Adaptive Security, Erasures, and Network Assumptions in Communication-Local MPC

Joint work with: Nishanth Chandran, Juan Garay, Rafail Ostrovsky, and Vassilis Zikas

Ankit Kumar Misra UCLA

TCC 2024

Complexity Measures in MPC

Complexity Measures in MPC

- Commonly studied metrics of efficiency and scalability in MPC:
 - Communication complexity
 - Computational complexity
 - Round complexity

Complexity Measures in MPC

- Commonly studied metrics of efficiency and scalability in MPC:
 - Communication complexity
 - Computational complexity
 - Round complexity
- In standard MPC protocols, every party talks to every other party

• Communication Locality [BGT13]: Number of point-to-point channels used by each party

- Communication Locality [BGT13]: Number of point-to-point channels used by each party - Implicit in previous works on "almost-everywhere secure" protocols [DPPU86,Upf92,KSSV06,GO08,CGO10,CGO12]

- Communication Locality [BGT13]: Number of point-to-point channels used by each party - Implicit in previous works on "almost-everywhere secure" protocols [DPPU86,Upf92,KSSV06,GO08,CGO10,CGO12]
- Standard MPC protocols: communication locality = *n*-1

- Communication Locality [BGT13]: Number of point-to-point channels used by each party - Implicit in previous works on "almost-everywhere secure" protocols [DPPU86,Upf92,KSSV06,GO08,CGO10,CGO12]
- Standard MPC protocols: communication locality = *n*-1

Question [BGT13]: MPC with low (sublinear in *n*) communication locality?

- Communication Locality [BGT13]: Number of point-to-point channels used by each party - Implicit in previous works on "almost-everywhere secure" protocols [DPPU86,Upf92,KSSV06,GO08,CGO10,CGO12]
- Standard MPC protocols: communication locality = *n*-1

- Communication Locality [BGT13]: Number of point-to-point channels used by each party - Implicit in previous works on "almost-everywhere secure" protocols [DPPU86,Upf92,KSSV06,G008,CG010,CG012]
- Standard MPC protocols: communication locality = *n*-1

polylog(n)

Question [BGT13]: MPC with low (sublinear in *n*) communication locality?

Communication-local MPC (CL MPC)

The Model

The Model

- Complete graph:
 - All *n* parties are connected by point-to-point channels
 - Dynamically select which channels to use

The Model

- Complete graph:
 - All *n* parties are connected by point-to-point channels
 - Dynamically select which channels to use

Synchronous communication

Communication-Local MPC

	Type of Adversary	Assumptions (on operations)			
		Atomic Multisend- and-Erase	Erasures	Atomic Multisend	Result: CL MPC is
[BGT13]	Static	×	×	×	feasible for <i>t</i> < (1/3 - ε) <i>n</i> corruptions
[CCG+15]	Adaptive	\checkmark	\checkmark	✓	feasible for <i>t</i> < <i>n</i> /2 corruptions
This work	Adaptive	×	×	\checkmark	impossible for linear corruption, using "store-and-forward" protocols
	Adaptive	×		×	feasible for <i>t</i> < (1/2 - ε) <i>n</i> corruptions (weak cryptographic assumptions)
	Adaptive	×	\checkmark	×	impossible for <i>t</i> > (1/2 + ε) <i>n</i> corruptions, using "store-and-forward" protocols
	Adaptive	×	×	×	feasible for <i>t < n</i> /2 corruptions (strong cryptographic assumptions)

Communication-Local MPC

	Type of Adversary	Assumptions (on operations)			
		Atomic Multisend- and-Erase	Erasures	Atomic Multisend	Result: CL MPC is
[BGT13]	Static	×	×	×	feasible for <i>t</i> < (1/3 - ε) <i>n</i> corruptions
[CCG+15]	Adaptive	\checkmark	\checkmark	\checkmark	feasible for <i>t</i> < <i>n</i> /2 corruptions
This work	Adaptive	×	×	\checkmark	impossible for linear corruption, using "store-and-forward" protocols
	Adaptive	×	\checkmark	×	feasible for <i>t</i> < (1/2 - ε) <i>n</i> corruptions (weak cryptographic assumptions)
	Adaptive	×	\checkmark	×	impossible for <i>t</i> > (1/2 + ε) <i>n</i> corruptions, using "store-and-forward" protocols
	Adaptive	×	×	×	feasible for <i>t</i> < <i>n</i> /2 corruptions (strong cryptographic assumptions)

Hidden graph

Hidden graph

• Adaptive security is impossible if adversary knows communication graph

Hidden graph

- Adaptive security is impossible if adversary knows communication graph
- [CCG+15]: "hidden graph" setup!

