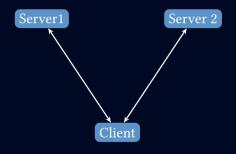
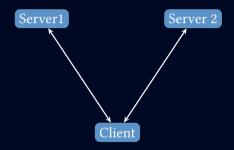
Information-Theoretic Multi-Server Client Preprocessing PIR

Jaspal Singh Purdue University Georgia Tech

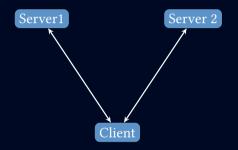
Yu Wei Georgia Tech Vassilis Zikas Georgia Tech



interactive protocol between client and server(s)

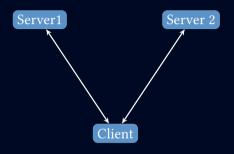


- interactive protocol between client and server(s)
- \triangleright server(s) input database *D* of size *n*
- ▶ client inputs index $i \in \{0, 1, ..., n-1\}$

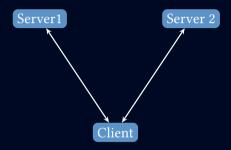


- interactive protocol between client and server(s)
- ightharpoonup server(s) input database D of size n
- ▶ client inputs index $i \in \{0, 1, ..., n-1\}$

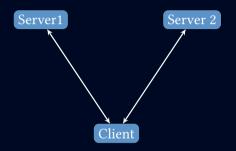
- ightharpoonup Correctness: Client outputs D[i]
- ▶ Privacy: Server learns nothing about *i*



► Traditional goal of PIR - reduce the communication complexity



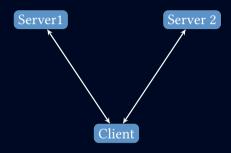
- ► Traditional goal of PIR reduce the communication complexity
- ► [CKGS98] show an $\Omega(n)$ computation lower bound for server complexity



- ► Traditional goal of PIR reduce the communication complexity
- ► [CKGS98] show an $\Omega(n)$ computation lower bound for server complexity

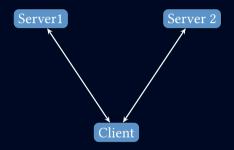
Need for different PIR models to overcome this lower bound!

PIR with Client Preprocessing



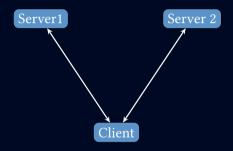
Protocol has two phases: offline and online

PIR with Client Preprocessing



- Protocol has two phases: offline and online
- expensive offline phase with linear computation overhead
- ► Client stores a local state

PIR with Client Preprocessing



- Protocol has two phases: offline and online
- expensive offline phase with linear computation overhead
- Client stores a local state
- ► Sub-linear online phase

constructions (# servers)	communication	computation	client storage	assumptions
PRP-PIR [CGK20] (2)	$\widetilde{O}(n^{1/2})^1$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	OWF

constructions (# servers)	communication	computation	client storage	assumptions
PRP-PIR [CGK20] (2)	$\widetilde{O}(n^{1/2})^1$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	OWF
Shi et al. [SACM21] (2)	$(\operatorname{poly}(\log n))$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	LWE
TreePIR [LP23] (2)	$(\operatorname{poly}(\log n))$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	DDH
Ghoshal et al. [GZS24] (2)	$\widetilde{O}(n^{1/4})$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	OWF

 $^{^1\}widetilde{O}$ notation hides poly log factors

constructions (# servers)	communication	computation	client storage	assumptions
PRP-PIR [CGK20] (2)	$\widetilde{O}(n^{1/2})^1$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	OWF
Shi et al. [SACM21] (2)	$(\operatorname{poly}(\log n))$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	LWE
TreePIR [LP23] (2)	$(\operatorname{poly}(\log n))$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	DDH
Ghoshal et al. [GZS24] (2)	$\widetilde{O}(n^{1/4})$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	OWF

Does there exist non-trivial protocols for unconditional multi-server PIR with client preprocessing?

