TCC 2024

Adaptive Security, Erasures, and Network Assumptions in Communication-Local MPC

Ankit Kumar Misra UCLA

Joint work with: Nishanth Chandran, Juan Garay, Rafail Ostrovsky, and Vassilis Zikas

Complexity Measures in MPC

Complexity Measures in MPC

- Commonly studied metrics of efficiency and scalability in MPC:
	- Communication complexity
	- Computational complexity
	- Round complexity

Complexity Measures in MPC

- Commonly studied metrics of efficiency and scalability in MPC:
	- Communication complexity
	- Computational complexity
	- Round complexity
- In standard MPC protocols, every party talks to every other party

-
-
-
-
-
-
-
- -
- - -
	-
-
-
-
-
-
- -
- -
-
-
-
-
-
-
-
-
-
- -
-
-
-
- -
	-
-
-
-
-
-
-
-
-
-
-
-
-
- -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- -
-

• Communication Locality [BGT13]: Number of point-to-point channels used by each party

- Communication Locality [BGT13]: Number of point-to-point channels used by each party - Implicit in previous works on "almost-everywhere secure" protocols [DPPU86,Upf92,KSSV06,GO08,CGO10,CGO12]
-

- Communication Locality [BGT13]: Number of point-to-point channels used by each party - Implicit in previous works on "almost-everywhere secure" protocols [DPPU86,Upf92,KSSV06,GO08,CGO10,CGO12]
-
- Standard MPC protocols: communication locality = *n-*¹

- Communication Locality [BGT13]: Number of point-to-point channels used by each party - Implicit in previous works on "almost-everywhere secure" protocols [DPPU86,Upf92,KSSV06,GO08,CGO10,CGO12]
-
- Standard MPC protocols: communication locality = *n-*¹

Question [BGT13]: MPC with low (sublinear in *n*) communication locality?

- Communication Locality [BGT13]: Number of point-to-point channels used by each party - Implicit in previous works on "almost-everywhere secure" protocols [DPPU86,Upf92,KSSV06,GO08,CGO10,CGO12]
-
- Standard MPC protocols: communication locality = *n-*¹

- Communication Locality [BGT13]: Number of point-to-point channels used by each party - Implicit in previous works on "almost-everywhere secure" protocols [DPPU86,Upf92,KSSV06,GO08,CGO10,CGO12]
-
- Standard MPC protocols: communication locality = *n-*¹

The Model

The Model

- Complete graph:
	- All *n* parties are connected by point-to-point channels
	- Dynamically select which channels to use

The Model

- Complete graph:
	- All *n* parties are connected by point-to-point channels
	- Dynamically select which channels to use

• Synchronous communication

Communication-Local MPC

Communication-Local MPC

-
-
-
-
-
-
-

Hidden graph

-
-
-
-
-
-
-

Hidden graph

• Adaptive security is impossible if adversary knows communication graph

Hidden graph

- Adaptive security is impossible if adversary knows communication graph
- [CCG+15]: "hidden graph" setup!

Hidden graph

- Adaptive security is impossible if adversary knows communication graph
- [CCG+15]: "hidden graph" setup!
	- Each party sees only its neighborhood

Hidden graph

- Adaptive security is impossible if adversary knows communication graph
- [CCG+15]: "hidden graph" setup!
	- Each party sees only its neighborhood
	-

- Setup: Use a symmetric key infrastructure — every pair of parties decides if they have edge

Hidden graph

- Adaptive security is impossible if adversary knows communication graph
- [CCG+15]: "hidden graph" setup!
	- Each party sees only its neighborhood
	-

- Setup: Use a symmetric key infrastructure — every pair of parties decides if they have edge Non-interactive!

-
-
-
-
-
-
-

Reliable message transmission (RMT)

-
-
-
-
-
-
-

- CL RMT is a fundamental building block of CL MPC

- CL RMT is a fundamental building block of CL MPC
- First prove results for CL RMT, then later extrapolate to CL MPC

- CL RMT is a fundamental building block of CL MPC
- First prove results for CL RMT, then later extrapolate to CL MPC

Background: Ideas from [CCG+15]

This talk

Communication-Local MPC

Store-and-Forward (SF) Protocols

Theorem: Without erasures, there is no store-and-forward protocol for CL RMT between all pairs of parties, tolerating an adaptive adversary corrupting a constant fraction of parties.

Theorem: Without erasures, there is no store-and-forward protocol for CL RMT between all pairs of parties, tolerating an adaptive adversary corrupting a constant fraction of parties.

Proof sketch:

Theorem: Without erasures, there is no store-and-forward protocol for CL RMT between all pairs of parties, tolerating an adaptive adversary corrupting a constant fraction of parties.

