Sparse Linear Regression and Lattice Problems

Aparna Gupte

Neekon Vafa

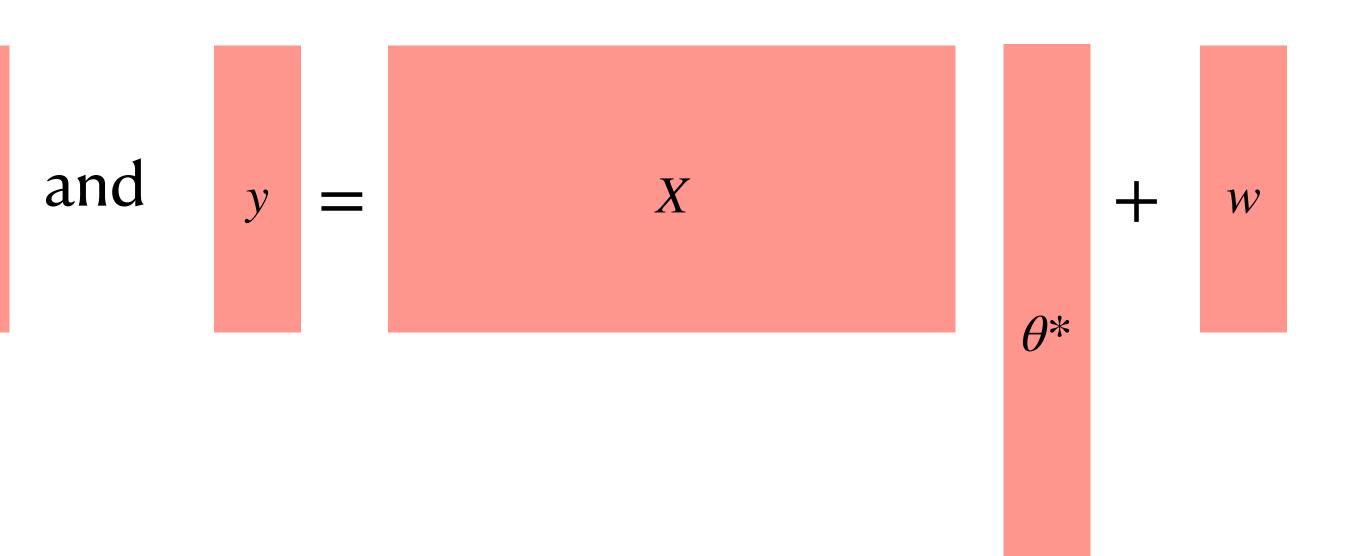
Vinod Vaikuntanathan

and y X

Given:

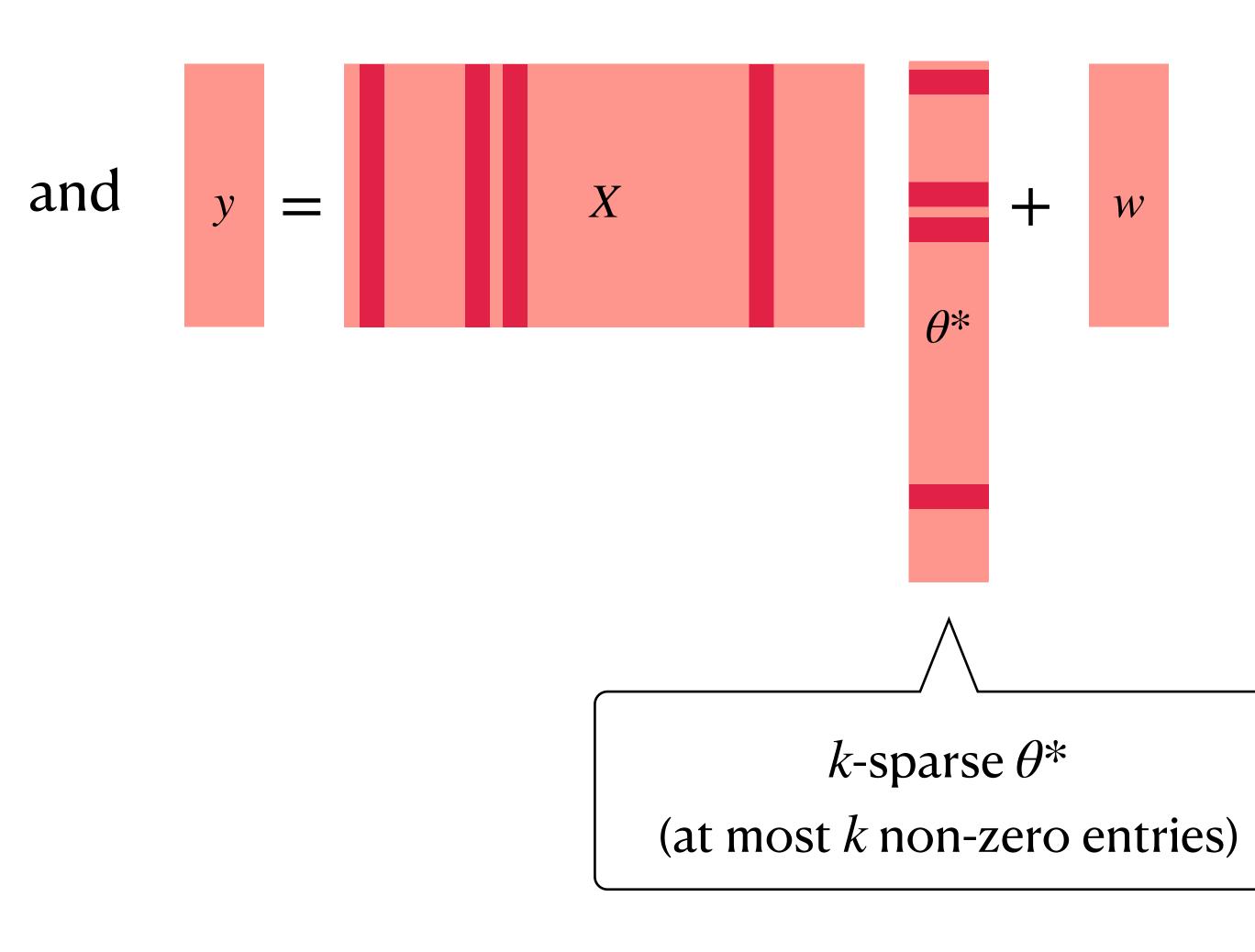
X

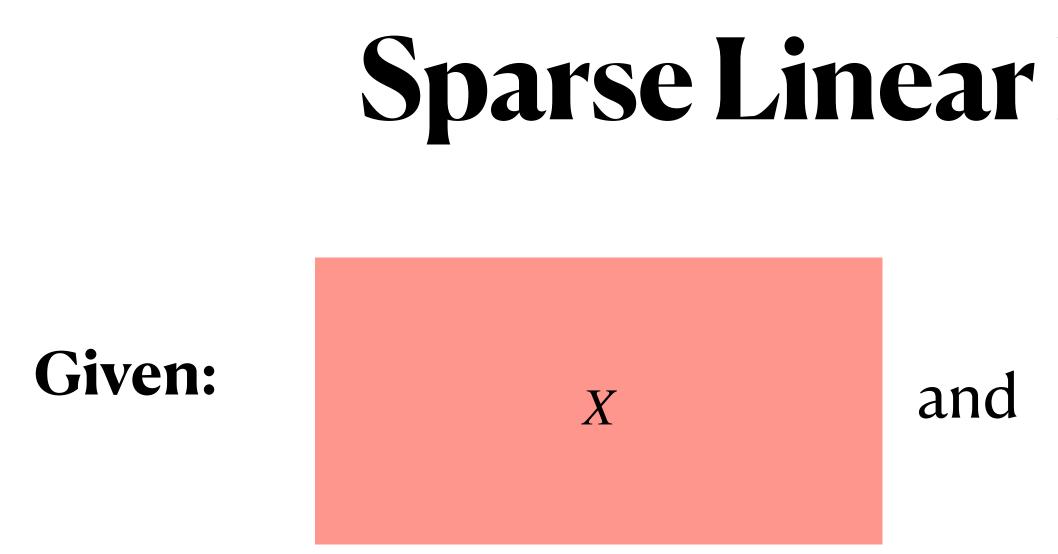
Given:



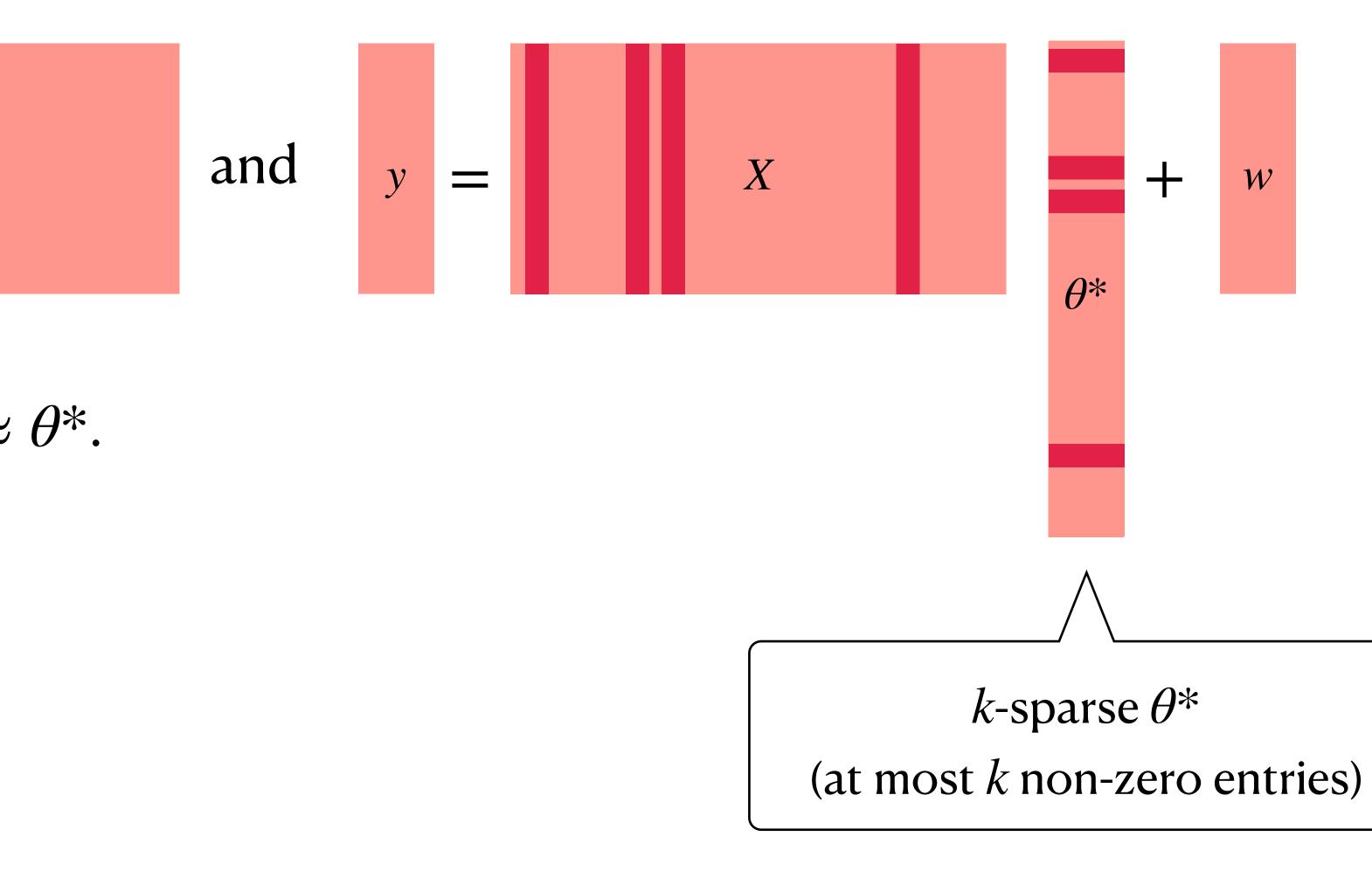
X

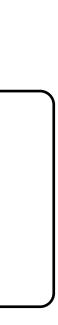
Given:

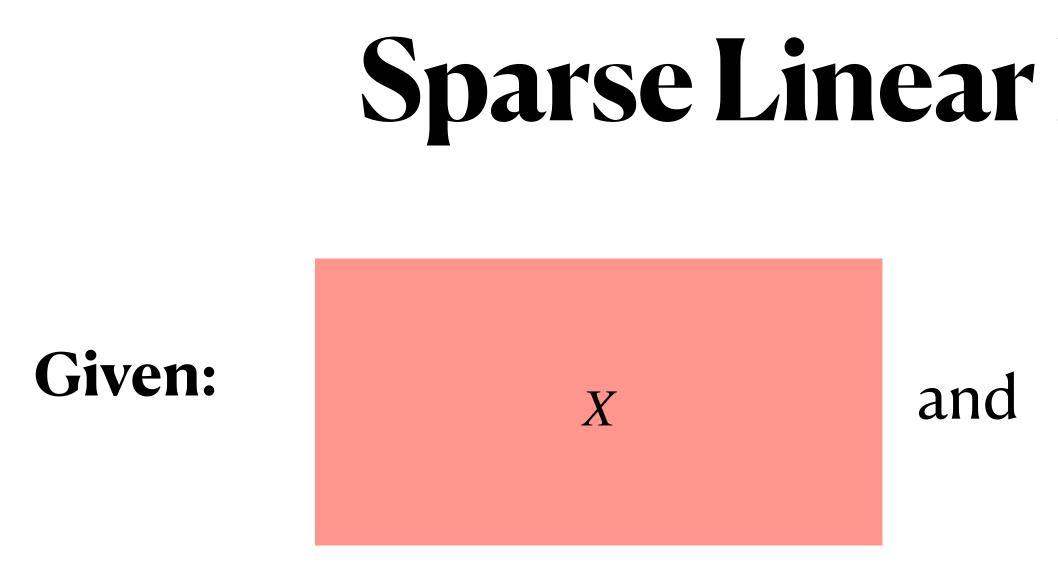




Goal: Find *k*-sparse $\hat{\theta} \approx \theta^*$.