 $^{^1\}widetilde{O}$ notation hides poly log factors

constructions (# servers)	communication	computation	client storage	assumptions
PRP-PIR [CGK20] (2)	$\widetilde{O}(n^{1/2})$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	OWF
Shi et al. [SACM21] (2)	$(\operatorname{poly}(\log n))$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	LWE
TreePIR [LP23] (2)	$(\operatorname{poly}(\log n))$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	DDH
Ghoshal et al. [GZS24] (2)	$\widetilde{O}(n^{1/4})$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(\sqrt{n})$	OWF
Our Work (2t)	$\widetilde{O}(n^{1/2})$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(n^{1/2+1/2t})$	_
Set $t = 1/2 \log n (\log n)$	$\widetilde{O}(n^{1/2})$	$\widetilde{O}(\sqrt{n})$	$\widetilde{O}(n^{1/2})$	-

PPPS (Gen, Set, Test, Punc)

- ▶ $k \leftarrow \text{Gen}()$
- \triangleright $S \leftarrow \operatorname{Set}(k)$
- ▶ $b \leftarrow \text{Test}(k, x)$
- $\hat{k} \leftarrow \text{Punc}(k, x)$

PPPS (Gen, Set, Test, Punc)

- ▶ $k \leftarrow \text{Gen}()$
- $ightharpoonup S \leftarrow \operatorname{Set}(k)$
- ▶ $b \leftarrow \text{Test}(k, x)$
- $\hat{k} \leftarrow \text{Punc}(k, x)$

Security properties:

► $S \cong$ random subset of size \sqrt{n}

PPPS (Gen, Set, Test, Punc)

- ▶ $k \leftarrow \text{Gen}()$
- $ightharpoonup S \leftarrow \operatorname{Set}(k)$
- ▶ $b \leftarrow \text{Test}(k, x)$
- $\hat{k} \leftarrow \text{Punc}(k, x)$

- ► $S \cong$ random subset of size \sqrt{n}

PPPS (Gen, Set, Test, Punc)

- ▶ $k \leftarrow \text{Gen}()$
- \triangleright $S \leftarrow \operatorname{Set}(k)$
- ▶ $b \leftarrow \text{Test}(k, x)$
- $\hat{k} \leftarrow \text{Punc}(k, x)$

- ► $S \cong$ random subset of size \sqrt{n}
- $\blacktriangleright \operatorname{Test}(k, x) = [x \stackrel{?}{\in} \operatorname{Set}(k)]$

PPPS (Gen, Set, Test, Punc)

- ▶ $k \leftarrow \text{Gen}()$
- \triangleright $S \leftarrow \operatorname{Set}(k)$
- ▶ $b \leftarrow \text{Test}(k, x)$
- $\hat{k} \leftarrow \text{Punc}(k, x)$

- ► $S \cong$ random subset of size \sqrt{n}
- $\blacktriangleright \operatorname{Test}(k, x) = [x \stackrel{?}{\in} \operatorname{Set}(k)]$
- Punctured key \hat{k} hides x

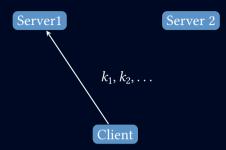
Server1

Server 2

Client

Offline:

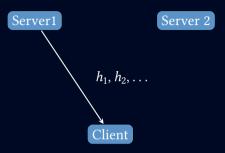
► Client sends $\widetilde{O}(\sqrt{n})$ PPPS keys k_1, k_2, \dots to server 1



Offline:

- ► Client sends $\widetilde{O}(\sqrt{n})$ PPPS keys $k_1, k_2, ...$ to server 1
- ▶ server responds with hint bits $h_1, h_2, ...$

$$S_i \leftarrow \operatorname{Set}(k_i)$$
$$h_t = \bigoplus_{j \in S_t} D[j]$$



Offline:

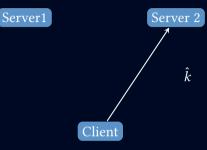
- Client sends $\widetilde{O}(\sqrt{n})$ PPPS keys k_1, k_2, \dots to server 1
- ▶ server responds with hint bits $h_1, h_2, ...$

$$S_i \leftarrow \operatorname{Set}(k_i)$$

 $h_t = \bigoplus_{j \in S_t} D[j]$

Online: (Client inputs *x*)

Client finds $k = k_i$ with Test(k, x) = true and send $\hat{k} = \text{Punc}(k, x)$ to server 2



Server1

Offline:

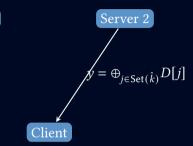
- Client sends $\widetilde{O}(\sqrt{n})$ PPPS keys k_1, k_2, \dots to server 1
- ▶ server responds with hint bits $h_1, h_2, ...$

$$S_i \leftarrow \operatorname{Set}(k_i)$$

$$h_t = \bigoplus_{j \in S_t} D[j]$$

Online: (Client inputs *x*)

- Client finds $k = k_i$ with Test(k, x) =true and send $\hat{k} = \text{Punc}(k, x)$ to server 2
- ▶ server 2 responds with $y \leftarrow \bigoplus_{j \in S} D[j]$ where $S = \text{Set}(\hat{k})$