Proof sketch:

- There is a sender-receiver pair separated by distance $> \ell$ = O(log *n* / log log *n*)

Theorem: Without erasures, there is no store-and-forward protocol for CL RMT between all pairs of parties, tolerating an adaptive adversary corrupting a constant fraction of parties.

Proof sketch:

- **-** There is a sender-receiver pair separated by distance $> \ell$ = O(log *n* / log log *n*)
- fraction of parties

- Adversarial strategy: When (m, σ) travels ℓ hops away, randomly corrupt some constant

Theorem: Without erasures, there is no store-and-forward protocol for CL RMT between all pairs of parties, tolerating an adaptive adversary corrupting a constant fraction of parties.

Proof sketch:

- **-** There is a sender-receiver pair separated by distance $> \ell$ = O(log *n* / log log *n*)
- **- Adversarial strategy**: When (m, σ) travels ℓ hops away, randomly corrupt some constant fraction of parties
- **-** At least one party gets corrupted in each neighbor's subgraph, w.h.p.

Theorem: Without erasures, there is no store-and-forward protocol for CL RMT between all

pairs of parties, tolerating an adaptive adversary corrupting a constant fraction of parties.

Proof sketch:

- **-** There is a sender-receiver pair separated by distance $> \ell$ = O(log *n* / log log *n*)
- **- Adversarial strategy**: When (m, σ) travels ℓ hops away, randomly corrupt some constant fraction of parties
- **-** At least one party gets corrupted in each neighbor's subgraph, w.h.p.
- **-** Sufficient for adversary to block the transmission!

Check which incoming edge (m, σ) was received on

Check which incoming edge (m, σ) was received on

Reached a neighbor of sender! Check which outgoing edges (m, σ) was sent on

Check which outgoing edges (m, σ) was sent on

Check which outgoing edges (m, σ) was sent on

All parties (except sender) with (m, σ) are corrupted, and the transmission to receiver is blocked

Can be shown that this does not exceed the adversary's corruption budget

Communication-Local MPC

Feasibility of RMT (without erasures/atomic multisend!)

Feasibility of RMT (without erasures/atomic multisend!)

Feasibility of RMT (without erasures/atomic multisend!)

Feasibility of RMT (without erasures/atomic multisend!)

Feasibility of RMT (without erasures/atomic multisend!)

• Ciphertext size may reveal position of relayer in the hidden graph \Rightarrow Compact FHE!

- $information \Rightarrow Malicious circuit-private FHE!$
- Ciphertext size may reveal position of relayer in the hidden graph \Rightarrow Compact FHE! • Adversarially-fed malicious ciphertexts may cause output of FHE evaluation to leak

- Ciphertext size may reveal position of relayer in the hidden graph \Rightarrow Compact FHE!
- Adversarially-fed malicious ciphertexts may cause output of FHE evaluation to leak $information \Rightarrow Malicious circuit-private FHE!$
- [KTZ13]: Compact and adaptively secure FHE is impossible!

- Ciphertext size may reveal position of relayer in the hidden graph \Rightarrow Compact FHE!
- Adversarially-fed malicious ciphertexts may cause output of FHE evaluation to leak $information \Rightarrow Malicious circuit-private FHE!$
- [KTZ13]: Compact and adaptively secure FHE is impossible!
	- Solution: Scheme for our specific function verify message-signature pairs and select the first valid one

-
-
-
-
-
-
-
- -

• Parallel composition? Does not work!

-
-
-
-
-
-
-
- -

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

From single-pair RMT to all-to-polylog(*n***) RMT**

• Best we can do is *n* senders and only polylog(*n*) receivers

From single-pair RMT to all-to-polylog(*n***) RMT**

- Best we can do is *n* senders and only polylog(*n*) receivers
	- Use an independent hidden graph for each receiver

From single-pair RMT to all-to-polylog(*n***) RMT**
- Best we can do is *n* senders and only polylog(*n*) receivers
	- Use an independent hidden graph for each receiver
	- Adversary cannot interfere with hidden graphs of honest receivers

From single-pair RMT to all-to-polylog(*n***) RMT**

- Best we can do is *n* senders and only polylog(*n*) receivers
	- Use an independent hidden graph for each receiver
	- Adversary cannot interfere with hidden graphs of honest receivers
- We call this **sublinear output set (SOS-)RMT**

From single-pair RMT to all-to-polylog(*n***) RMT**

From single-pair RMT to all-to-polylog(*n***) RMT**

- Best we can do is *n* senders and only polylog(*n*) receivers
	- Use an independent hidden graph for each receiver
	- Adversary cannot interfere with hidden graphs of honest receivers
- We call this **sublinear output set (SOS-)RMT**
- SOS-RMT can be used to achieve SOS-MPC

Open problems

- All-to-all RMT (without erasures)
- RMT (without erasures) from weaker cryptographic assumptions
- RMT with asynchronous communication (work in progress)

Thank you!

ePrint: 2024/1489