Hidden graph

- Adaptive security is impossible if adversary knows communication graph
- [CCG+15]: "hidden graph" setup!
 - Each party sees only its neighborhood

Hidden graph

- Adaptive security is impossible if adversary knows communication graph
- [CCG+15]: "hidden graph" setup!
 - Each party sees only its neighborhood

- Setup: Use a symmetric key infrastructure — every pair of parties decides if they have edge

Hidden graph

- Adaptive security is impossible if adversary knows communication graph
- [CCG+15]: "hidden graph" setup!
 - Each party sees only its neighborhood

Non-interactive! - Setup: Use a symmetric key infrastructure — every pair of parties decides if they have edge

Reliable message transmission (RMT)

RMT over a hidden graph: "graph discovery game"

RMT over a hidden graph: "graph discovery game"

- CL RMT is a fundamental building block of CL MPC

RMT over a hidden graph: "graph discovery game"

- CL RMT is a fundamental building block of CL MPC
- First prove results for CL RMT, then later extrapolate to CL MPC

RMT over a hidden graph: "graph discovery game"

- CL RMT is a fundamental building block of CL MPC
- First prove results for CL RMT, then later extrapolate to CL MPC

This talk

Communication-Local MPC

	—	Assumptions (on operations)			
	Type of Adversary	Atomic Multisend- and-Erase	Erasures	Atomic Multisend	Result: CL MPC is
[BGT13]	Static	×	×	×	feasible for <i>t</i> < (1/3 - ε) <i>n</i> corruptions
[CCG+15]	Adaptive	\checkmark	\checkmark	\checkmark	feasible for <i>t</i> < <i>n</i> /2 corruptions
This work	Adaptive	×	×	\checkmark	impossible for linear corruption, using "store-and-forward" protocols
	Adaptive	×	✓	×	feasible for <i>t</i> < (1/2 - ε) <i>n</i> corruptions (weak cryptographic assumptions)
	Adaptive	×	\checkmark	×	impossible for t > (1/2 + ε)n corruptions, using "store-and-forward" protocols
	Adaptive	×	×	×	feasible for <i>t</i> < <i>n</i> /2 corruptions (strong cryptographic assumptions)

Store-and-Forward (SF) Protocols

Theorem: Without erasures, there is no **store-and-forward** protocol for CL RMT between **all pairs of parties**, tolerating an **adaptive** adversary corrupting a **constant fraction** of parties.

Theorem: Without erasures, there is no **store-and-forward** protocol for CL RMT between **all pairs of parties**, tolerating an **adaptive** adversary corrupting a **constant fraction** of parties.

Proof sketch:

Theorem: Without erasures, there is no store-and-forward protocol for CL RMT between all pairs of parties, tolerating an adaptive adversary corrupting a constant fraction of parties.

Proof sketch:

- There is a sender-receiver pair separated by distance $> \ell = O(\log n / \log \log n)$

Theorem: Without erasures, there is no store-and-forward protocol for CL RMT between all pairs of parties, tolerating an adaptive adversary corrupting a constant fraction of parties.

Proof sketch:

- There is a sender-receiver pair separated by distance $> \ell = O(\log n / \log \log n)$
- fraction of parties

- Adversarial strategy: When (m, σ) travels ℓ hops away, randomly corrupt some constant

Theorem: Without erasures, there is no **store-and-forward** protocol for CL RMT between **all pairs of parties**, tolerating an **adaptive** adversary corrupting a **constant fraction** of parties.

Proof sketch:

- There is a sender-receiver pair separated by distance $> \ell = O(\log n / \log \log n)$
- Adversarial strategy: When (m, σ) travels ℓ hops away, randomly corrupt some constant fraction of parties
- At least one party gets corrupted in each neighbor's subgraph, w.h.p.

pairs of parties, tolerating an adaptive adversary corrupting a constant fraction of parties.

Proof sketch:

- There is a sender-receiver pair separated by distance $> \ell = O(\log n / \log \log n)$
- Adversarial strategy: When (m, σ) travels ℓ hops away, randomly corrupt some constant fraction of parties
- At least one party gets corrupted in each neighbor's subgraph, w.h.p.
- Sufficient for adversary to block the transmission!