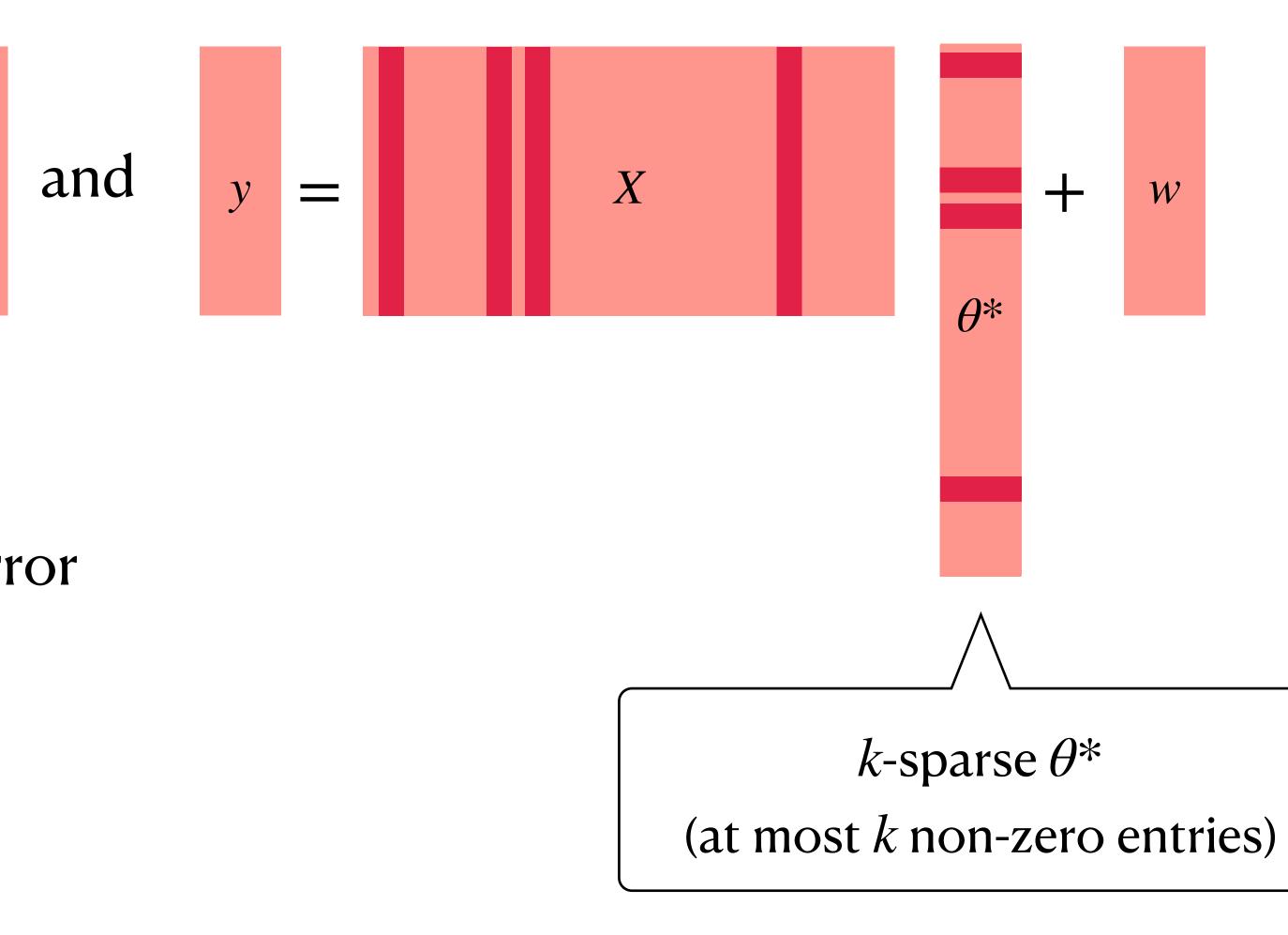


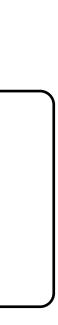


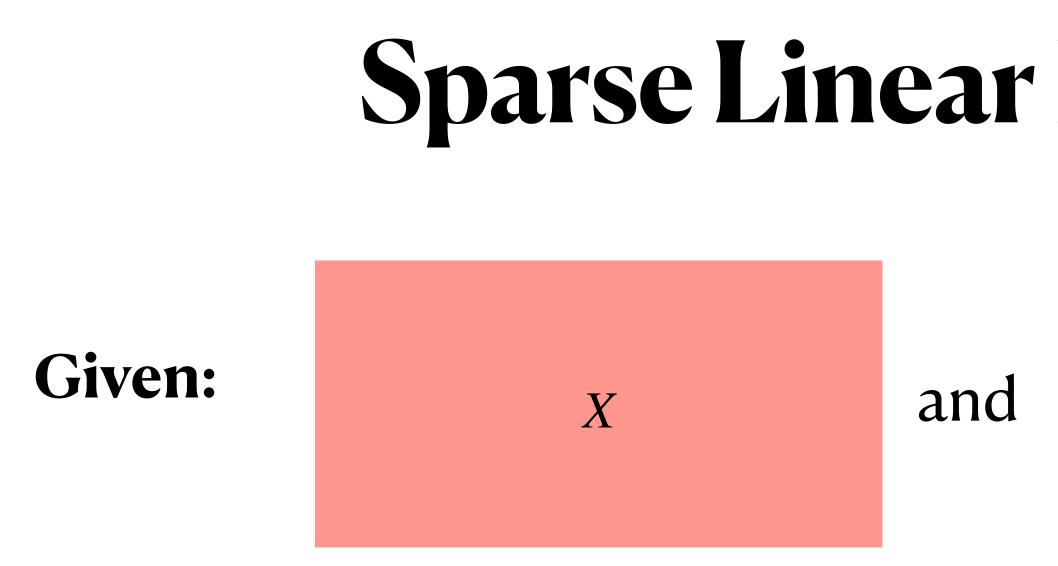


Goal: Find *k*-sparse $\hat{\theta} \approx \theta^*$.

Minimize prediction error $\varepsilon := \|X\hat{\theta} - X\theta^*\|_2.$



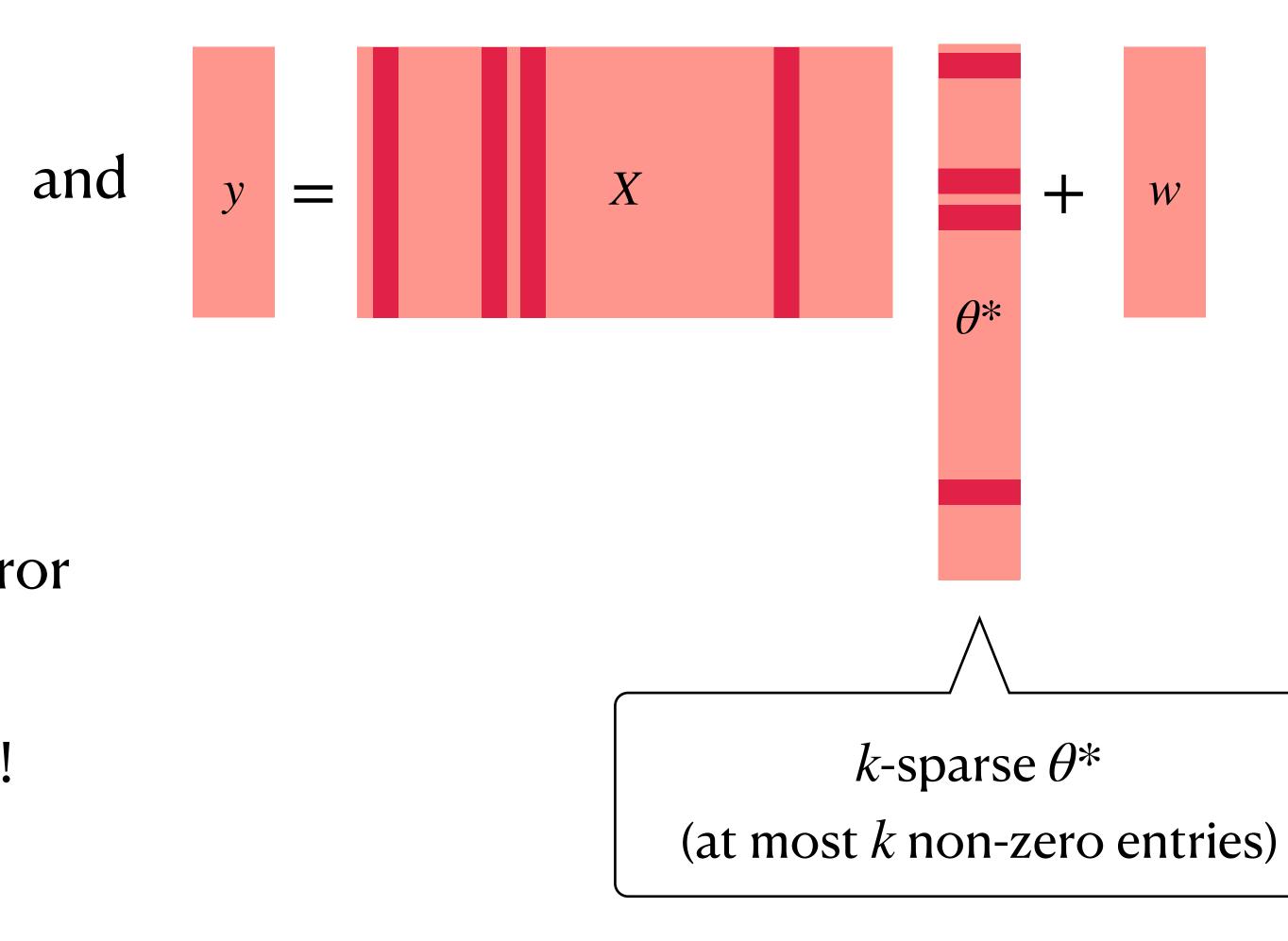


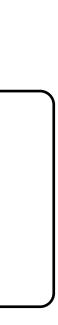


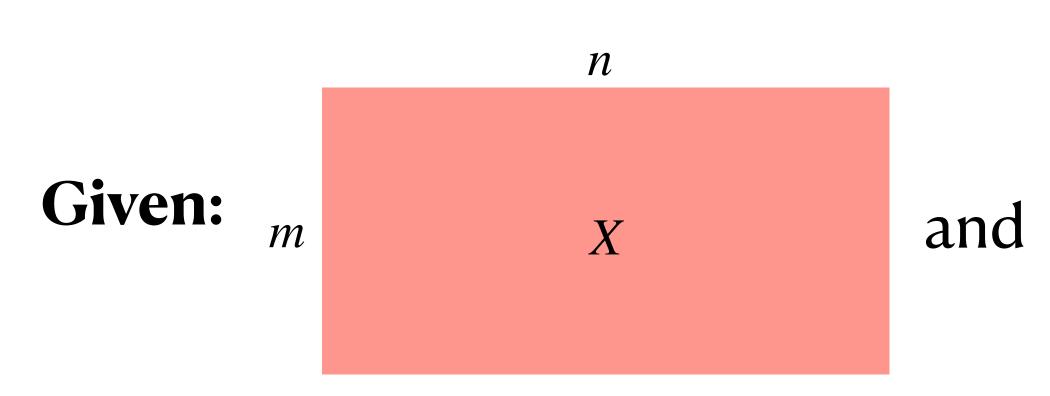
Goal: Find *k*-sparse $\hat{\theta} \approx \theta^*$.

