Computational-Statistical Bit-Security

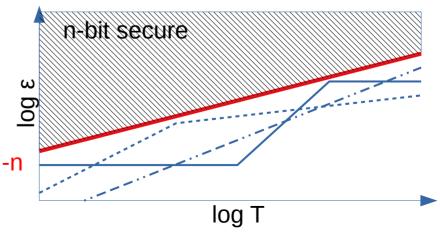
Daniele Micciancio Mark Schultz-Wu

(UC San Diego)

Theory of Cryptography Conference – TCC 2024 December 2024

Quantifying Security

- Security of cryptography is measured in "bits"
 - e.g., 128-bit secure, 256-bit secure, etc.
 - Intuition: cost of brute force attack on n-bit key
- Formal definition for search problems:
 - Adversary A
 - $\epsilon(A) = \Pr{A = k}$
 - T(A) = Runtime/Cost
 - $T(A)/\epsilon(A) \ge 2^n$

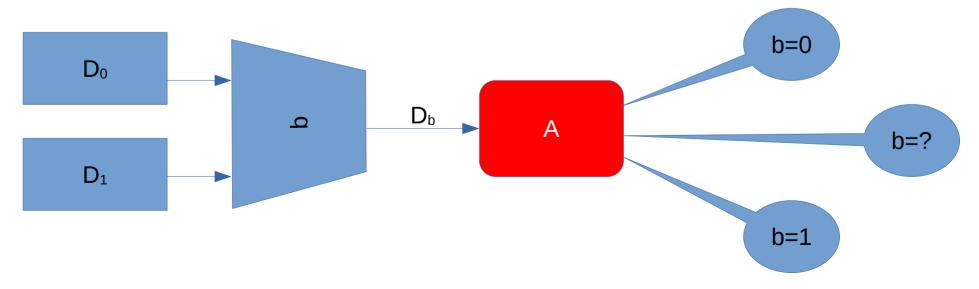


What about decision problems?

- Distinguishing games:
 - goal: recover secret bit $b \in \{0,1\}$
 - [–] PRG, PRF, IND-CPA, IND-CCA, ZK,
- $T(A)/\delta$ for $\delta = (2\epsilon 1) = \epsilon (1-\epsilon)$ does not work:
 - G(x) can be more secure as PRG than as OWF
 - against intuition that PRG is a stronger security requirement than OWF
- Is there a better definition for $\delta?$

Bit-security of decision problems

- First formal definition: [M., Walter'18]
 - Uses $\delta = (\epsilon \epsilon')^2 / (\epsilon + \epsilon')$ [Levin], where $\epsilon' = Pr\{A = (1-b)\}$
 - Adversaries can output 0,1 or "?", so $\varepsilon + \varepsilon' \le 1$



Follow up work

- [Watanabe, Yasunaga'21,'23]
 - Alternative definition with "operational interpretation"
 - Does not need "?" output symbol
- [Lee'24],[WY'24],[Veliche,Aggarwal,Ming'24]
- Applications:
 - [Abla,Liu,Wang,Wang'21]: IBE
 - [Li,**M.**,Sorrell,**S.**'22]: approximate FHE

Our work

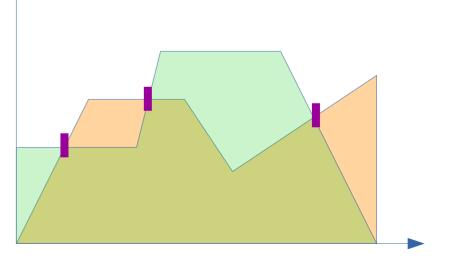
- Characterize optimal statistical adversaries
- Clarify equivalence of MW and WY definition
- Toolbox for (c,s)-security [LMSS'22]
 - Distribution replacement theorem
 - (c,s)-hybrid argument
- Techniques: fuzzy adversaries
 - Output $\sigma \in [-1,1]$: decision=sign(σ), confidence= $|\sigma| \in [0,1]$
 - Still equivalent to "aborting" MW {0,1,?}-adversary

Statistical security

- Statistical (aka, information theoretic) security:
 - [–] Small $\epsilon(A)$, regardless of running time T(A)
 - unconditional: no computational assumptions!
 - easier to analyze
- Related to dissimilarity between distributions
 - Total Variation (TV) distance
 - [–] KL diveregence, Renyi divergence, etc.
 - Hellinger distance
- Implies computational security

Optimal (statistical) distinguisher

- x ← D[0] or D[1]
- A(x)= 0 or 1
 - D[A(x)]≥D[1-A(x)]
- A(x) = 0, 1 or ?
 - When should A output ?
 - D[0]=D[1]
 - D[0]≈D[1], but how close?

