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Goal: Find -sparse .k ̂θ ≈ θ*
Minimize prediction error  

.ε := ∥X ̂θ − Xθ*∥2

• Important problem in statistics!

•Usually . Sparsity allows unique .m ≪ n θ*
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εopt ≤ 2∥w∥2

Error depends on  conditioning of   😢X

 εLASSO ≤ O (∥w∥2 ⋅
k

RE(X) )
Restricted eigenvalue constant * 

RE(X) ≈ min
sparse θ

∥Xθ∥2

∥θ∥2 * for “normalized” X

When  and  

(i.e. rows i.i.d. standard Gaussian & unique sparse solution), 

, so LASSO achieves  error*.

X ∼ 𝒩(0,In)⊗m m ≥ Ω(k ⋅ log n)

RE(X) = Ω(1) Õ(εopt)

Brute force all -column subsets + 
least-squares.

k

1
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Goal: Find nearest lattice point Bz*

Promise that  
where parameter 

∥e∥2 ≤ α ⋅ λ1(B)
α < 1/2.

 := shortest vector of lattice. 
Promise ensures uniqueness.

λ1(B)
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Algorithms Runtime Parameter range
[Ajtai-Kumar-Sivakumar ’01],  

[Micciancio-Voulgaris’13], [Aggarwal-
Dadush-Stephens-Davidowitz’15]

LLL + Babai’s  
rounding off algorithm

Works only for  😢α ≤
1

κ(B)

Works for  ☺α <
1
2 😢2d+o(d)

Babai’s rounding off 
algorithm round(B−1t)

 ☺poly(d) Works only for  😢α ≤
1

2d/2

 ☺poly(d)
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Information-theoretically, the conditioning of the matrix has no bearing on the problem.

Efficient algorithms work for “well-conditioned” matrices:

Is there a more formal connection between SLR and BDD?

Given:  and  

Goal: Find sparse  to minimize  

X y = Xθ* + w

̂θ

∥X ̂θ − Xθ*∥2
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Main Result

Theorem 1. Suppose there is a poly-time -improvement over LASSO for -SLR  

i.e. achieves prediction error . 

Then, there is a poly-time algorithm that solves BinaryBDD * with .

β k

ε ≤ O ( k
RE(X)1−β

⋅ ∥w∥2)
α α ≤

1
poly(d) ⋅ κ(B)2−2β

Beats Babai’s dependence on the 
condition number  if κ(B) β > 1/2.

* BinaryBDD: variant of BDD where we restrict  instead of . 
As far as we know, BinaryBDD’s hardness profile is similar to that of BDD [Kirchner-Fouque’25].

z* ∈ {±1}d ℤd

LASSO is β = 0
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Main Result
Simple gadget that transforms a sparsity constraint into an integrality constraint.

Toy example: Sparsity .k = 1

1 1 1 … 1 1

X y

θ

=

Similar idea in [Har-Peled-Indyk-Mahabadi’16]

Extra linear constraint:  
Forces the non-zero entry of    

to be close to an integer, namely .
θ

1
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Main Result

Our hard -SLR instances have design matrices , where 

• Gaussian   where  

• Covariance matrix  is closely related to lattice basis  

• Gadget matrices  are fixed and independent of instance

k X = (X1
G2)

X1 ∼ 𝒩(0, Σ)m Σ = G⊤
1 B⊤BG1

Σ B

G1, G2

Corollary 1. Theorem 1 + lattice-based worst-case to average-case reductions 

 A distribution over design matrices* for which SLR is hard→

*Caveat: These design matrices have .RE(X) = 0



Second Result

Theorem 2. In the total regime, where there are many sparse solutions, it is hard to find 

any solution, even for nice design matrices  where  

• The rows of  are i.i.d. standard Gaussian 

•  is fixed gadget matrix, 

assuming the worst-case hardness of lattice problems.

X = (X1
G2)

X1

G2

Proof goes through Continuous Learning With Errors [Bruna-Regev-Song-Tang’21]
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• Theorem 1. Unique-solution regime: Hardness of BinaryBDD for a lattice basis  
 hardness of (essentially*) Gaussian design SLR with covariance related to .

B
⟹ B

• Corollary 1. First average-case hardness of SLR for Gaussian design matrices*.

* modulo the gadget matrix that enforces the integrality constraint.



Summary

• Theorem 1. Unique-solution regime: Hardness of BinaryBDD for a lattice basis  
 hardness of (essentially*) Gaussian design SLR with covariance related to .

B
⟹ B

• Corollary 1. First average-case hardness of SLR for Gaussian design matrices*.

• Theorem 2. Total regime: hard to find any solution for standard Gaussian design 
matrices*, assuming worst-case hardness of lattices problems.

* modulo the gadget matrix that enforces the integrality constraint.



Open Problem #1

• Kelner-Koehler-Meka-Rohatgi preconditioned LASSO beats the RE bound for some 
design matrices . 

• What is the relationship between preconditioned LASSO for SLR [KKMR] and 
basis-reduction in the lattice world? 

• Can techniques from one world improve algorithms in the other?

X



Open Problem #2

Is there a natural distribution of design matrices for which the RE bound is tight?