Minimize prediction error $\varepsilon := \|X\hat{\theta} - X\theta^*\|_2.$

Important problem in statistics!





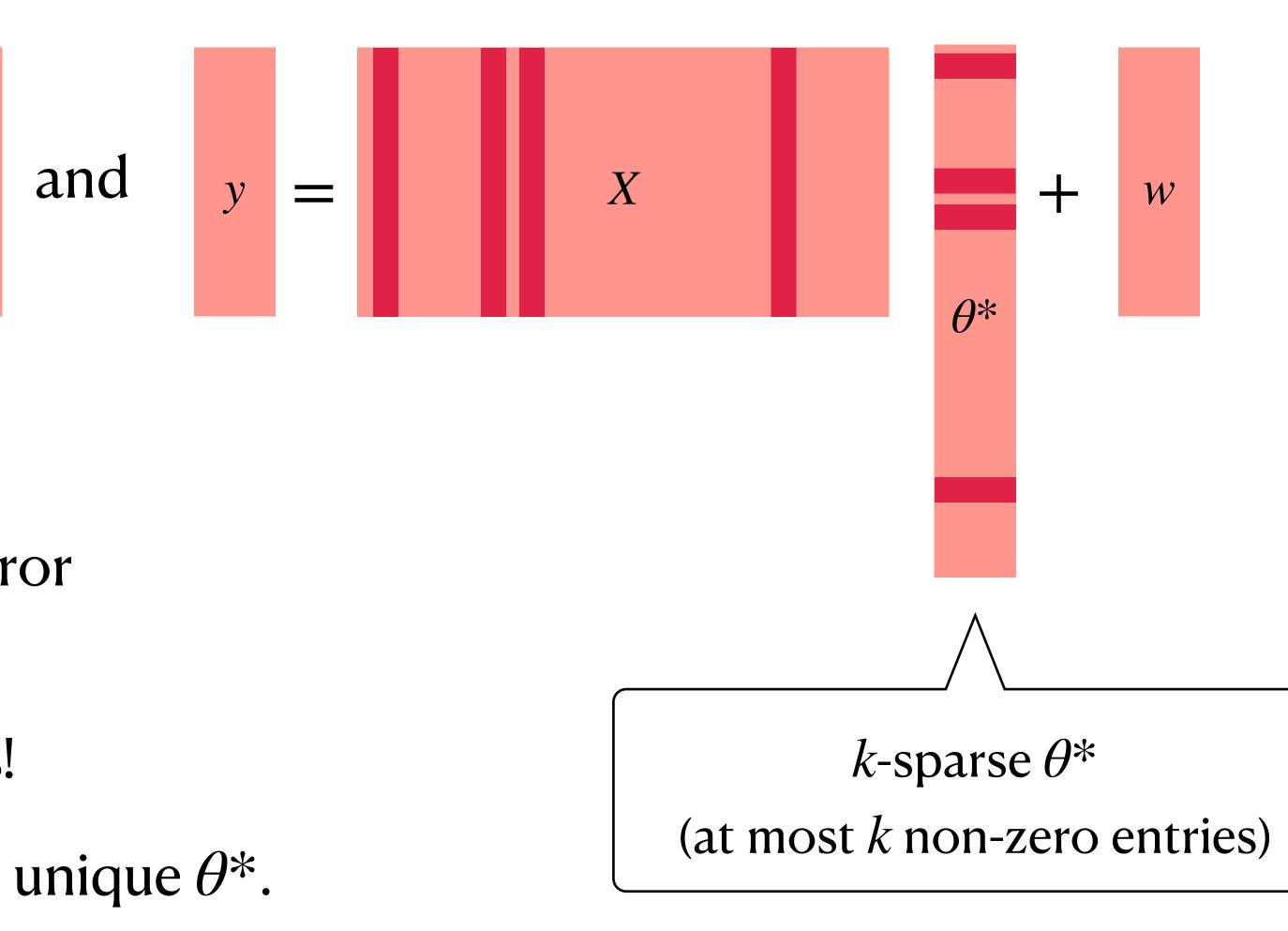


Goal: Find *k*-sparse $\hat{\theta} \approx \theta^*$.

Minimize prediction error $\varepsilon := \| X \hat{\theta} - X \theta^* \|_2.$

Important problem in statistics!

•Usually $m \ll n$. Sparsity allows unique θ^* .



Algorithms	Description		
Naive	Brute force all <i>k</i> -column subsets + least-squares.		
	m X		

Runtime

Prediction Error

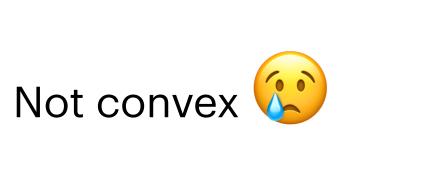
Algorithms	Description	Runtime	Prediction Error
Naive	Brute force all <i>k</i> -column subsets + least-squares.	n ^k	
	m X		

Algorithms	Description	Runtime	Prediction Error
Naive	Brute force all <i>k</i> -column subsets + least-squares.	n ^k	Optimal prediction error $\widehat{\boldsymbol{\varepsilon}}$ $\boldsymbol{\varepsilon}_{\text{opt}} \leq 2 \ \boldsymbol{w}\ _2$

Algorithms	Description	Runtime	Prediction Error
Naive	Brute force all <i>k</i> -column subsets + least-squares.	n ^k	Optimal prediction error $\widehat{\varepsilon}$ $\varepsilon_{\text{opt}} \le 2 \ w\ _2$
LASSO	Want: $\min_{\theta: \ \theta\ _0 \le k} \ X\theta - y\ _2$		

Algorithms	Description	Runtime	Prediction Error
Naive	Brute force all <i>k</i> -column subsets + least-squares.	n ^k	Optimal prediction error $\widehat{\varepsilon}$ $\varepsilon_{\text{opt}} \le 2 \ w\ _2$
LASSO	Want: $\min_{\substack{\theta : \ \theta\ _0 \le k}} \ X\theta - y\ _2$ Equivalently: $\min_{\substack{\theta \\ \theta}} \ X\theta - y\ _2^2 + \gamma \cdot \ \theta\ _0$		

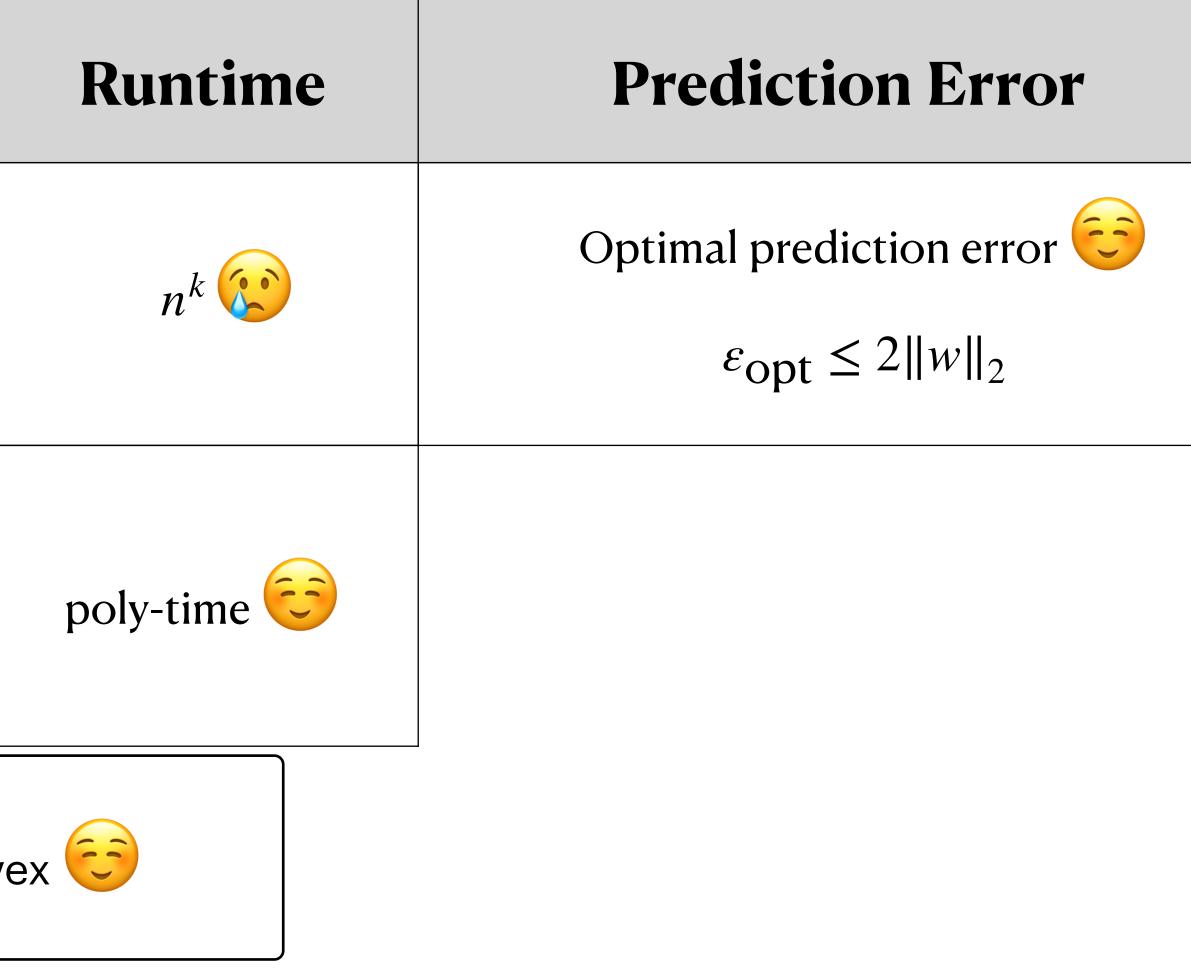
Algorithms	Description	Runtime	Prediction Error
Naive	Brute force all <i>k</i> -column subsets + least-squares.	n ^k	Optimal prediction error $\widehat{\epsilon}$ $\epsilon_{opt} \le 2 \ w\ _2$
LASSO	Want: $\min_{\substack{\theta: \ \theta\ _0 \le k}} \ X\theta - y\ _2$ Equivalently: $\min_{\theta} \ X\theta - y\ _2^2 + \gamma \cdot \ \theta\ _0$		



Algorithms	Description	Runtime	Prediction Error
Naive	Brute force all <i>k</i> -column subsets + least-squares.	n ^k	Optimal prediction error $\widehat{\boldsymbol{\varepsilon}}$ $\boldsymbol{\varepsilon}_{\text{opt}} \leq 2 \ \boldsymbol{w}\ _2$
LASSO	Want: $\min_{\substack{\theta: \ \theta\ _0 \le k}} \ X\theta - y\ _2$ Equivalently: $\min_{\theta} \ X\theta - y\ _2^2 + \gamma \cdot \ \theta\ _{\theta_1}$		

Algorithms	Description
Naive	Brute force all <i>k</i> -column subsets + least-squares.
LASSO	Want: $\min_{\substack{\theta: \ \theta\ _0 \le k}} \ X\theta - y\ _2$ Equivalently: $\min_{\theta} \ X\theta - y\ _2^2 + \gamma \cdot \ \theta\ _{\theta_1}$

