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n

T
Given:
) and — —
m X y = X + w
9*

Goal: Find k-sparse 0 ~ 0%,

]
Minimize prediction error
e :=||X60 — X0%|,. A\
-Important problem in statistics! k-sparse 6%

(at most kK non-zero entries)

-Usually m < n. Sparsity allows unique 6*.
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Algorithms Description Runtime Prediction Error
Brute force all k-column subsets + - Optimal prediction error &7
Naive n' &
least-squares.
€opt <2[[wl|,
Want: Q:ﬁlelﬁ?gk 1X6 = yll Error depends on conditioning of X N
LASSO , . ) poly-time (& 2
Equwalently: m@m HX@ — y”2 + 7 HH\L@»I’ €1 ASSO <0 (HWHZ . RE(X) )

When X ~ A4(0,I )®™ and m > Q(k - log n)

(i.e. rows i.i.d. standard Gaussian & unigue sparse solution),

RE(X) = €(1), so LASSO achieves é(gopt) error*.

—

RE(X) ~

Restricted eigenvalue constant *

—~

. 11X,
min

Sparse ¢ HQHZ *for “normalized” X

* O hides a factor of k
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BDD_(Bounded Distance Decoding)

Given: Lattice basis B and target vector t = Bz* + ¢

Generated lattice Z(B) = {Bz | integral z € Z¢)

Goal: Find nearest lattice point Bz*

Promise that ||e||, < a - 1,(B) S 1
where parameter a < 1/2. /\

A(B) := shortest vector of lattice.
Promise ensures unigueness.
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Equivalently,
d
Given: p B and - B % 1 e
N
Goal: Find z* € 7¢ Integer z* € Z7¢

Promised that ||e||, < a - 4{(B)
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Condition number of lattice basis
)

_ Omax(B)
K(B) - Umin(B)
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Algorithms

Runtime

Parameter range

[Ajtai-Kumar-Sivakumar ’o1],
[Micciancio-Voulgaris’13], [Aggarwal-

2d+ O (d) \//L.\

o

- an,

Works fora < — &

Dadush-Stephens-Davidowitz’15] 2
Babai’ i ft
abar’s rounding o poly(d) & Works only for a < N
algorithm round(B~ 1) K(B)
LLL + Babai’s = -
olv(d) & Works only for a < &
rounding off algorithm poly(d) & 2412
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BDD (Bounded Distance Decoding)

Given: Xand y = X6* + w
Goal: Find sparse 0 to minimize

1X6 — X0%||,

Given: Bandr = Bz* + ¢

Goal: Find integer z*

Information-theoretically, the conditioning of the matrix has no bearing on the problem.

Efficient algorithms work for “well-conditioned” matrices:

LASSO: Restricted eigenvalue constant RE(X)

Babai: Condition number x(B)

Is there a more formal connection between SLR and BDD?
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Main Result

Theorem 1. Suppose there is a poly-time f-improvement over LASSO for k-SLR

LASSO is = 0

1
poly(d) - k(B)>~2/

A

Beats Babai’s dependence on the
condition number x(B) if f > 1/2.

TR HW||2>- <

i.e. achieves prediction error e < O (

Then, there is a poly-time algorithm that solves BinaryBDD * with o <

* BinaryBDD: variant of BDD where we restrict z* € {£1}¢ instead of Z%
As far as we know, BinaryBDD’s hardness profile is similar to that of BDD [Kirchner-Fouque’25].
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Toy example: Sparsity k = 1.

Extra linear constraint:
6 Forces the non-zero entry of 8

1 1 1 ... 1 1 <L to be close to an integer, namely 1.
J

Similar idea in [Har-Peled-Indyk-Mahabadi’16]
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Main Result

X
Our hard k-SLR instances have design matrices X = ( 1) , where

» Gaussian X; ~ (0, 2)" where 2 = GlT BTBGI
» Covariance matrix 2 is closely related to lattice basis B

» Gadget matrices G, G, are fixed and independent of instance

Corollary 1. Theorem 1 + lattice-based worst-case to average-case reductions

— A distribution over design matrices* for which SLR is hard

*Caveat: These design matrices have RE(X) = 0.



Second Result

Theorem 2. In the total regime, where there are many sparse solutions, it is hard to find

. . . . 1
any solution, even for nice design matrices X = ( . ) where
2

* The rows of X, arei.i.d. standard Gaussian

* (G, is fixed gadget matrix,

assuming the worst-case hardness of lattice problems.

Proof goes through Continuous Learning With Errors [Bruna-Regev-Song-Tang’21]
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* Theorem 1. Unique-solution regime: Hardness of BinaryBDD for a lattice basis B
—> hardness of (essentially*) Gaussian design SLR with covariance related to B.

» Corollary 1. First average-case hardness of SLR for Gaussian design matrices®.

* modulo the gadget matrix that enforces the integrality constraint.



Summary

* Theorem 1. Unique-solution regime: Hardness of BinaryBDD for a lattice basis B
—> hardness of (essentially*) Gaussian design SLR with covariance related to B.

» Corollary 1. First average-case hardness of SLR for Gaussian design matrices®.

* Theorem 2. Total regime: hard to find any solution for standard Gaussian design
matrices®, assuming worst-case hardness of lattices problems.

* modulo the gadget matrix that enforces the integrality constraint.
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