key-size



10/17

Privately Multi-Puncturable Random Sets (PMPRS)

(n, t)-PMPRS (Gen, Set, Test, Punc
, SerEval)
▶ k ← Gen()
▶ S ← Set(k)
▶ b← Test(k, x)
▶ ((S0, k0, ind0), , . . . ,
(St−1, kt−1, indt−1)) ← Punc(k, x)

▶ ®vi ← SerEval(i, ki,DB)

Security properties:
▶ randomness For any x ∈ [n],

Pr (x ∈ S) = 1/
√
n

▶ Privacy: key ki hides x
▶ Correctness:

▶ S \ {x} = ¤⋃Si
▶ for i ∈ [t],
®vi [indi] = ⊕j∈SiDB[j]

Efficient PMPRS: Õ(1) Test and Õ(
√
n)

SerEval complexity; Õ(n1/2t) key-size



10/17

Privately Multi-Puncturable Random Sets (PMPRS)

(n, t)-PMPRS (Gen, Set, Test, Punc
, SerEval)
▶ k ← Gen()
▶ S ← Set(k)
▶ b← Test(k, x)
▶ ((S0, k0, ind0), , . . . ,
(St−1, kt−1, indt−1)) ← Punc(k, x)

▶ ®vi ← SerEval(i, ki,DB)

Security properties:
▶ randomness For any x ∈ [n],

Pr (x ∈ S) = 1/
√
n

▶ Privacy: key ki hides x
▶ Correctness:

▶ S \ {x} = ¤⋃Si
▶ for i ∈ [t],
®vi [indi] = ⊕j∈SiDB[j]

Efficient PMPRS: Õ(1) Test and Õ(
√
n)

SerEval complexity; Õ(n1/2t) key-size



11/17

Main Results

Theorem (PMPRS)

There exist (n, t)-PMPRS with key size Õ(n1/2t), Test and SerEval complexity Õ(1) and
Õ(
√
n) respectively

Theorem (IT client preprocessing PIR)

(n, t)-PMPRS =⇒ t server IT PIR with preprocessing with client state size Õ(n1/2+1/2t),
online client/server Õ(

√
n) and bandwidth Õ(

√
n)



12/17

(n, 1/2 log n)-PMPRS (where n is even power of 2)

well-partitioned random set
▶ Contain one random element from each chunk
▶ chunk (x) = ⌊x/

√
n⌋, offset(x) = (x%

√
n)

1 n

chunk size
√
n



12/17

(n, 1/2 log n)-PMPRS (where n is even power of 2)

well-partitioned random set
▶ Contain one random element from each chunk
▶ chunk (x) = ⌊x/

√
n⌋, offset(x) = (x%

√
n)

1 n

chunk size
√
n



13/17

(n, 1/2 log n)-PMPRS (where n is even power of 2)

Let t = 1/2 log2 n and m =
√
n

▶ R← Gen() outputs for i ∈ [t]:
R[i][0] , R[i][1] ∈ [m]



13/17

(n, 1/2 log n)-PMPRS (where n is even power of 2)

Let t = 1/2 log2 n and m =
√
n

▶ R← Gen() outputs for i ∈ [t]:
R[i][0] , R[i][1] ∈ [m]



13/17

(n, 1/2 log n)-PMPRS (where n is even power of 2)

Let t = 1/2 log2 n and m =
√
n

▶ R← Gen() outputs for i ∈ [t]:
R[i][0] , R[i][1] ∈ [m]



14/17

(n, 1/2 log n)-PMPRS (where n is even power of 2)

Let t = 1/2 log2 n and m =
√
n

▶ R← Gen() outputs for i ∈ [t]:
R[i][0] , R[i][1] ∈ [m]

▶ Test(R, x):
▶ (c0, . . . , ct−1) ← bit-dec(chunk (x))
▶ check if ⊕i R[i] [ci] = offset(x)?



15/17

(n, 1/2 log n)-PMPRS (where n is even power of 2)

Let t = 1/2 log2 n and m =
√
n

▶ R← Gen() outputs for i ∈ [t]:
R[i][0] , R[i][1] ∈ [m]

▶ Test(R, x):
▶ (c0, . . . , ct−1) ← bit-dec(chunk (x))
▶ check if ⊕i R[i] [ci] = offset(x)?

▶ Set(k)
▶ Punc(k, x)

▶ Each key ki contains offset values of
set Si

▶ SerEval(D, ki)
▶ for each guess of chunk indexes of

Si compute database xor bit



16/17

Conclusion

▶ New PMPRS primitive and construction
▶ Efficient (n, t)-PMPRS =⇒ non-trivial unconditional PIR with client preprocessing

(2t servers)
▶ General construction based on arbitrary d-ary trees
▶ technical challenge: ensuring SerEval cost is O(

√
n)

▶ Extension: Improved online communication complexity O(no(1)+1/2t) assuming 4t
servers

Parallel Work [ISW24]
▶ Also study PIR with client preprocessing in IT setting (1 and 2 server setting)
▶ different techniques and lower bound proof
▶ Higher complexity for online server cost, offline bandwidth, and other measures



16/17

Conclusion

▶ New PMPRS primitive and construction
▶ Efficient (n, t)-PMPRS =⇒ non-trivial unconditional PIR with client preprocessing

(2t servers)
▶ General construction based on arbitrary d-ary trees
▶ technical challenge: ensuring SerEval cost is O(

√
n)

▶ Extension: Improved online communication complexity O(no(1)+1/2t) assuming 4t
servers

Parallel Work [ISW24]
▶ Also study PIR with client preprocessing in IT setting (1 and 2 server setting)
▶ different techniques and lower bound proof
▶ Higher complexity for online server cost, offline bandwidth, and other measures



16/17

Conclusion

▶ New PMPRS primitive and construction
▶ Efficient (n, t)-PMPRS =⇒ non-trivial unconditional PIR with client preprocessing

(2t servers)
▶ General construction based on arbitrary d-ary trees
▶ technical challenge: ensuring SerEval cost is O(

√
n)

▶ Extension: Improved online communication complexity O(no(1)+1/2t) assuming 4t
servers

Parallel Work [ISW24]
▶ Also study PIR with client preprocessing in IT setting (1 and 2 server setting)
▶ different techniques and lower bound proof
▶ Higher complexity for online server cost, offline bandwidth, and other measures



17/17

Thanks

eprint: https://eprint.iacr.org/2024/780.pdf

https://eprint.iacr.org/2024/780.pdf

	 PIR with preprocessing