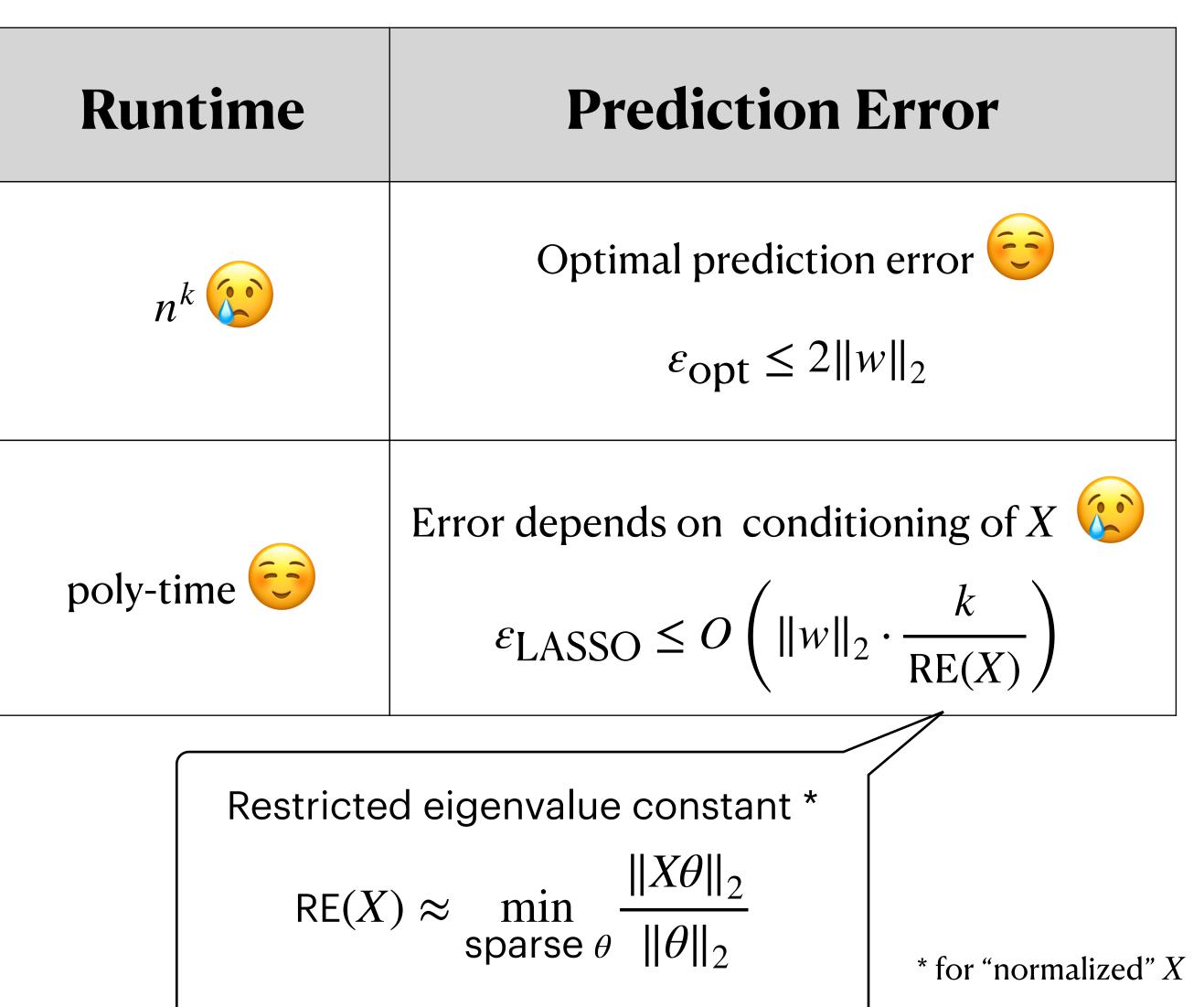
Convex



Algorithms	Description	Runtime	Prediction Error
Naive	Brute force all <i>k</i> -column subsets + least-squares.	n ^k	Optimal prediction error $\widehat{\varepsilon}$ $\varepsilon_{\text{opt}} \le 2 \ w\ _2$
LASSO	Want: $\min_{\substack{\theta: \ \theta\ _0 \le k}} \ X\theta - y\ _2$ Equivalently: $\min_{\theta} \ X\theta - y\ _2^2 + \gamma \cdot \ \theta\ _{\theta_1}$	poly-time 😂	Error depends on conditioning of X

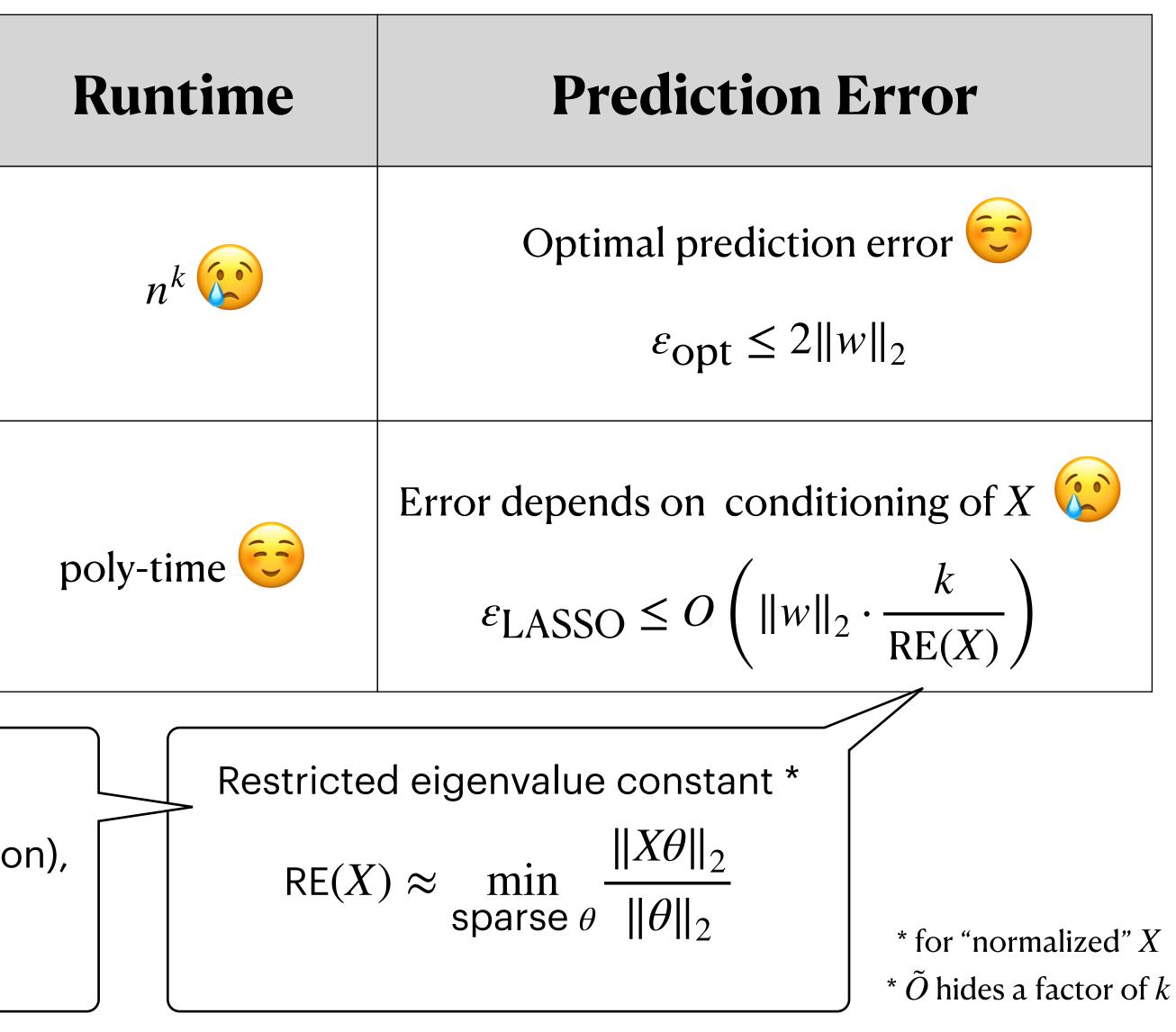
Algorithms	Description	Runtime	Prediction Error
Naive	Brute force all <i>k</i> -column subsets + least-squares.	n ^k	Optimal prediction error $\widehat{\epsilon}$ $\epsilon_{opt} \le 2 \ w\ _2$
LASSO	Want: $\min_{\substack{\theta : \ \theta\ _0 \le k}} \ X\theta - y\ _2$ Equivalently: $\min_{\theta} \ X\theta - y\ _2^2 + \gamma \cdot \ \theta\ _{\theta_1}$	poly-time 🙃	Error depends on conditioning of X $\varepsilon_{\text{LASSO}} \leq O\left(\ w\ _2 \cdot \frac{k}{\text{RE}(X)} \right)$

Algorithms	Description	
Naive	Brute force all <i>k</i> -column subsets + least-squares.	
LASSO	Want: $\min_{\substack{\theta: \ \theta\ _0 \le k}} \ X\theta - y\ _2$ Equivalently: $\min_{\theta} \ X\theta - y\ _2^2 + \gamma \cdot \ \theta\ _{\theta_1}$	



Algorithms	Description
Naive	Brute force all <i>k</i> -column subsets + least-squares.
LASSO	Want: $\min_{\substack{\theta: \ \theta\ _0 \le k}} \ X\theta - y\ _2$ Equivalently: $\min_{\theta} \ X\theta - y\ _2^2 + \gamma \cdot \ \theta\ _{\theta_1}$

When $X \sim \mathcal{N}(0, I_n)^{\otimes m}$ and $m \geq \Omega(k \cdot \log n)$ (i.e. rows i.i.d. standard Gaussian & unique sparse solution), $\operatorname{RE}(X) = \Omega(1)$, so LASSO achieves $\tilde{O}(\varepsilon_{\text{opt}})$ error*.



Hardness [Natarajan '95, Zhang-Wainwright-Jordan '14]

A fixed sequence of *worst-case* design matrices for which • it is impossible to beat the RE error bound unless NP \subseteq P/poly.

Hardness [Natarajan '95, Zhang-Wainwright-Jordan '14] Algorithms [Kelner-Koehler-Meka-Rohatgi '22, '23]

A fixed sequence of *worst-case* design matrices for which • • Preconditioned LASSO beats RE bound for certain X it is impossible to beat the RE error bound unless (X with "low treewidth"). NP \subseteq P/poly.

Algorithms [Kelner-Koehler-Meka-Rohatgi '22, '23] Hardness [Natarajan '95, Zhang-Wainwright-Jordan '14]

A fixed sequence of *worst-case* design matrices for which • • Preconditioned LASSO beats RE bound for certain X it is impossible to beat the RE error bound unless (X with "low treewidth"). NP \subseteq P/poly.

For which design matrices X is SLR hard?

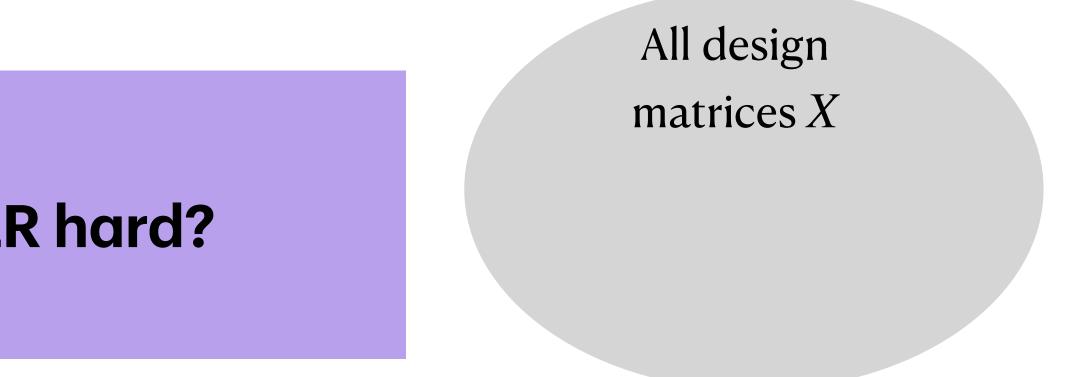
Hardness [Natarajan '95, Zhang-Wainwright-Jordan '14]

A fixed sequence of *worst-case* design matrices for which • • Preconditioned LASSO beats RE bound for certain X it is impossible to beat the RE error bound unless (X with "low treewidth"). NP \subseteq P/poly.

For which design matrices X is SLR hard?

Is there a better algorithm for SLR without the RE(X) dependence?

Algorithms [Kelner-Koehler-Meka-Rohatgi '22, '23]

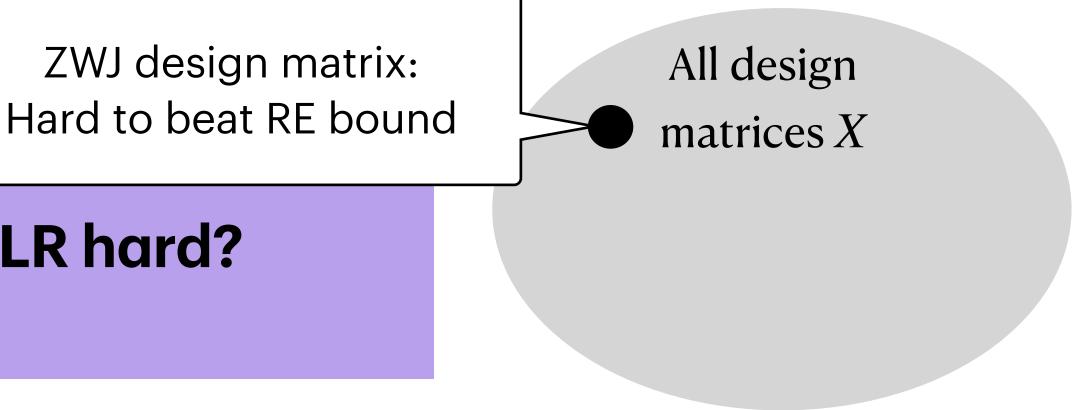


Hardness [Natarajan '95, Zhang-Wainwright-Jordan '14]

A fixed sequence of *worst-case* design matrices for which • it is impossible to beat the RE error bound unless NP \subseteq P/poly.

