Sparse Linear Regression and
Lattice Problems

Neekon Vinod
Vafa Vaikuntanathan

Sparse Linear Regression (SLR)

Given: " and .

Sparse Linear Regression (SLR)

Sparse Linear Regression (SLR)
, /\ |

k-sparse G*

(at most kK non-zero entries)

Sparse Linear Regression (SLR)
-Humg
, /\ |

k-sparse G*

Given:

Goal: Find k-sparse 0 ~ 0%,

(at most kK non-zero entries)

Sparse Linear Regression (SLR)

]
Given:
—]
X and y = ‘ “ X = + W
9*

Goal: Find k-sparse 0 ~ 0%,

]
Minimize prediction error
e :=||X60 — X0%|,. A\
k-sparse 6*

(at most kK non-zero entries)

Sparse Linear Regression (SLR)

]
Given:
—]
X and y = ‘ “ X = + W
9*

Goal: Find k-sparse 0 ~ 0%,

]
Minimize prediction error
e :=||X60 — X0%|,. A\
-Important problem in statistics! k-sparse 6%

(at most kK non-zero entries)

Sparse Linear Regression (SLR)

n

T
Given:
) and — —
m X y = X + w
9*

Goal: Find k-sparse 0 ~ 0%,

]
Minimize prediction error
e :=||X60 — X0%|,. A\
-Important problem in statistics! k-sparse 6%

(at most kK non-zero entries)

-Usually m < n. Sparsity allows unique 6*.

Sparse Linear Regression (SLR)

Sparse Linear Regression (SLR)

Algorithms

Description

Runtime

Prediction Error

Naive

Brute force all k-column subsets +
least-squares.

|

Sparse Linear Regression (SLR)

Algorithms Description Runtime Prediction Error
) Brute force all k-column subsets + v (o
Naive n" &

least-squares.

|

Sparse Linear Regression (SLR)

Algorithms Description Runtime Prediction Error
. Brute force all k-column subsets + - Optimal prediction error &
Nailve n

least-squares.

|

Eopt < 2|[wll;

Sparse Linear Regression (SLR)

Algorithms

Description

Runtime

Prediction Error

Naive

Brute force all k-column subsets +
least-squares.

nk &

Optimal prediction error @

copt < 2lwll

LASSO

Want: min || X0 — y||,
0:110]| o<k

Sparse Linear Regression (SLR)

Algorithms Description Runtime Prediction Error
. Brute force all k-column subsets + L o Optimal prediction error &7
Naive least-squares. e
€opt <2{wll,
Want: min || X0 —y||,
LASSO

Equivalently: min || X0 — y||5 +7 - (|10l
0

Sparse Linear Regression (SLR)

Algorithms Description Runtime Prediction Error
. Brute force all k-column subsets + L o Optimal prediction error &7
Naive least-squares. e
€opt <2{wll,
Want: min || X0 —y||,
LASSO

Equivalently: min || X0 — y||5 +7 - (|10l

0

A

a a)

Not convex \(~/

Sparse Linear Regression (SLR)

Algorithms Description Runtime Prediction Error
. Brute force all k-column subsets + (G Optimal prediction error &7
Naive least-squares. T
€opt <2{wll,
Want: min || X0 —y||,
0:110|[p<k
LASSO

Equivalently: min || X0 — y||5 + 7 - HH\L@{

0

A

Convex .~

Sparse Linear Regression (SLR)

Algorithms Description Runtime Prediction Error
) Brute force all k-column subsets + L oo Optimal prediction error &/
Naive least-squares. n &
Eopt < 2|[wll;
Want: min || X0 —y||,
LASSO o =
Equivalently: min [X0 — y|3 +7- 6]l | PO
0 4 /1\

Convex &~

Sparse Linear Regression (SLR)

Algorithms Description Runtime Prediction Error
. Brute force all k-column subsets + (G Optimal prediction error &7
Naive least-squares. T
€opt <2{wll,
Want: Q:ﬁlelﬁ?gk 1X6 = yll Error depends on conditioning of X N
LASSO poly-time @

- . Cull2 ,
Equivalently: melnHXé’ yli5+y HH\%

Sparse Linear Regression (SLR)

Algorithms Description Runtime Prediction Error

Brute force all k-column subsets + Optimal prediction error &

- k(5o
Naive least-squares. -
€opt < 2[[wl]l,
Want: ezﬁlelﬁ?gk 1X6 = yll Error depends on conditioning of X &
LASSO poly-time @

- . Cull2 _,
Equivalently: melnHXé’ yli5+y HH\%

€LLASSO < O (HWHz° RE(X)>

Sparse Linear Regression (SLR)

Algorithms Description Runtime Prediction Error
. Brute force all k-column subsets + (G Optimal prediction error &7
Naive least-squares. T
€opt <2{wll,
Want: Q:ﬁlelﬁ?gk 1X6 = yll Error depends on conditioning of X N
LASSO poly-time @