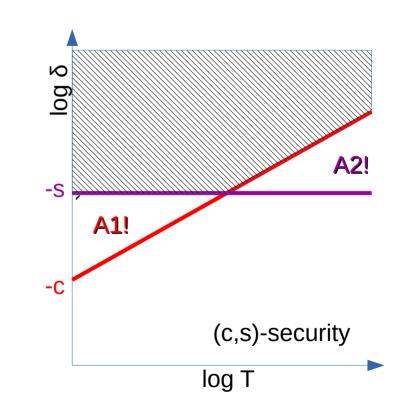


Structure of Optimal Distinguisher

- WLOG, may assume A is deterministic
 - may seem obvious, but it is a convexity property
- Optimal A is a "threshold" adversary
 - Output ? if $|\log Pr{D0} \log Pr{D1}| < \tau$
 - $\tau = \log (4/(3-2\epsilon^*) 1) \le \log 3$, where $\epsilon^* = \epsilon/(\epsilon + \epsilon')$

Computational/Statistical security

- [LMSS'21] (c,s)-security: for all
 - − either $\delta(A) \le 2^{-s}$
 - − or T(A)/ δ (A) ≥ 2^c
- Note: a function can be
 - neither c-bits comp. security, nor 2-bits stat. secure
 - and still be (c,s)-secure



Distribution replacement

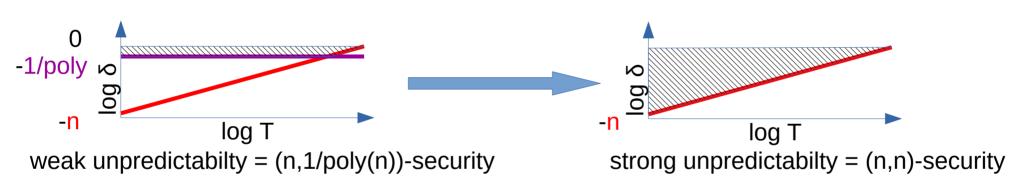
- Let $G^{\times} = (G_0^{\times}, G_1^{\times})$ be a decision game parametrized by a distribution X
 - [–] If G^{\times} is (c,s)-secure, and
 - (X,Y) are (c,s)-indistinguishable
 - then G^Y is also (c',s')-secure, for c'≈c, s'≈s
- E.g., X easy to analyze, Y easy to sample
- Generalizes previous results which assumed
 - (X,Y) are statistically close [MW18]
 - ⁻ (X,Y) are computationally indistinguishable [Y21]

Hybrid argument

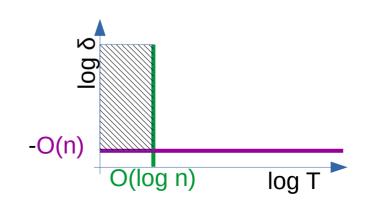
- Sequence of games H₀, H₁, ..., H_n
 - If (H_i, H_{i+1}) are (c, s)-indistinguishable,
 - [–] then (H_0, H_n) are (c', s')-indistinguishable
- E.g., construction achieving (H₀,H_n)-security using several cryptographic primitives
 - Each (H_i, H_{i+1}) is proved using one of the primitives
 - Some primitives are computationally c-bit secure
 - Others are statistically s-bit secure

Relation to other talks

• [WY'24] hardness amplification



- [VAM'24]:
 - assumes $T \leq poly(n)$
 - shows $\delta \leq \exp(-n)$



Conclusion

- Bit security (in all its c, s and (c,s) flavors)
 - useful, both in theory and practice
 - usable, not much harder than traditional proofs
- TODO: use it!

Questions?