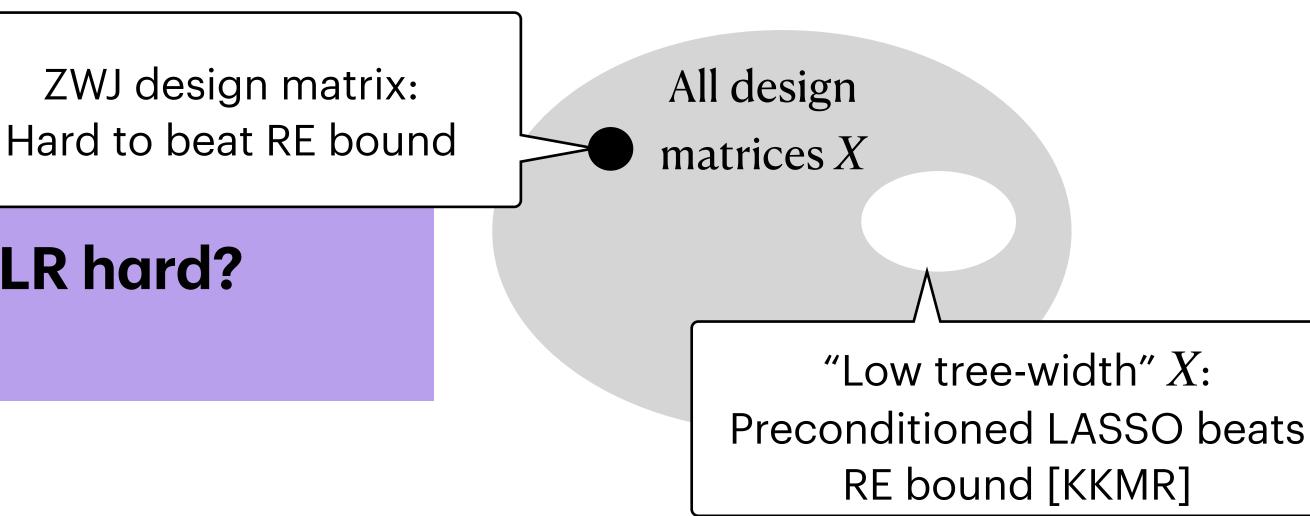
For which design matrices X is SLR hard?

- Algorithms [Kelner-Koehler-Meka-Rohatgi '22, '23] • Preconditioned LASSO beats RE bound for certain X
 - (X with "low treewidth").



Algorithms [Kelner-Koehler-Meka-Rohatgi '22, '23] Hardness [Natarajan '95, Zhang-Wainwright-Jordan '14] A fixed sequence of *worst-case* design matrices for which • Preconditioned LASSO beats RE bound for certain X ulletit is impossible to beat the RE error bound unless (X with "low treewidth"). NP \subseteq P/poly.

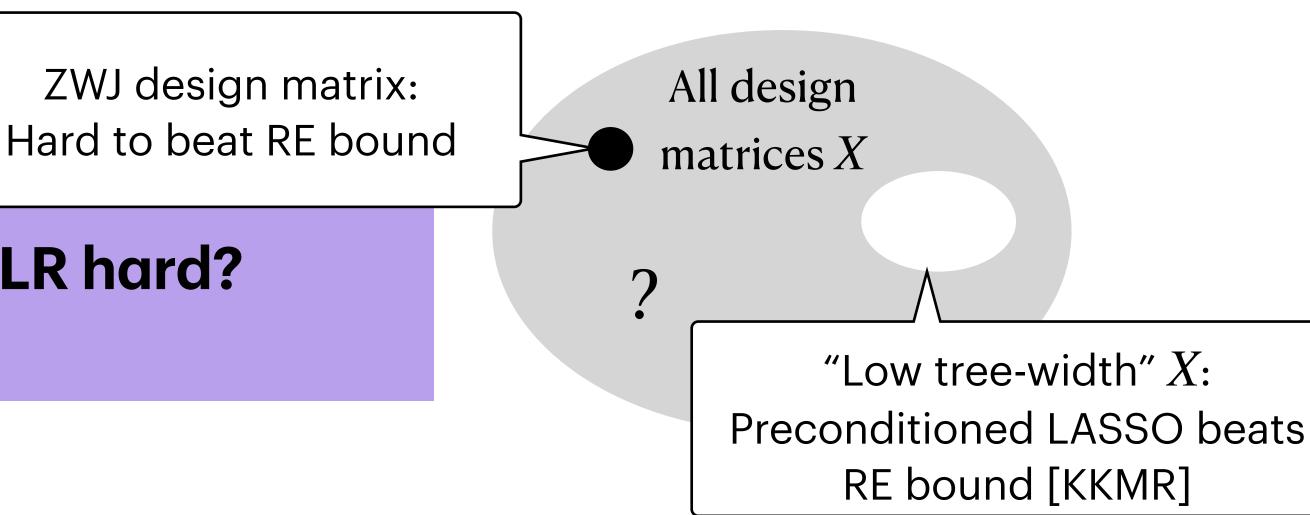
For which design matrices X is SLR hard?





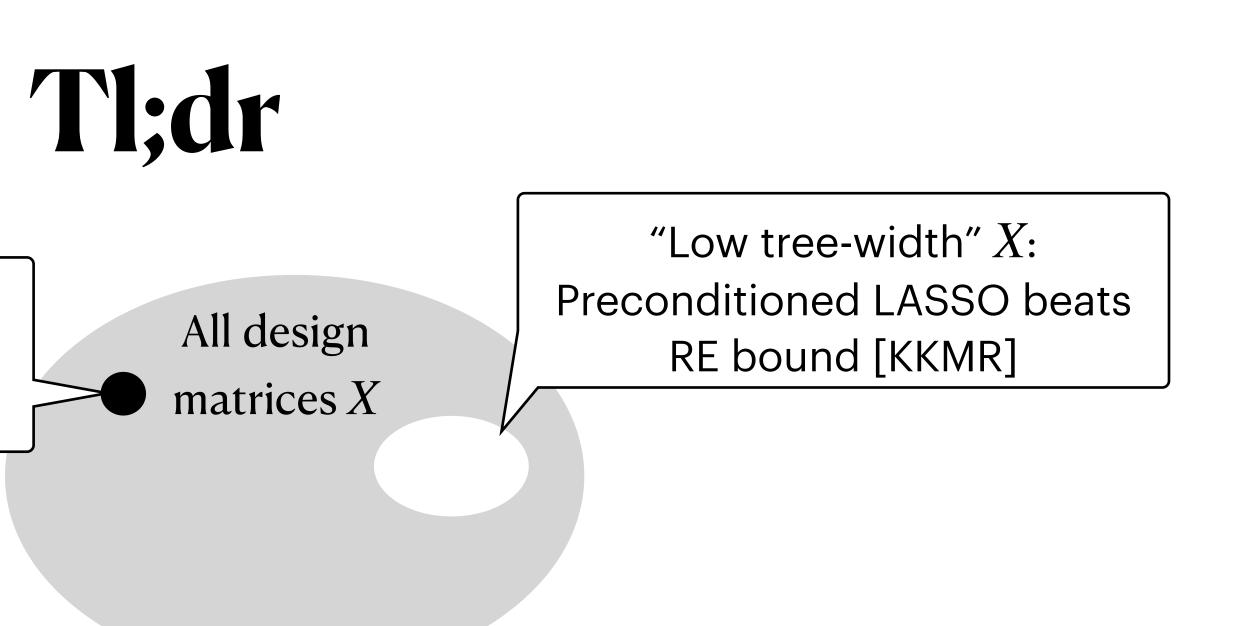
Algorithms [Kelner-Koehler-Meka-Rohatgi '22, '23] Hardness [Natarajan '95, Zhang-Wainwright-Jordan '14] A fixed sequence of *worst-case* design matrices for which • • Preconditioned LASSO beats RE bound for certain X it is impossible to beat the RE error bound unless (X with "low treewidth"). NP \subseteq P/poly.

For which design matrices X is SLR hard?