- . Cull2 ,
Equivalently: melnHXé’ yli5+y HH\%

€LLASSO < O (HWHz° RE(X)>

Restricted eigenvalue constant *

RE(X) * min

—~

1 X0l

sparse 6 |0|,

*for “normalized”

Sparse Linear Regression (SLR)

Algorithms Description Runtime Prediction Error
Brute force all k-column subsets + - Optimal prediction error &7
Naive n' &
least-squares.
€opt <2[[wl|,
Want: Q:ﬁlelﬁ?gk 1X6 = yll Error depends on conditioning of X N
LASSO , .) poly-time (& 2
Equwalently: m@m HX@ — y”2 + 7 HH\L@»I’ €1 ASSO <0 (HWHZ . RE(X))

When X ~ A4(0,I)®™ and m > Q(k - log n)

(i.e. rows i.i.d. standard Gaussian & unigue sparse solution),

RE(X) = €(1), so LASSO achieves é(gopt) error*.

—

RE(X) ~

Restricted eigenvalue constant *

—~

. 11X,
min

Sparse ¢ HQHZ *for “normalized” X

* O hides a factor of k

SLR: computational-statistical gap?

SLR: computational-statistical gap?

Hardness [Natarajan '95, Zhang-Wainwright-Jordan ‘14]

* A fixed sequence of worst-case design matrices for which
it is impossible to beat the RE error bound unless

NP C P/poly.

SLR: computational-statistical gap?

Is there a better algorithm for SLR without the RE(X) dependence?

Hardness [Natarajan '95, Zhang-Wainwright-Jordan ‘14] Algorithms [Kelner-Koehler-Meka-Rohatgi 22, 23]

* A fixed sequence of worst-case design matrices for which * Preconditioned LASSO beats RE bound for certain X
it is impossible to beat the RE error bound unless (X with “low treewidth”)

NP C P/poly.

SLR: computational-statistical gap?

Hardness [Natarajan '95, Zhang-Wainwright-Jordan ‘14] Algorithms [Kelner-Koehler-Meka-Rohatgi 22, 23]

* A fixed sequence of worst-case design matrices for which * Preconditioned LASSO beats RE bound for certain X
it is impossible to beat the RE error bound unless (X with “low treewidth”)

NP C P/poly.

SLR: computational-statistical gap?

Is there a better algorithm for SLR without the RE(X) dependence?

Hardness [Natarajan '95, Zhang-Wainwright-Jordan ‘14] Algorithms [Kelner-Koehler-Meka-Rohatgi 22, 23]
* A fxed sequence of worst-case design matrices for which * Preconditioned LASSO beats RE bound for certain X
it is impossible to beat the RE error bound unless (X with “low treewidth”)
NP C P/poly.
All design
matrices X

For which design matrices X is SLR hard?

SLR: computational-statistical gap?

Is there a better algorithm for SLR without the RE(X) dependence?

Hardness [Natarajan '95, Zhang-Wainwright-Jordan ‘14] Algorithms [Kelner-Koehler-Meka-Rohatgi 22, 23]
* A fixed sequence of worst-case design matrices for which e Preconditioned LASSO beats RE bound for certain X
it is impossible to beat the RE error bound unless

(X with “low treewidth”).
NP C P/poly.

ZW)J design matrix: All design
Hard to beat RE bound —@ matrices X

For which design matrices X is SLR hard?

SLR: computational-statistical gap?

Is there a better algorithm for SLR without the RE(X) dependence?

Hardness [Natarajan '95, Zhang-Wainwright-Jordan ‘14] Algorithms [Kelner-Koehler-Meka-Rohatgi 22, 23]

* A fixed sequence of worst-case design matrices for which * Preconditioned LASSO beats RE bound for certain X
it is impossible to beat the RE error bound unless (X with “low treewidth”)

NP C P/poly.

ZW)J design matrix: All design
Hard to beat RE bound —@ matrices X

For which design matrices X is SLR hard? A

“Low tree-width” X:

Preconditioned LASSO beats
RE bound [KKMR]

SLR: computational-statistical gap?

Is there a better algorithm for SLR without the RE(X) dependence?

Hardness [Natarajan '95, Zhang-Wainwright-Jordan ‘14] Algorithms [Kelner-Koehler-Meka-Rohatgi 22, 23]

* A fixed sequence of worst-case design matrices for which * Preconditioned LASSO beats RE bound for certain X
it is impossible to beat the RE error bound unless (X with “low treewidth”)

NP C P/poly.

