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- Round complexity

• In standard MPC protocols, every party 
talks to every other party
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- Implicit in previous works on “almost-everywhere secure” protocols 
[DPPU86,Upf92,KSSV06,GO08,CGO10,CGO12]

• Standard MPC protocols: communication locality = n-1

Question [BGT13]: MPC with low (sublinear in n) communication locality?

Communication-local MPC (CL MPC)

polylog(n)
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The Model

• Complete graph: 

- All n parties are connected by point-to-point channels 

- Dynamically select which channels to use 

• Synchronous communication



Communication-Local MPC

Type of 
Adversary

Assumptions (on operations)
Result: CL MPC is…Atomic Multisend-

and-Erase Erasures
Atomic 

Multisend

[BGT13] Static ⨯ ⨯ ⨯ feasible for t < (1/3 - ε)n corruptions

[CCG+15] Adaptive ✓ ✓ ✓ feasible for t < n/2 corruptions
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Adaptive ⨯ ⨯ ✓ impossible for linear corruption, 
using “store-and-forward” protocols

Adaptive ⨯ ✓ ⨯ feasible for t < (1/2 - ε)n corruptions 
(weak cryptographic assumptions)
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Background: Ideas from [CCG+15]

Hidden graph

• Adaptive security is impossible if adversary knows communication graph

• [CCG+15]: “hidden graph” setup!

- Each party sees only its neighborhood

- Setup: Use a symmetric key infrastructure — every pair of parties decides if they have edge

Non-interactive!
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Theorem: Without erasures, there is no store-and-forward protocol for CL RMT between all 
pairs of parties, tolerating an adaptive adversary corrupting a constant fraction of parties.

Proof sketch:

- There is a sender-receiver pair separated by distance > 𝓁 = O(log n / log log n)

- Adversarial strategy: When (m, 𝜎) travels 𝓁 hops away, randomly corrupt some constant 
fraction of parties 

- At least one party gets corrupted in each neighbor’s subgraph, w.h.p.

- Sufficient for adversary to block the transmission!

Impossibility of SF RMT without erasures
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All parties (except sender) with (m, 𝜎) are corrupted, and 
the transmission to receiver is blocked 

Can be shown that this does not exceed the adversary’s 
corruption budget

Sender

𝓁

Impossibility of SF RMT without erasures
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Several caveats:

• Ciphertext size may reveal position of relayer in the hidden graph ⇒ Compact FHE!

• Adversarially-fed malicious ciphertexts may cause output of FHE evaluation to leak 
information ⇒ Malicious circuit-private FHE!

• [KTZ13]: Compact and adaptively secure FHE is impossible!

- Solution: Scheme for our specific function — verify message-signature pairs and select the 
first valid one

Feasibility of RMT (without erasures/atomic multisend!)
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Adversary can now trace message path back to sender’s neighbor
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• Best we can do is n senders and only polylog(n) receivers

- Use an independent hidden graph for each receiver

- Adversary cannot interfere with hidden graphs of honest receivers

• We call this sublinear output set (SOS-)RMT

• SOS-RMT can be used to achieve SOS-MPC

From single-pair RMT to all-to-polylog(n) RMT



• All-to-all RMT (without erasures) 

• RMT (without erasures) from weaker cryptographic assumptions 

• RMT with asynchronous communication (work in progress)

Open problems

Thank you! 
ePrint: 2024/1489