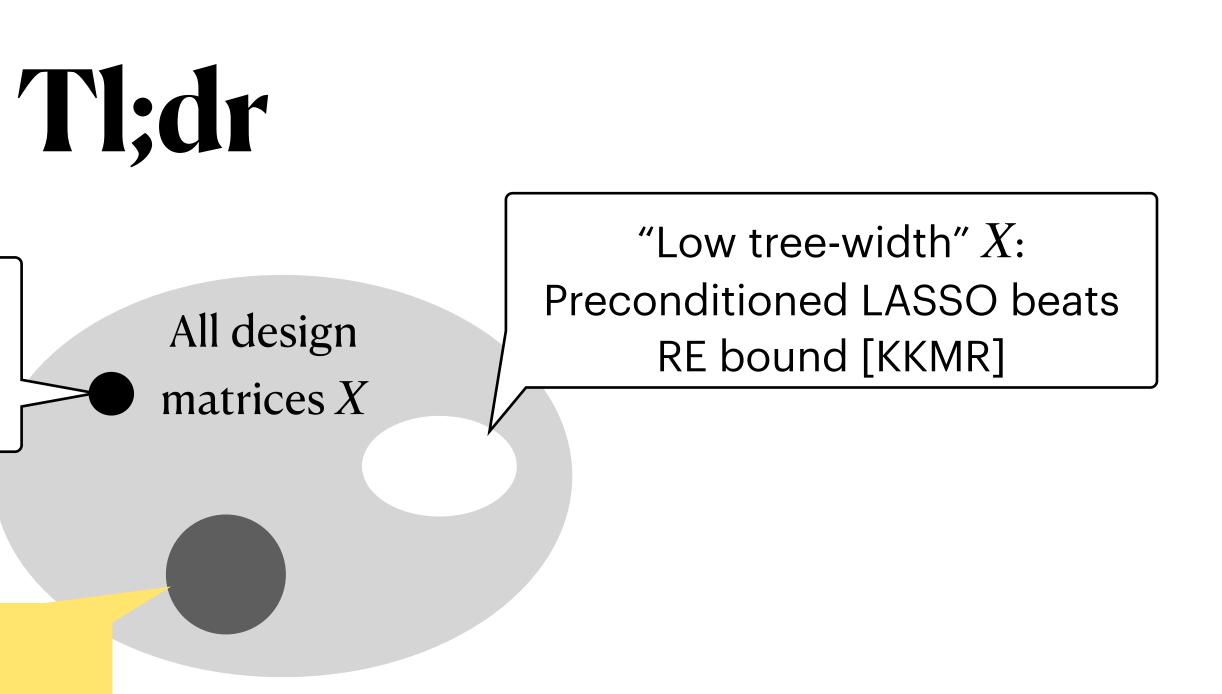


ZWJ design matrix: Hard to beat RE bound



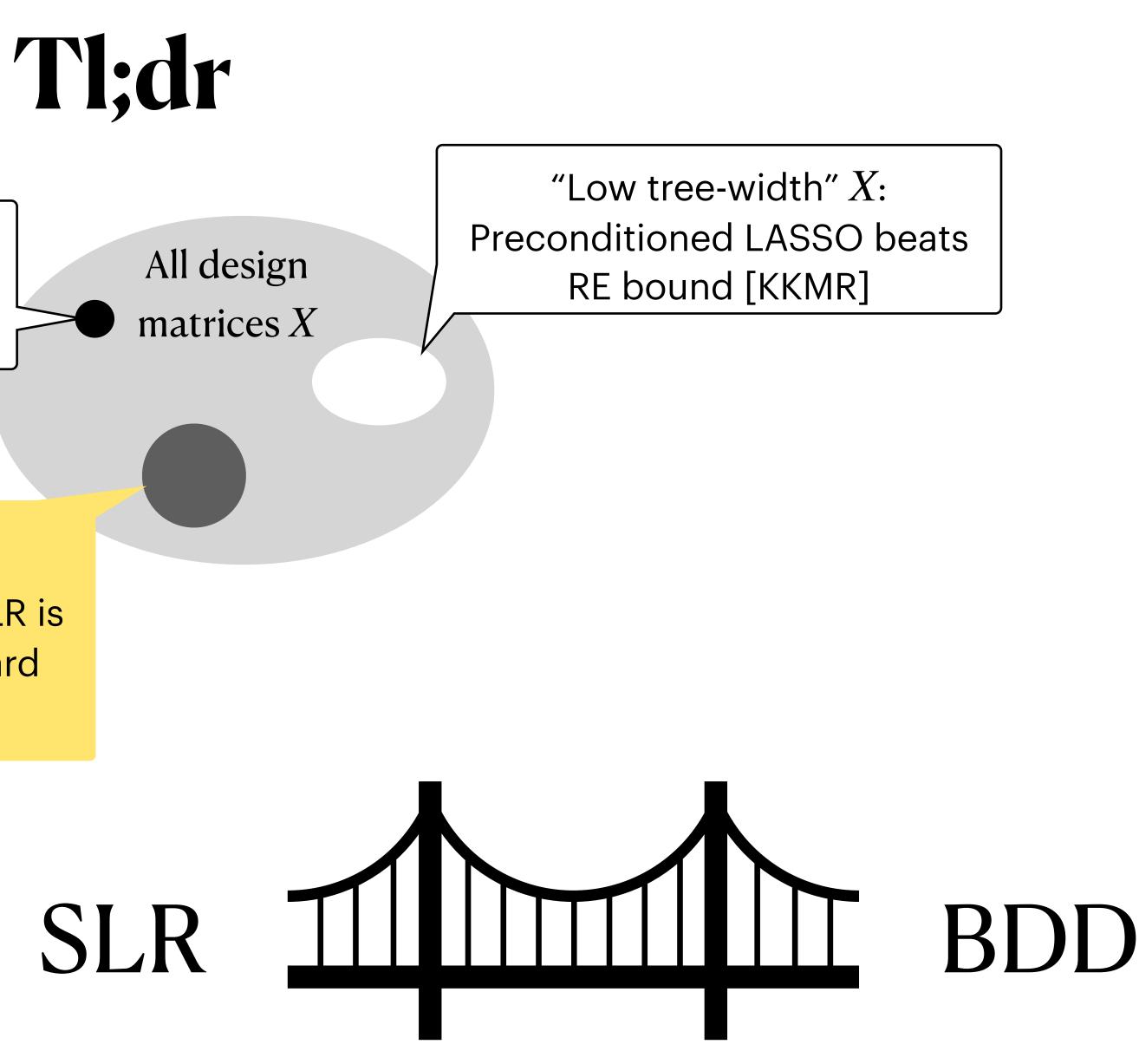
ZWJ design matrix: Hard to beat RE bound

Design matrices X for which SLR is hard if lattice problems are hard



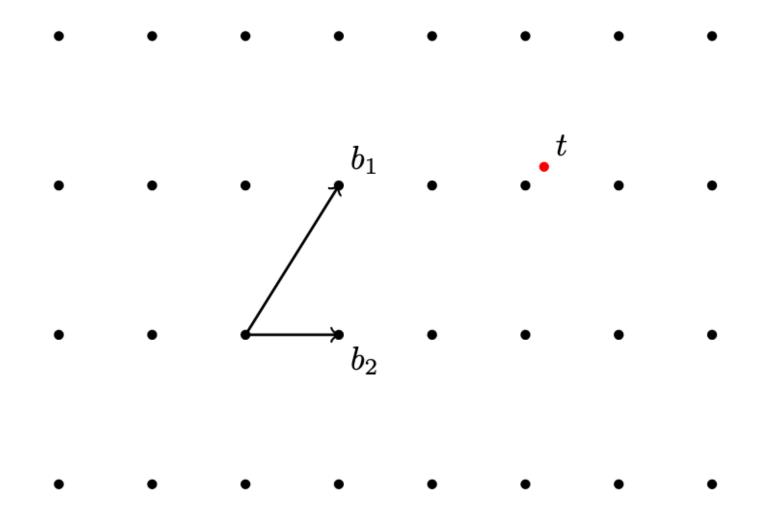
ZWJ design matrix: Hard to beat RE bound

Design matrices X for which SLR is hard if lattice problems are hard



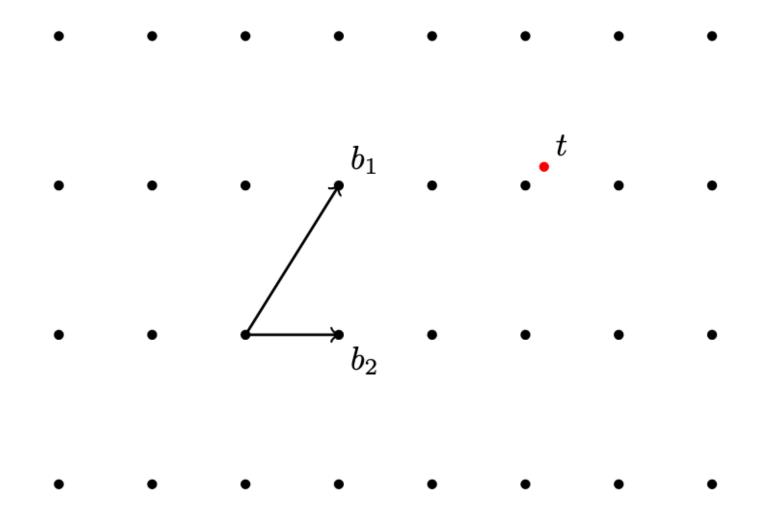
Given: Lattice basis *B* and target vector $t = Bz^* + e$

Generated lattice $\mathscr{L}(B) = \{Bz \mid \text{integral } z \in \mathbb{Z}^d\}$



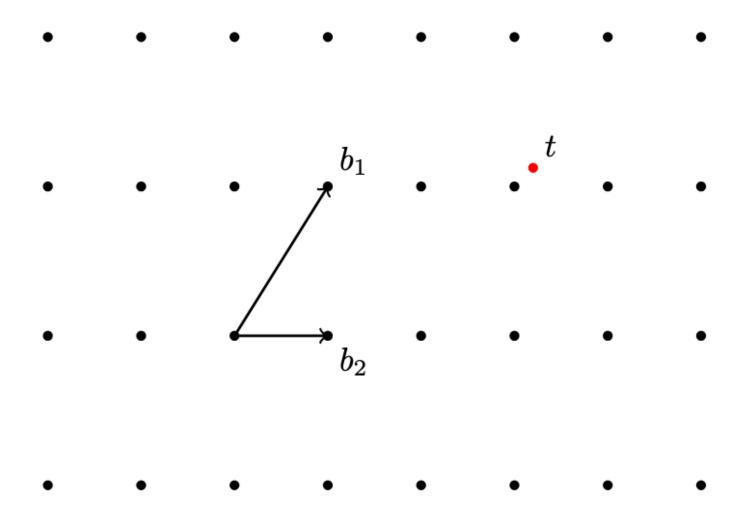
- **Given:** Lattice basis *B* and target vector $t = Bz^* + e$
 - Generated lattice $\mathscr{L}(B) = \{Bz \mid \text{integral } z \in \mathbb{Z}^d\}$

Goal: Find nearest lattice point *Bz**



Given: Lattice basis *B* and target vector $t = Bz^* + e$ Generated lattice $\mathscr{L}(B) = \{Bz \mid \text{integral } z \in \mathbb{Z}^d\}$

Goal: Find nearest lattice point Bz^* Promise that $||e||_2 \le \alpha \cdot \lambda_1(B)$ where parameter $\alpha < 1/2$.

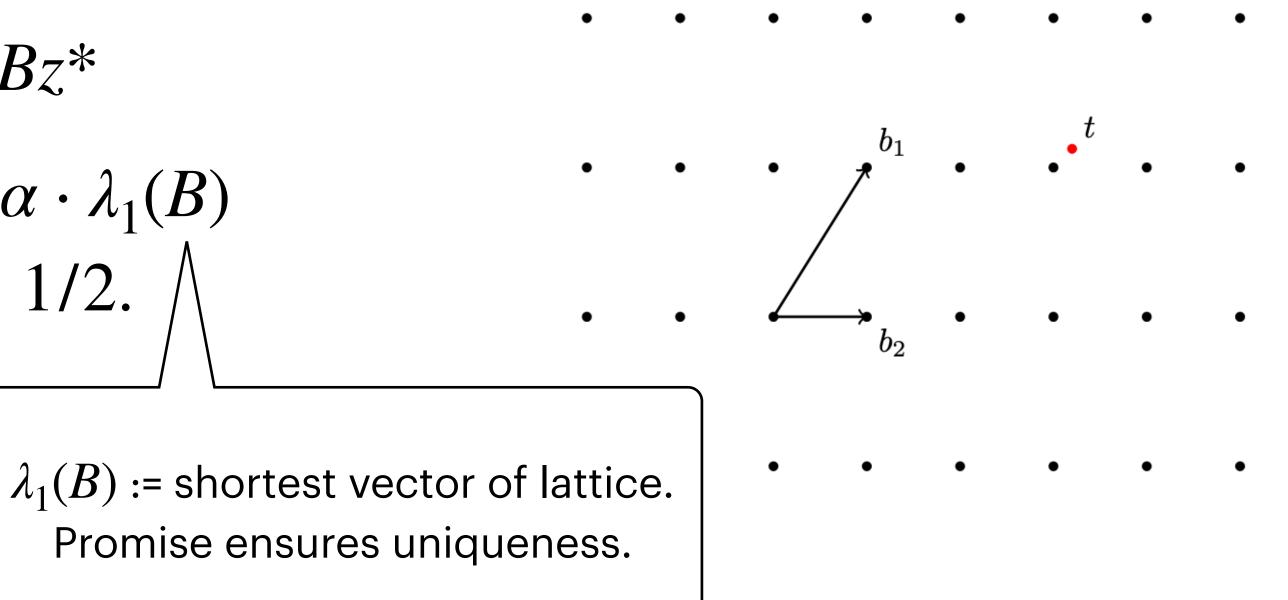


Given: Lattice basis *B* and target vector $t = Bz^* + e$

Goal: Find nearest lattice point Bz^*

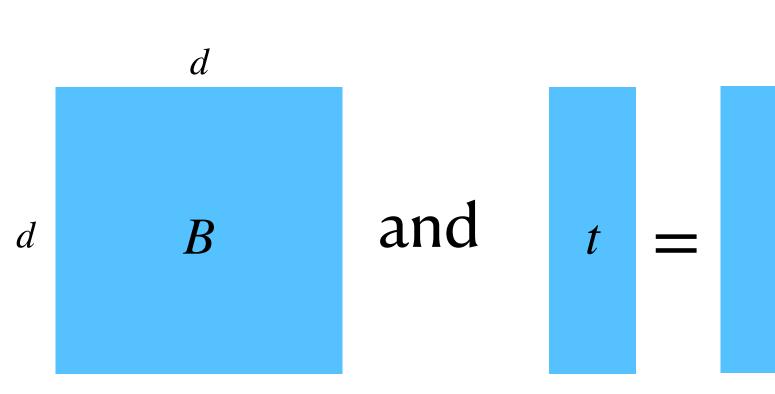
Promise that $||e||_2 \leq \alpha \cdot \lambda_1(B)$ where parameter $\alpha < 1/2$.