ZW)J design matrix: All design
Hard to beat RE bound —@ matrices X

For which design matrices X is SLR hard? o A

“Low tree-width” X:

Preconditioned LASSO beats
RE bound [KKMR]

TI:dr

/WJ design matrix:
Hard to beat RE bound

All design
—@ matrices X

“Low tree-width” X:
Preconditioned LASSO beats
RE bound [KKMR]

’

TI:dr

/WJ design matrix:

Design matrices X for which SLR is
hard if lattice problems are hard

All design

Hard to beat RE bound —€@) matrices X

“Low tree-width” X:
Preconditioned LASSO beats
RE bound [KKMR]

’

TI:dr

/WJ design matrix:

All design

Hard to beat RE bound —4) matrices X

Design matrices X for which SLR is

hard if lattice problems are hard

SLR

“Low tree-width” X:

Preconditioned LASSO beats

RE bound [KKMR]

’

BDD

BDD_(Bounded Distance Decoding)

BDD_(Bounded Distance Decoding)

Given: Lattice basis B and target vector t = Bz* + ¢

Generated lattice Z(B) = {Bz | integral z € Z¢)

by J

/.

BDD_(Bounded Distance Decoding)

Given: Lattice basis B and target vector t = Bz* + ¢

Generated lattice Z(B) = {Bz | integral z € Z¢)

Goal: Find nearest lattice point Bz*

BDD_(Bounded Distance Decoding)

Given: Lattice basis B and target vector t = Bz* + ¢

Generated lattice Z(B) = {Bz | integral z € Z¢)

Goal: Find nearest lattice point Bz*

Promise that ||e||, < a - 4;(B) o 1

where parameter a < 1/2.

BDD_(Bounded Distance Decoding)

Given: Lattice basis B and target vector t = Bz* + ¢

Generated lattice Z(B) = {Bz | integral z € Z¢)

Goal: Find nearest lattice point Bz*

Promise that ||e||, < a - 1,(B) S 1
where parameter a < 1/2. /\

A(B) := shortest vector of lattice.
Promise ensures unigueness.

BDD_(Bounded Distance Decoding)

Equivalently,
d

\

Integer z* € Z7¢

BDD_(Bounded Distance Decoding)

Equivalently,
d
Given: p B and - B % 1 e
N
Goal: Find z* € 7¢ Integer z* € Z7¢

Promised that ||e||, < a - 4{(B)

BDD_(Bounded Distance Decoding)

Algorithms Runtime Parameter range

[Ajtai-Kumar-Sivakumar ’o1],
[Micciancio-Voulgaris’13], [Aggarwal- 2d+0(d> N, Works fora < — &
Dadush-Stephens-Davidowitz’15] 2

BDD_(Bounded Distance Decoding)

Algorithms Runtime Parameter range
[Ajtai-Kumar-Sivakumar ’o1],
[Micciancio-Voulgaris’13], [Aggarwal- 2d+0(d) W, Works for a < — <
Dadush-Stephens-Davidowitz’15] 2
Babai’s rounding off ~
s 1 poly(d) & Works only for a < &
algorithm round(B~ 1) K(B)

BDD_(Bounded Distance Decoding)

Algorithms Runtime Parameter range
[Ajtai-Kumar-Sivakumar ’o1],
[Micciancio-Voulgaris’13], [Aggarwal- 2d+0(d) W, Works for a < — <
Dadush-Stephens-Davidowitz’15] 2
Babai’s rounding off —~
s 1 poly(d) & Works only for a < &
algorithm round (B~ 1) P k(B)

Condition number of lattice basis
)

_ Omax(B)
K(B) - Umin(B)

BDD_(Bounded Distance Decoding)

Algorithms

Runtime

Parameter range

[Ajtai-Kumar-Sivakumar ’o1],
[Micciancio-Voulgaris’13], [Aggarwal-

2d+ O (d) \//L.\

o

- an,

Works fora < — &

Dadush-Stephens-Davidowitz’15] 2
Babai’ i ft
abar’s rounding o poly(d) & Works only for a < N
algorithm round(B~ 1) K(B)
LLL + Babai’s = -
olv(d) & Works only for a < &
rounding off algorithm poly(d) & 2412

SLR (Sparse Linear Regression)

BDD (Bounded Distance Decoding)

Given: Xand y = X6* + w
Goal: Find sparse 0 to minimize

1X6 — X0%||,

Given: Bandr = Bz* + ¢

Goal: Find integer z*

SLR (Sparse Linear Regression)

BDD (Bounded Distance Decoding)

Given: Xand y = X6* + w
Goal: Find sparse 0 to minimize

1X6 — X0%||,

Given: Bandr = Bz* + ¢

Goal: Find integer z*

Information-theoretically, the conditioning of the matrix has no bearing on the problem.

SLR (Sparse Linear Regression)

BDD (Bounded Distance Decoding)

Given: Xand y = X6* + w
Goal: Find sparse 0 to minimize

1X6 — X0%||,

Given: Bandr = Bz* + ¢

Goal: Find integer z*

Information-theoretically, the conditioning of the matrix has no bearing on the problem.