Theorem: Without erasures, there is no store-and-forward protocol for CL RMT between all

Check which incoming edge (m, σ) was received on

Check which incoming edge (m, σ) was received on

Reached a neighbor of sender! Check which outgoing edges (m, σ) was sent on

Check which outgoing edges (m, σ) was sent on

Check which outgoing edges (m, σ) was sent on

All parties (except sender) with (m, σ) are corrupted, and the transmission to receiver is blocked

Can be shown that this does not exceed the adversary's corruption budget

Communication-Local MPC

	Type of Adversary	Assumptions (on operations)			
		Atomic Multisend- and-Erase	Erasures	Atomic Multisend	Result: CL MPC is
[BGT13]	Static	×	×	×	feasible for <i>t</i> < (1/3 - ε) <i>n</i> corruptions
[CCG+15]	Adaptive	\checkmark	\checkmark	\checkmark	feasible for <i>t</i> < <i>n</i> /2 corruptions
This work	Adaptive	×	×	\checkmark	impossible for linear corruption, using "store-and-forward" protocols
	Adaptive	×	\checkmark	×	feasible for <i>t</i> < (1/2 - ε) <i>n</i> corruptions (weak cryptographic assumptions)
	Adaptive	×	\checkmark	×	impossible for <i>t</i> > (1/2 + ε) <i>n</i> corruptions, using "store-and-forward" protocols
	Adaptive	×	×	×	feasible for <i>t < n</i> /2 corruptions (strong cryptographic assumptions)

Theorem: Assuming a PKI, hidden graph setup, trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE [OPP14], there is a polylog(n)-round CL RMT protocol for a single pair of parties, tolerating adaptive corruption of $t \le (1-\varepsilon)n$ parties.

Theorem: Assuming a PKI, hidden graph setup, trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE [OPP14], there is a polylog(n)-round CL RMT protocol for a single pair of parties, tolerating adaptive corruption of $t \le (1-\varepsilon)n$ parties.

Theorem: Assuming a PKI, hidden graph setup, trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE [OPP14], there is a polylog(n)-round CL RMT protocol for a single pair of parties, tolerating adaptive corruption of $t \le (1-\varepsilon)n$ parties.

Theorem: Assuming a PKI, hidden graph setup, trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE [OPP14], there is a polylog(n)-round CL RMT protocol for a single pair of parties, tolerating adaptive corruption of $t \le (1-\varepsilon)n$ parties.

Theorem: Assuming a PKI, hidden graph setup, trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE [OPP14], there is a polylog(n)-round CL RMT protocol for a single pair of parties, tolerating adaptive corruption of $t \le (1-\varepsilon)n$ parties.

Several caveats:

• Ciphertext size may reveal position of relayer in the hidden graph \Rightarrow Compact FHE!

- information \Rightarrow Malicious circuit-private FHE!
- Ciphertext size may reveal position of relayer in the hidden graph \Rightarrow Compact FHE! • Adversarially-fed malicious ciphertexts may cause output of FHE evaluation to leak

- Ciphertext size may reveal position of relayer in the hidden graph \Rightarrow Compact FHE!
- Adversarially-fed malicious ciphertexts may cause output of FHE evaluation to leak information ⇒ Malicious circuit-private FHE!
- [KTZ13]: Compact and adaptively secure FHE is impossible!

- Ciphertext size may reveal position of relayer in the hidden graph \Rightarrow Compact FHE!
- Adversarially-fed malicious ciphertexts may cause output of FHE evaluation to leak information ⇒ Malicious circuit-private FHE!
- [KTZ13]: Compact and adaptively secure FHE is impossible!
 - Solution: Scheme for our specific function verify message-signature pairs and select the first valid one

• Parallel composition? Does not work!

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

- Parallel composition? Does not work!
- Example with 1 sender and 2 receivers:

From single-pair RMT to all-to-polylog(n) RMT

From single-pair RMT to all-to-polylog(n) RMT

• Best we can do is *n* senders and only polylog(*n*) receivers

From single-pair RMT to all-to-polylog(n) RMT

- Best we can do is *n* senders and only polylog(*n*) receivers
 - Use an independent hidden graph for each receiver

From single-pair RMT to all-to-polylog(n) RMT

- Best we can do is *n* senders and only polylog(*n*) receivers
 - Use an independent hidden graph for each receiver
 - Adversary cannot interfere with hidden graphs of honest receivers

From single-pair RMT to all-to-polylog(n) RMT

- Best we can do is *n* senders and only polylog(*n*) receivers
 - Use an independent hidden graph for each receiver
 - Adversary cannot interfere with hidden graphs of honest receivers
- We call this sublinear output set (SOS-)RMT

From single-pair RMT to all-to-polylog(n) RMT

- Best we can do is *n* senders and only polylog(*n*) receivers
 - Use an independent hidden graph for each receiver
 - Adversary cannot interfere with hidden graphs of honest receivers
- We call this sublinear output set (SOS-)RMT
- SOS-RMT can be used to achieve SOS-MPC

Open problems

- All-to-all RMT (without erasures)
- RMT (without erasures) from weaker cryptographic assumptions
- RMT with asynchronous communication (work in progress)

Thank you!

ePrint: 2024/1489