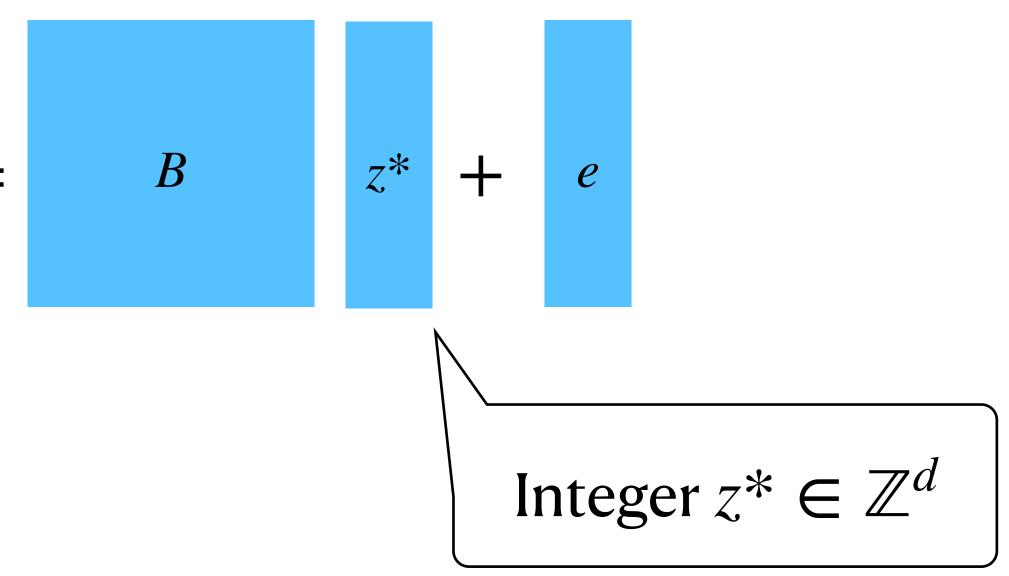
Generated lattice $\mathscr{L}(B) = \{Bz \mid \text{integral } z \in \mathbb{Z}^d\}$

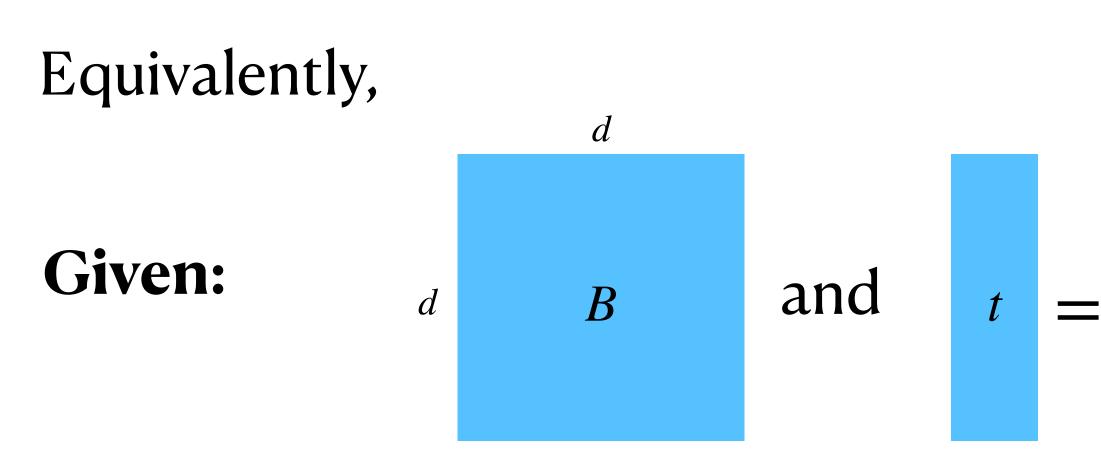


Equivalently,

Given:

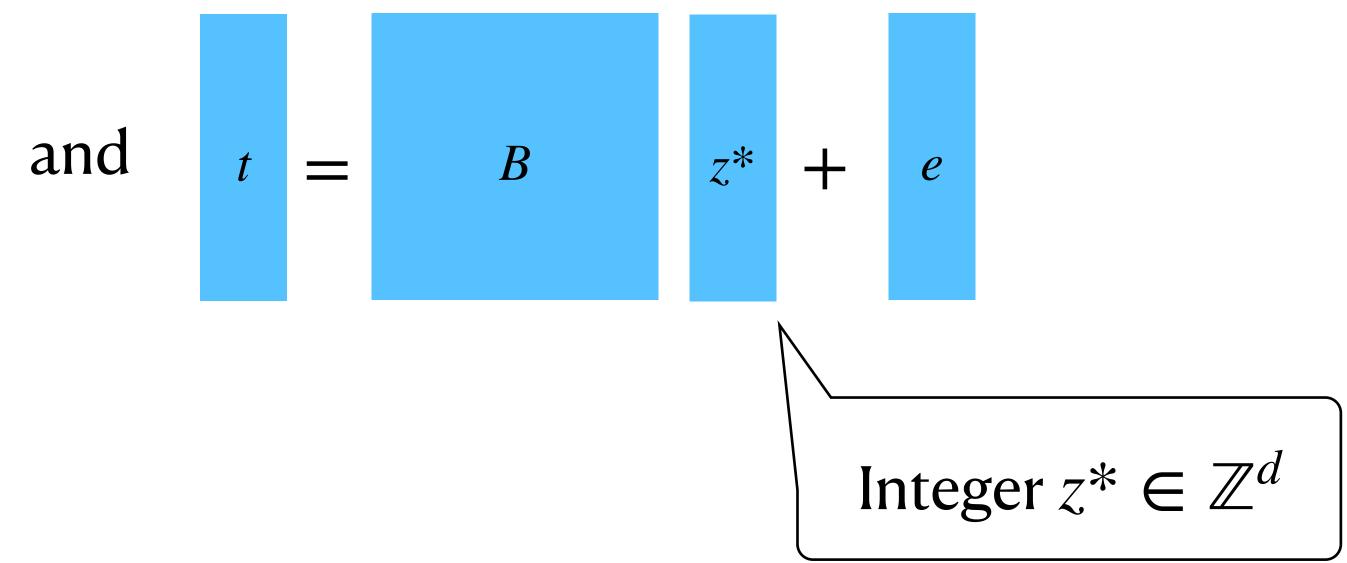






Goal: Find $z^* \in \mathbb{Z}^d$

Promised that $||e||_2 \leq \alpha \cdot \lambda_1(B)$



Algorithms

[Ajtai-Kumar-Sivakumar '01], [Micciancio-Voulgaris'13], [Aggarwal-Dadush-Stephens-Davidowitz'15]

Runtime	Parameter range
$2^{d+o(d)}$	Works for $\alpha < \frac{1}{2}$

Algorithms

[Ajtai-Kumar-Sivakumar '01], [Micciancio-Voulgaris'13], [Aggarwal-Dadush-Stephens-Davidowitz'15]

Babai's rounding off

algorithm round($B^{-1}t$)

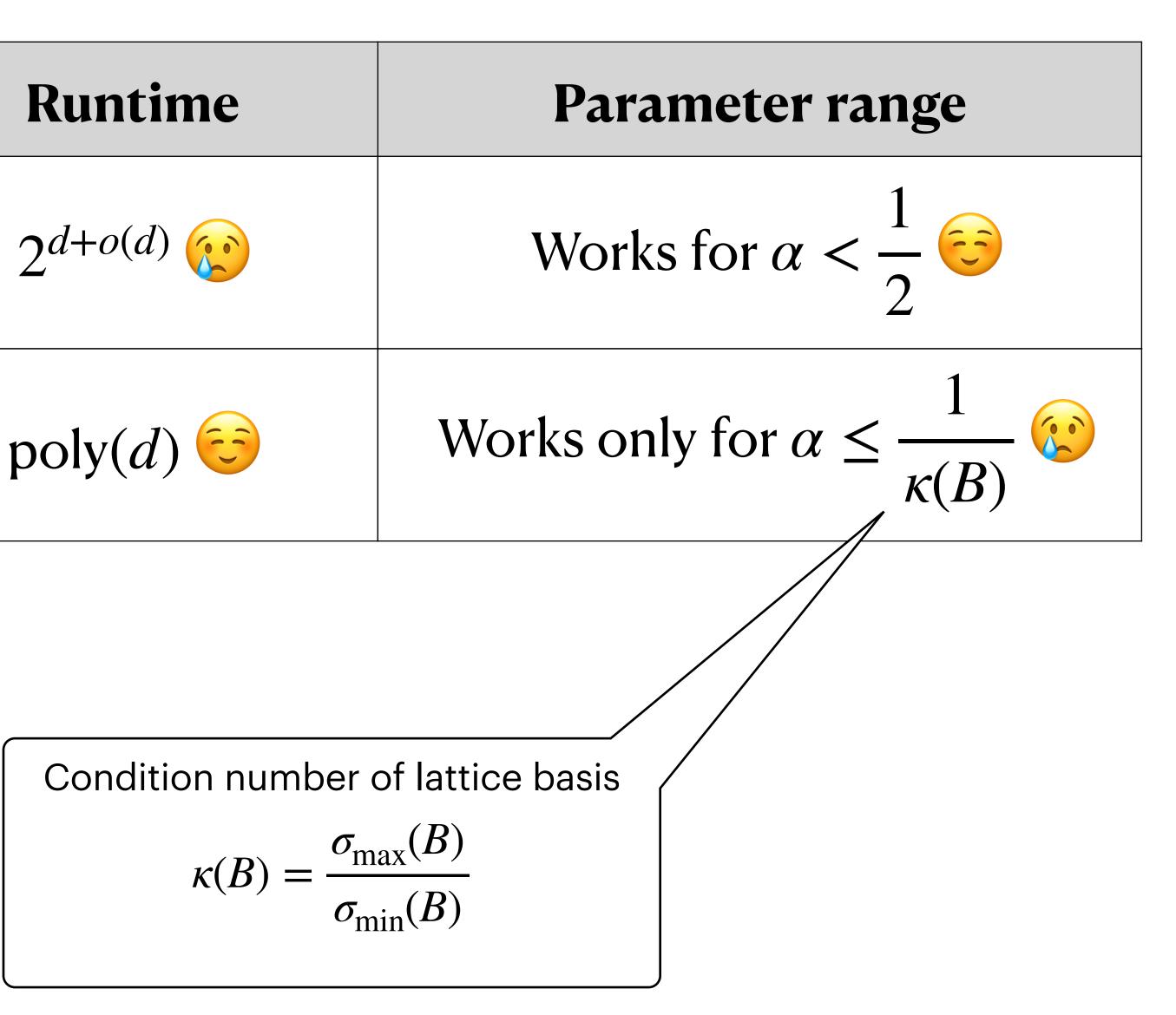
Runtime	Parameter range
$2^{d+o(d)}$	Works for $\alpha < \frac{1}{2}$
poly(d)	Works only for $\alpha \leq \frac{1}{\kappa(B)}$

Algorithms

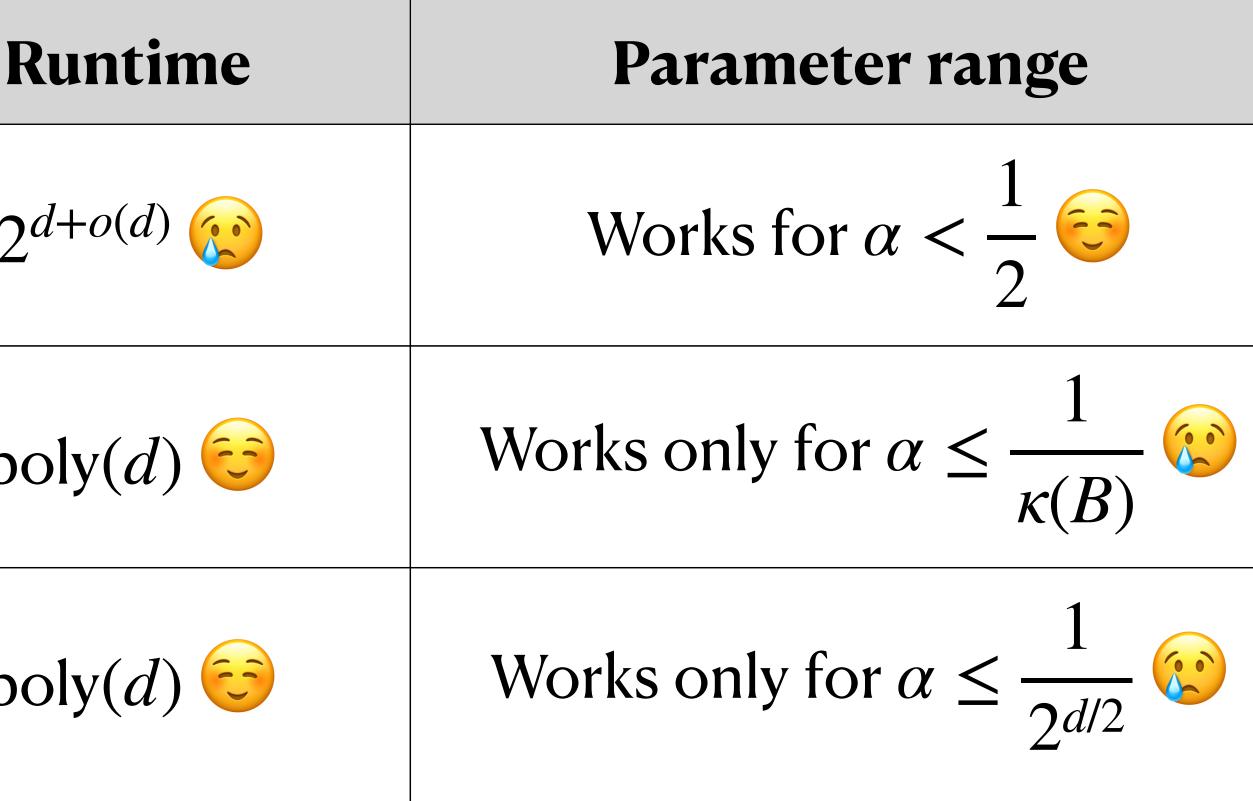
[Ajtai-Kumar-Sivakumar '01], [Micciancio-Voulgaris'13], [Aggarwal-Dadush-Stephens-Davidowitz'15]

Babai's rounding off

algorithm round($B^{-1}t$)



Algorithms	F
[Ajtai-Kumar-Sivakumar '01], [Micciancio-Voulgaris'13], [Aggarwal- Dadush-Stephens-Davidowitz'15]	2
Babai's rounding off algorithm round $(B^{-1}t)$	po
LLL + Babai's rounding off algorithm	po



Given: *X* and *y* = $X\theta^* + w$ **Goal:** Find sparse $\hat{\theta}$ to minimize $\|X\hat{\theta} - X\theta^*\|_2$

BDD (Bounded Distance Decoding)

Given: *B* and $t = Bz^* + e$

Goal: Find integer *z**

Given: *X* and $y = X\theta^* + w$ **Goal:** Find sparse $\hat{\theta}$ to minimize $\|X\widehat{\theta} - X\theta^*\|_2$

BDD (Bounded Distance Decoding)

Given: *B* and $t = Bz^* + e$

Goal: Find integer *z**

Information-theoretically, the conditioning of the matrix has no bearing on the problem.