Efficient algorithms work for “well-conditioned” matrices:

LASSO: Restricted eigenvalue constant RE(X)

Babai: Condition number x(B)

SLR (Sparse Linear Regression)

BDD (Bounded Distance Decoding)

Given: Xand y = X6* + w
Goal: Find sparse 0 to minimize

1X6 — X0%||,

Given: Bandr = Bz* + ¢

Goal: Find integer z*

Information-theoretically, the conditioning of the matrix has no bearing on the problem.

Efficient algorithms work for “well-conditioned” matrices:

LASSO: Restricted eigenvalue constant RE(X)

Babai: Condition number x(B)

Is there a more formal connection between SLR and BDD?

Main Result

Theorem 1. Suppose there is a poly-time f-improvement over LASSO for k-SLR

TR HW||2>-

i.e. achieves prediction error e < O (

1
poly(d) - k(B)>~2/

A

Beats Babai’s dependence on the
condition number x(B) if f > 1/2.

Then, there is a poly-time algorithm that solves BinaryBDD * with o <

Main Result

Theorem 1. Suppose there is a poly-time f-improvement over LASSO for k-SLR

LASSO is = 0

TR HW||2>- <

i.e. achieves prediction error e < O (

1
poly(d) - k(B)>~2/

A

Beats Babai’s dependence on the
condition number x(B) if f > 1/2.

Then, there is a poly-time algorithm that solves BinaryBDD * with o <

Main Result

Theorem 1. Suppose there is a poly-time f-improvement over LASSO for k-SLR

LASSO is = 0

1
poly(d) - k(B)>~2/

A

Beats Babai’s dependence on the
condition number x(B) if f > 1/2.

TR HW||2>- <

i.e. achieves prediction error e < O (

Then, there is a poly-time algorithm that solves BinaryBDD * with o <

* BinaryBDD: variant of BDD where we restrict z* € {£1}¢ instead of Z%
As far as we know, BinaryBDD’s hardness profile is similar to that of BDD [Kirchner-Fouque’25].

Main Result

Simple gadget that transforms a sparsity constraint into an integrality constraint.

Main Result

Simple gadget that transforms a sparsity constraint into an integrality constraint.

Toy example: Sparsity k = 1.

Main Result

Simple gadget that transforms a sparsity constraint into an integrality constraint.

Toy example: Sparsity k = 1.

Extra linear constraint:
6 Forces the non-zero entry of 8

1 1 1 ... 1 1 <L to be close to an integer, namely 1.
J

Main Result

Simple gadget that transforms a sparsity constraint into an integrality constraint.

Toy example: Sparsity k = 1.

Extra linear constraint:
6 Forces the non-zero entry of 8

1 1 1 ... 1 1 <L to be close to an integer, namely 1.
J

Similar idea in [Har-Peled-Indyk-Mahabadi’16]

Main Result

X
Our hard k-SLR instances have design matrices X = (1) , where

» Gaussian X; ~ (0, %)" where £ = G, B'BG,
» Covariance matrix 2 is closely related to lattice basis B

» Gadget matrices G, G, are fixed and independent of instance

Main Result

X
Our hard k-SLR instances have design matrices X = (1) , where

» Gaussian X; ~ (0, 2)" where 2 = GlT BTBGI
» Covariance matrix 2 is closely related to lattice basis B

» Gadget matrices G, G, are fixed and independent of instance

Corollary 1. Theorem 1 + lattice-based worst-case to average-case reductions

— A distribution over design matrices* for which SLR is hard

*Caveat: These design matrices have RE(X) = 0.

Second Result

Theorem 2. In the total regime, where there are many sparse solutions, it is hard to find

. . . . 1
any solution, even for nice design matrices X = (.) where
2

* The rows of X, arei.i.d. standard Gaussian

* (G, is fixed gadget matrix,

assuming the worst-case hardness of lattice problems.

Proof goes through Continuous Learning With Errors [Bruna-Regev-Song-Tang’21]

Summary

* Theorem 1. Unique-solution regime: Hardness of BinaryBDD for a lattice basis B
—> hardness of (essentially*) Gaussian design SLR with covariance related to B.

» Corollary 1. First average-case hardness of SLR for Gaussian design matrices®.

* modulo the gadget matrix that enforces the integrality constraint.

Summary

* Theorem 1. Unique-solution regime: Hardness of BinaryBDD for a lattice basis B
—> hardness of (essentially*) Gaussian design SLR with covariance related to B.

» Corollary 1. First average-case hardness of SLR for Gaussian design matrices®.

* Theorem 2. Total regime: hard to find any solution for standard Gaussian design
matrices®, assuming worst-case hardness of lattices problems.

* modulo the gadget matrix that enforces the integrality constraint.

Open Problem #1

Open Problem #2

