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Functional Encryption [SW05, O’N10, BSW11]

C [m]← Enc(mpk/msk, m) f (m)← Dec(sk[f ], C [m])

(mpk, msk) ← MKGen(1κ)
sk[f ] ← KGen(msk, f )

C [m]

f ∈ F

mpk/
msk

sk[f ]

A gets
mpk or Enc oracle,
C(m∗),
sk[f1], . . . , sk[fn]

and learns only
f1(m∗), . . . , fn(m∗).
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Application of sk-FE

msk← MKGen(1κ)
C [m]← Enc(msk, m)

C [m]

I need to know f (m)
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Application of sk-FE

C [m]

msk
sk[f ]← KGen(msk, f )

sk[f ]

I need to know f (m)

Is sk-FE easier to build than pk-FE?

What are the minimal assumptions for sk-FE?

Roman Langrehr (ETH Zurich) On the Black-Box Complexity of Private-Key IPFE 2024-12-05 3 / 26



Application of sk-FE

C [m]

msk
sk[f ]← KGen(msk, f )

sk[f ]

I need to know f (m)

Is sk-FE easier to build than pk-FE?
What are the minimal assumptions for sk-FE?

Roman Langrehr (ETH Zurich) On the Black-Box Complexity of Private-Key IPFE 2024-12-05 3 / 26



Bounded-collusion

There is an a-priori bound on the number of functional secret keys that A can get.

IND-CPA secure PKE⇐⇒ bounded-collusion pk-FE [SS10, GVW12, AV19]

IND-CPA secure SKE⇐⇒ bounded-collusion sk-FE [AV19]
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pk vs. sk

For general functions: sk-FE⇐⇒ pk-FE (⇐⇒ iO)[BV15, AJ15]

sk additively HE⇐⇒ pk additively HE [Rot11]
IND-CPA PKE + circular SKE =⇒ KDM-secure PKE [KM20]

What about FE for specific functionalities?
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Functionalities

Point functions (IBE)

Inner product (IPFE)

fid′(id, m) =
{

m if id = id ′

⊥ otherwise

fy(x) = ⟨y, x⟩ mod q

pk
✓ pairings, lattices, and more

pk-IPFE: ✓ groups*, lattices* [ABDP15],
class groups [CLT18]

✗ generic groups [PRV12, SS21, Zha22]
✗ TDP (BB use) [BPR+08]

sk

✓ OWF (trivial)
Trivial from pk-IPFE

function hiding: pairings [BJK15]
Our result: ✗ OWF (BB use)

*for restricted x/y
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Previous FE impossibility results

Predicate encryption (PE): FE for “all-or-nothing” functionalities

Generic groups

TDP

pk-IBE

pk-PE for certain predicates

pk-PE for threshold predicates

[BPR+08]

[PRV12, SS21, Zha22]

[KY09]

[GKLM12]

Idea: Compressing pk1, . . . , pk2κ into mpk is impossible

Possible for secret keys: Generate sk1, . . . , sk2κ with a PRF ⇒ This idea cannot be applied to
sk-FE

Only for predicate encryption
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Our result

Theorem
There exists no unbounded-collusion sk-IPFE in the random oracle model*.

*against unbounded adversaries that can make only polynomially many ROM queries

There exists no unbounded-collusion black-box construction of sk-IPFE from OWFs/CRHFs

[IR89]

Impagliazzo Rudich
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Proof overview
Goal: Learn ⟨v⋆, w⟩
Given: C [w] $← EncO(msk, w), sk[vi ]

$← KGenO(msk, vi) with v⋆ /∈ Span (v1, . . . , vt)

A brute-force searches for sk[v⋆]
Compute DecO(sk[v⋆], C [w]) and check the solution

Self-simulate all ROM queries consistently!
We ignore KGenO(msk, v⋆) ROM queries here
ROM queries made during EncO(msk, w):

Decrypt C [w] with many known secret keys sk[vi ]
using the real RO.
Use the RO queries that appeared here.

KGenO(msk, v⋆)

DecO(sk[v⋆], C [w])

EncO(msk, w)
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The Combinatorial Lemma

Lemma
For every F : Zn

q → 2[ℓ] with polynomial ℓ
there exists a polynomial t such that with
overwhelming probability

F (y∗) ⊆
t⋃

i=1
F (yi),

for y∗, y1, . . . , yt ← Zn
q subject to

y∗ /∈ Span (y1, . . . , yt).

Intuition:

DecO(sk[y], C [w])
EncO(msk, w)

[ℓ]
F (y)

Proofs:
q = 2 arb. prime q

Existential variant (weaker) Double-counting
Average-case variant (this) Fourier Cauchy-Schwarz
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Conclusion & Open problems

Minicrypt

Cryptomania

Obfustopia

OWF sk-IBE

PKE

pk-IPFE
pk-IBE

pk fuzzy IBE
pk-ABE

iO sk-FE pk-FE

sk-IPFE

sk fuzzy IBE

sk-ABE
?
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Our result (more detail)

Theorem
There exists no unbounded-collusion sk-IPFE for dimension n and modulus q if

n ⩾ 3
and qn is super-polynomial in the security parameter

in the random oracle model*.

*against unbounded adversaries that can make only polynomially many ROM queries

sk-IPFE for n = 1 is just plain SKE
if qn is polynomial, then we can use EncO(msk, x) = (SKE. EncO(PRF(y), ⟨x, y⟩))y∈Zn

q

bounded-collusion sk-IPFE can be built from OWF [AV19]
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Our security game

Challenger Adversary

v⋆, v1, . . . , vt

with v⋆ /∈ Span (v1, . . . , vt)

sk[v1], . . . , sk[vt ]

C [wi ], m∗
i

b′

msk← MKGen(1κ)
b $← {0, 1}

sk[vi ]← KGenO(msk, vi) for all i ∈ [t]

wi
$← Zn

q

C [wi ]
$← EncO(msk, wi)

If b = 0: m∗
i := ⟨wi , v⋆⟩

If b = 1: m∗
i

$← Zq

b ?= b′

t = poly(κ)

η = poly′(κ)
queries
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Proof overview (complete)

A brute-force searches for sk[v⋆]

and RO Q-A pairs made
during KGenO(msk, v⋆)

Check if DecO(sk[v⋆], C [wi ]) = mi for all i ∈ [η]

Self-simulate all ROM queries consistently!
ROM queries made during KGenO(msk, v⋆):

Just brute-force them, too.

ROM queries made during EncO(msk, wi):

Decrypt C [wi ] with many known secret keys sk[vi ]
using the real RO.
Use the RO queries that appeared here.

If such a secret key is found, return b′ = 0,
otherwise b′ = 1

KGenO(msk, v⋆)

DecO(sk[v⋆], C [wi ])

EncO(msk, wi )
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The Combinatorial Lemma (formal)

Lemma
Fix n = n(κ) and suppose q−n ∈ negl(κ) and n ⩾ 3. Let ℓ = poly(κ), q be a prime number and
F : Zn

q → 2[ℓ]. Fix a constant c. Then, there exists a polynomial t = t(κ) such that with
probability at least 1− κ−c

F (y∗) ⊆
t⋃

i=1
F (yi),

where y∗ ← Zn
q, and we sample a random (n − 1)-dimensional subspace V subject to y∗ /∈ V

and we sample y1, . . . , yt all uniformly at random from V .

Roman Langrehr (ETH Zurich) On the Black-Box Complexity of Private-Key IPFE 2024-12-05 26 / 26


	Functional Encryption
	Appendix