Given: *X* and *y* = $X\theta^* + w$ **Goal:** Find sparse $\hat{\theta}$ to minimize $\|X\hat{\theta} - X\theta^*\|_2$

Information-theoretically, the conditioning of the matrix has no bearing on the problem.

Efficient algorithms work for "well-conditioned" matrices:

LASSO: Restricted eigenvalue constant RE(X) Babai: Condition number $\kappa(B)$

BDD (Bounded Distance Decoding)

Given: *B* and $t = Bz^* + e$

Goal: Find integer *z**

Given: *X* and $y = X\theta^* + w$ **Goal:** Find sparse $\hat{\theta}$ to minimize $\|X\widehat{\theta} - X\theta^*\|_2$

Information-theoretically, the conditioning of the matrix has no bearing on the problem.

Efficient algorithms work for "well-conditioned" matrices:

LASSO: Restricted eigenvalue constant RE(X)Babai: Condition number $\kappa(B)$

BDD (Bounded Distance Decoding)

Given: *B* and $t = Bz^* + e$

Goal: Find integer *z**

Is there a more formal connection between SLR and BDD?

Theorem 1. Suppose there is a poly-time *β*-improvement over LASSO for *k*-SLR i.e. achieves prediction error $\varepsilon \leq O\left(\frac{k}{\operatorname{RE}(X)^{1-\beta}} \cdot \|w\|_2\right)$. Then, there is a poly-time algorithm that solves BinaryBDD_{α}^{*} with $\alpha \leq \frac{1}{\operatorname{poly}(d) \cdot \kappa(B)^{2-2\beta}}$.

> Beats Babai's dependence on the condition number $\kappa(B)$ if $\beta > 1/2$.

Theorem 1. Suppose there is a poly-time *β*-improvement over LASSO for k-SLR i.e. achieves prediction error $\varepsilon \leq O\left(\frac{k}{\operatorname{RE}(X)^{1-\beta}} \cdot \|w\|_{2}\right)$. $\leq \text{LASSO is } \beta = 0$ Then, there is a poly-time algorithm that solves BinaryBDD_{α}^{*} with $\alpha \leq \frac{1}{\operatorname{poly}(d) \cdot \kappa(B)^{2-2\beta}}$.

> Beats Babai's dependence on the condition number $\kappa(B)$ if $\beta > 1/2$.

Then, there is a poly-time algorithm that solves BinaryBDD_{α}^{*} with $\alpha \leq \frac{1}{\operatorname{poly}(d) \cdot \kappa(B)^{2-2\beta}}$.

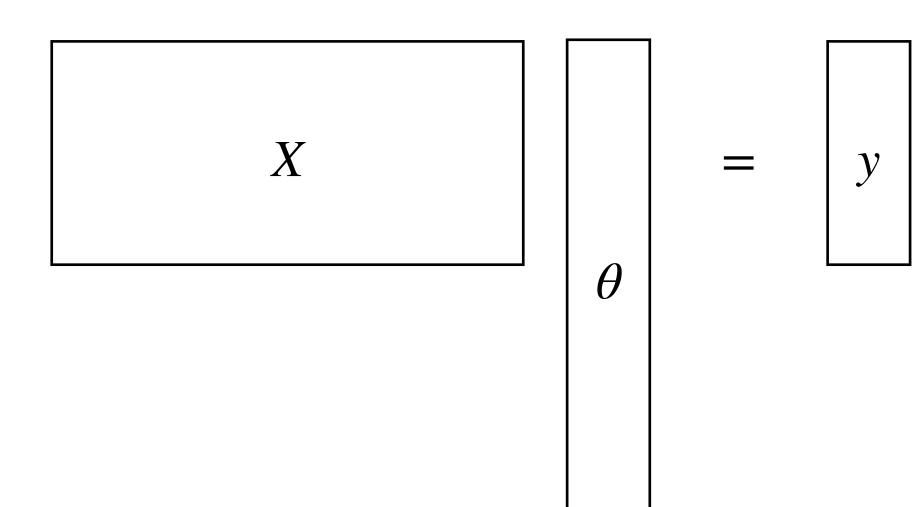
Theorem 1. Suppose there is a poly-time *β*-improvement over LASSO for k-SLR i.e. achieves prediction error $\varepsilon \leq O\left(\frac{k}{\operatorname{RE}(X)^{1-\beta}} \cdot \|w\|_{2}\right)$. $\leq \text{LASSO is } \beta = 0$

Beats Babai's dependence on the condition number $\kappa(B)$ if $\beta > 1/2$.

* BinaryBDD: variant of BDD where we restrict $z^* \in \{\pm 1\}^d$ instead of \mathbb{Z}^d . As far as we know, BinaryBDD's hardness profile is similar to that of BDD [Kirchner-Fouque'25].

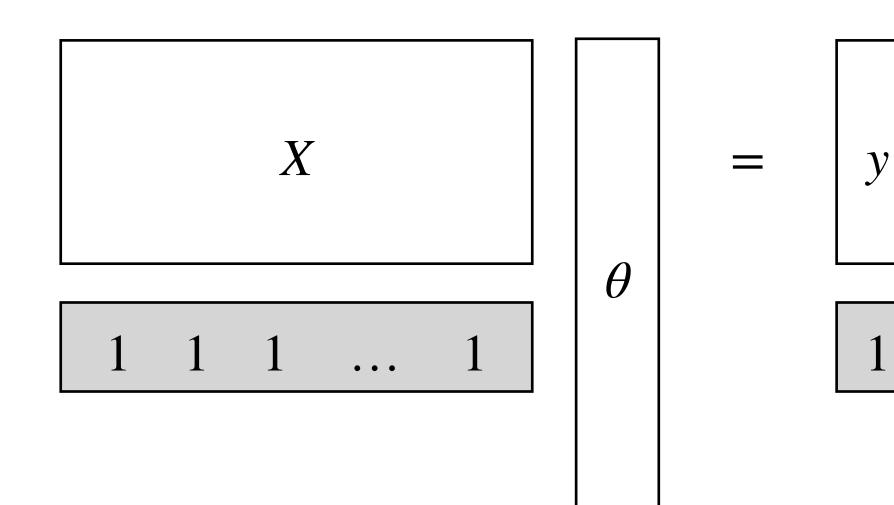
Simple gadget that transforms a sparsity constraint into an integrality constraint.

Toy example: Sparsity k = 1.



Simple gadget that transforms a sparsity constraint into an integrality constraint.

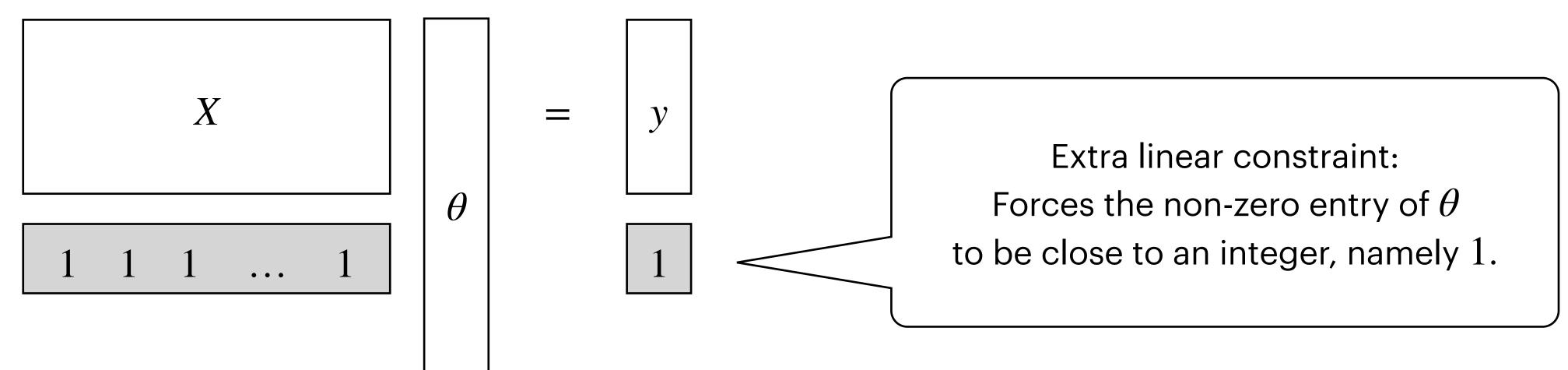
Simple gadget that transforms a **sparsit** Toy example: Sparsity k = 1.



Simple gadget that transforms a **sparsity** constraint into an **integrality** constraint.

Extra linear constraint: Forces the non-zero entry of θ to be close to an integer, namely 1.

Simple gadget that transforms a **sparsit** Toy example: Sparsity k = 1.



Simple gadget that transforms a **sparsity** constraint into an **integrality** constraint.

Similar idea in [Har-Peled-Indyk-Mahabadi'16]

Our hard k-SLR instances have

- Gaussian $X_1 \sim \mathcal{N}(0, \Sigma)^m$ where $\Sigma = G_1^{\mathsf{T}} B^{\mathsf{T}} B G_1$
 - Covariance matrix Σ is closely related to lattice basis B
- Gadget matrices G_1 , G_2 are fixed and independent of instance

design matrices
$$X = \begin{pmatrix} X_1 \\ G_2 \end{pmatrix}$$
, where

- Our hard *k*-SLR instances have
 - Gaussian $X_1 \sim \mathcal{N}(0, \Sigma)^m$ where $\Sigma = G_1^\top B^\top B G_1$
 - Covariance matrix Σ is closely related to lattice basis B
 - Gadget matrices G_1, G_2 are fixed and independent of instance

design matrices
$$X = \begin{pmatrix} X_1 \\ G_2 \end{pmatrix}$$
, where

Corollary 1. Theorem 1 + lattice-based worst-case to average-case reductions

 \rightarrow A distribution over design matrices* for which SLR is hard

*Caveat: These design matrices have RE(X) = 0.

Second Result

any solution, even for nice design matrices $X = \begin{pmatrix} X_1 \\ G_2 \end{pmatrix}$ where

- The rows of X_1 are i.i.d. standard Gaussian
- G₂ is fixed gadget matrix,

assuming the worst-case hardness of lattice problems.

Proof goes through Continuous Learning With Errors [Bruna-Regev-Song-Tang'21]

Theorem 2. In the total regime, where there are many sparse solutions, it is hard to find

Summary

• **Theorem 1.** Unique-solution regime: Hardness of BinaryBDD for a lattice basis B \implies hardness of (essentially*) Gaussian design SLR with covariance related to B. • Corollary 1. First average-case hardness of SLR for Gaussian design matrices*.

* modulo the gadget matrix that enforces the integrality constraint.

Summary

- Theorem 1. Unique-solution regime: Hardness of BinaryBDD for a lattice basis B \implies hardness of (essentially*) Gaussian design SLR with covariance related to B. • **Corollary 1.** First average-case hardness of SLR for Gaussian design matrices^{*}.
- **Theorem 2.** Total regime: hard to find *any* solution for standard Gaussian design matrices^{*}, assuming worst-case hardness of lattices problems.

* modulo the gadget matrix that enforces the integrality constraint.

Open Problem #1

- design matrices X.
- basis-reduction in the lattice world?
- Can techniques from one world improve algorithms in the other?

Kelner-Koehler-Meka-Rohatgi preconditioned LASSO beats the RE bound for some

What is the relationship between **preconditioned LASSO for SLR [KKMR]** and

Open Problem #2

Is there a natural distribution of design matrices for which the RE bound is tight?