Offline:

Server 2

- ► Client sends $\widetilde{O}(\sqrt{n})$ PPPS keys k_1, k_2, \dots to server 1
- ▶ server responds with hint bits h_1, h_2, \ldots

$$S_i \leftarrow \operatorname{Set}(k_i)$$

$$h_t = \bigoplus_{j \in S_t} D[j]$$

Online: (Client inputs *x*)

- Client finds $k = k_i$ with Test(k, x) =true and send $\hat{k} = \text{Punc}(k, x)$ to server 2
- ▶ server 2 responds with $y \leftarrow \bigoplus_{j \in S} D[j]$ where $S = \text{Set}(\hat{k})$
- ► Client outputs $y \oplus h_i = D[x]$

Client

Offline:

- ► Client sends $\widetilde{O}(\sqrt{n})$ PPPS keys k_1, k_2, \dots to server 1
- server responds with hint bits h_1, h_2, \ldots

$$S_i \leftarrow \operatorname{Set}(k_i)$$

$$h_t = \bigoplus_{j \in S_t} D[j]$$

Online: (Client inputs *x*)

- Client finds $k = k_i$ with Test(k, x) =true and send $\hat{k} = \text{Punc}(k, x)$ to server 2
- ▶ server 2 responds with $y \leftarrow \bigoplus_{j \in S} D[j]$ where $S = \text{Set}(\hat{k})$
- ► Client outputs $y \oplus h_i = D[x]$

Server1

Server 2

Client

Online complexity:

- ightharpoonup Client computation: $\widetilde{O}(\sqrt{n})$
- Server computation: $\widetilde{O}(\sqrt{n})$
- ▶ bandwidth: $\widetilde{O}(\sqrt{n})$

Key Challenge

- Design PPPS from information-theoretic primitives
- ► Short PPPS key representation that supports efficient test, puncturing and set enumeration

Key Challenge

- Design PPPS from information-theoretic primitives
- ► Short PPPS key representation that supports efficient test, puncturing and set enumeration

Key insights:

- For PIR correctness, only need each random set to contain indivdual elements from domain with probability $1/\sqrt{n}$
- ► Multi-server PIR scheme is compatible with a weaker PPPS: puncturing a PPPS key gives multiple disjoint keys/sets

10/17

```
(n, t)-PMPRS
                                   (Gen, Set, Test, Punc
, SerEval)
   \triangleright k \leftarrow Gen()
   \triangleright S \leftarrow \operatorname{Set}(k)
   b \leftarrow \text{Test}(k, x)

ightharpoonup ((S_0, k_0, ind_0), ...,
         (S_{t-1}, k_{t-1}, \operatorname{ind}_{t-1})) \leftarrow \operatorname{Punc}(k, x)

ightharpoonup \vec{v}_i \leftarrow SerEval(i, k_i, DB)
```

```
(n, t)-PMPRS (Gen, Set, Test, Punc, SerEval)
```

- ▶ $k \leftarrow \text{Gen}()$
- \triangleright $S \leftarrow \operatorname{Set}(k)$
- $\blacktriangleright b \leftarrow \text{Test}(k, x)$
- $((S_0, k_0, \mathsf{ind}_0), \ldots, (S_{t-1}, k_{t-1}, \mathsf{ind}_{t-1})) \leftarrow \mathsf{Punc}(k, x)$
- $ightharpoonup \vec{v}_i \leftarrow SerEval(i, k_i, DB)$

- ► randomness For any $x \in [n]$, $Pr(x \in S) = 1/\sqrt{n}$
- **Privacy**: key k_i hides x
- **▶** Correctness:

$$\triangleright$$
 $S \setminus \{x\} = \bigcup S_i$

```
(n, t)-PMPRS (Gen, Set, Test, Punc, SerEval)
```

- ▶ $k \leftarrow \text{Gen}()$
- $ightharpoonup S \leftarrow \operatorname{Set}(k)$
- ▶ $b \leftarrow \text{Test}(k, x)$
- $((S_0, k_0, \text{ind}_0), \ldots, (S_{t-1}, k_{t-1}, \text{ind}_{t-1})) \leftarrow \text{Punc}(k, x)$
- $ightharpoonup \vec{v}_i \leftarrow SerEval(i, k_i, DB)$

Security properties:

- ► randomness For any $x \in [n]$, $Pr(x \in S) = 1/\sqrt{n}$
- **Privacy**: key k_i hides x
- **▶** Correctness:

$$ightharpoonup S \setminus \{x\} = \dot{\bigcup} S_i$$

$$for i \in [t],
 \vec{v}_i[ind_i] = \bigoplus_{j \in S_i} DB[j]$$

Efficient PMPRS: $\widetilde{O}(1)$ Test and $\widetilde{O}(\sqrt{n})$ SerEval complexity; $\widetilde{O}(n^{1/2t})$ key-size

Main Results

Theorem (PMPRS)

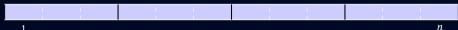
There exist (n, t)-PMPRS with key size $\widetilde{O}(n^{1/2t})$, Test and SerEval complexity $\widetilde{O}(1)$ and $\widetilde{O}(\sqrt{n})$ respectively

Theorem (IT client preprocessing PIR)

(n, t)-PMPRS $\implies t$ server IT PIR with preprocessing with client state size $\widetilde{O}(n^{1/2+1/2t})$, online client/server $\widetilde{O}(\sqrt{n})$ and bandwidth $\widetilde{O}(\sqrt{n})$

well-partitioned random set

- ► Contain one random element from each chunk
- ► chunk $(x) = \lfloor x/\sqrt{n} \rfloor$, offset $(x) = (x\%\sqrt{n})$



12/17

Let
$$t = 1/2 \log_2 n$$
 and $m = \sqrt{n}$

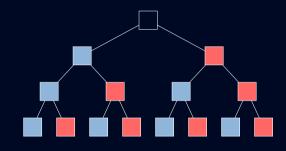
```
Let t = 1/2 \log_2 n and m = \sqrt{n}

R[i][0], R[i][1] \in [m]
```

Let
$$t = 1/2 \log_2 n$$
 and $m = \sqrt{n}$

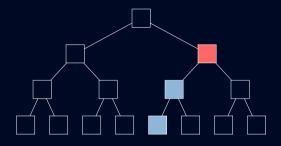
▶ $R \leftarrow \text{Gen}()$ outputs for $i \in [t]$:

$$R[i][0], R[i][1] \in [m]$$



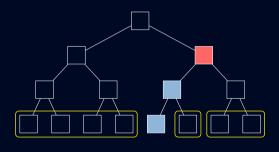
Let
$$t = 1/2 \log_2 n$$
 and $m = \sqrt{n}$

- $R \leftarrow Gen() \text{ outputs for } i \in [t]:$ $R[i][0], R[i][1] \in [m]$
- ightharpoonup Test(R, x):
 - $ightharpoonup (c_0, \ldots, c_{t-1}) \leftarrow \text{bit-dec(chunk } (x))$
 - ▶ check if $\bigoplus_i R[i][c_i] = \text{offset}(x)$?



Let
$$t = 1/2 \log_2 n$$
 and $m = \sqrt{n}$

- ▶ $R \leftarrow \text{Gen}()$ outputs for $i \in [t]$:
 - $R[i][0], R[i][1] \in [m]$
- ightharpoonup Test(R, x):
 - $ightharpoonup (c_0, \ldots, c_{t-1}) \leftarrow \text{bit-dec(chunk } (x))$
 - ▶ check if $\bigoplus_i R[i][c_i] = \text{offset}(x)$?
- **▶** Set(*k*)
- ightharpoonup Punc(k, x)
 - Each key k_i contains offset values of set S_i
- ▶ SerEval(D, k_i)
 - for each guess of chunk indexes of S_i compute database xor bit



Conclusion

Conclusion

- ▶ New PMPRS primitive and construction
- ▶ Efficient (n, t)-PMPRS \implies non-trivial unconditional PIR with client preprocessing (2t servers)
 - ightharpoonup General construction based on arbitrary d-ary trees
 - technical challenge: ensuring SerEval cost is $O(\sqrt{n})$
- **Extension**: Improved online communication complexity $O(n^{o(1)+1/2t})$ assuming 4t servers

Conclusion

- ► New PMPRS primitive and construction
- ▶ Efficient (n, t)-PMPRS \implies non-trivial unconditional PIR with client preprocessing (2t servers)
 - ► General construction based on arbitrary *d*-ary trees
 - technical challenge: ensuring SerEval cost is $O(\sqrt{n})$
- **Extension**: Improved online communication complexity $O(n^{o(1)+1/2t})$ assuming 4t servers

Parallel Work [ISW24]

- Also study PIR with client preprocessing in IT setting (1 and 2 server setting)
- different techniques and lower bound proof
- ▶ Higher complexity for online server cost, offline bandwidth, and other measures

Thanks

eprint: https://eprint.iacr.org/2024/780.pdf