The Cost of Maintaining Keys in Dynamic Groups with Applications to Multicast Encryption and Group Messaging

Michael Anastos, Benedikt Auerbach, Mirza Ahad Baig, **Miguel Cueto Noval**, Matthew Kwan, Guillermo Pascual-Perez, Krzysztof Pietrzak

ISTA, Austria

TCC 2024

Round 1: group of users agree on a key.

Round 1: group of users agree on a key.

- Round 1: group of users agree on a key.
- Round 2: replace operation.

Round 1: group of users agree on a key.

Round 2: replace operation.

Round 1: group of users agree on a key.

Round 2: replace operation.

Security: 'only current group members know the group key'.

Round 1: group of users agree on a key.

Round 2: replace operation.

- Security: 'only current group members know the group key'.
- Examples: Multicast Encryption (ME), Group Messaging.

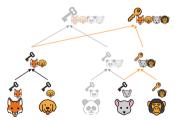
In ME there is a central authority and each user maintains a private state:

In ME there is a central authority and each user maintains a private state:

Example: key trees as in Logical Key Hierarchies (LKH).

In ME there is a central authority and each user maintains a private state:

Example: key trees as in Logical Key Hierarchies (LKH).



In ME there is a central authority and each user maintains a private state:

Example: key trees as in Logical Key Hierarchies (LKH).

In ME there is a central authority and each user maintains a private state:

Example: key trees as in Logical Key Hierarchies (LKH).

• Cost per round of replacing d users: $O(d(1 + \log_2(n/d)))$.

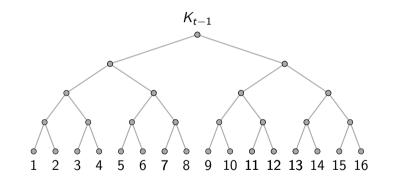
Communication Cost in Multicast Encryption

Question: How many messages does the CA have to send per round in order to communicate a new key?

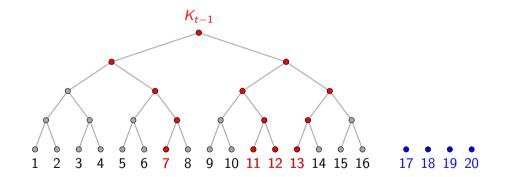
Question: How many messages does the CA have to send per round in order to communicate a new key? **Upper Bound:** Cost per round of replacing *d* users is $O(d(1 + \log_2(n/d)))$ [NNL01, LYGL01, SM03].

Question: How many messages does the CA have to send per round in order to communicate a new key? **Upper Bound:** Cost per round of replacing *d* users is $O(d(1 + \log_2(n/d)))$ [NNL01, LYGL01, SM03].

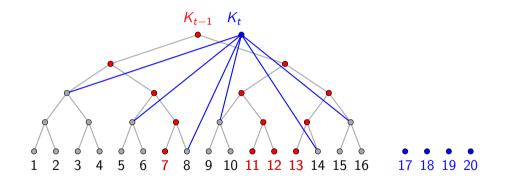
Lower Bounds for $d=1$			
[MP04]	$\Omega(\log_2 n)$	Worst case	
[AAB+21]	$\Omega(\log_2 n)$	Average Case	

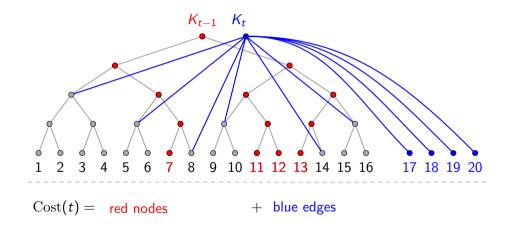


Question: How many messages does the CA have to send per round in order to communicate a new key? **Upper Bound:** Cost per round of replacing *d* users is $O(d(1 + \log_2(n/d)))$ [NNL01, LYGL01, SM03].


Lower Bounds for $d = 1$			
[MP04]	$\Omega(\log_2 n)$	Worst case	
[AAB+21]	$\Omega(\log_2 n)$	Average Case	

This Work: A lower bound for arbitrary *d* of $\Omega(d \cdot \log_2(n/d))$ (Average Case).





ΙSΤΑ

Combinatorial Lower Bound

Theorem

In every round t

$$\mathbb{E}[\operatorname{Cost}(t)] \ge d \ln\left(\frac{n}{d}\right),$$

where d denotes the number of users replaced in round t and the set of users removed is sampled uniformly at random in every round.

Cost(t) = red nodes + blue edges

Consequence of Bollobás Set Pairs Inequality.

Lower Bound for Multicast Encryption

Lemma

For any correct and secure ME scheme built using PRGs, PRFs, dual PRFs, symmetric encryption and secret sharing in the symbolic model: $\sum_{t=0}^{t_{max}} |M_t| \ge 1/3 \cdot \sum_{t=0}^{t_{max}} Cost(t)$, where $|M_t| = number$ of messages sent by CA in round t.

Lower Bound for Multicast Encryption

Lemma

For any correct and secure ME scheme built using PRGs, PRFs, dual PRFs, symmetric encryption and secret sharing in the symbolic model: $\sum_{t=0}^{t_{max}} |M_t| \ge 1/3 \cdot \sum_{t=0}^{t_{max}} Cost(t)$, where $|M_t| = number$ of messages sent by CA in round t.

Theorem

Thus it must hold that

$$\frac{1}{t_{\max}} \mathbb{E}\left[\sum_{t=0}^{t_{\max}} |\mathsf{M}_t|\right] \geq \frac{1}{3} d \ln\left(\frac{n}{d}\right),$$

where d denotes the amount of users replaced per round and the set of users replaced is sampled uniformly at random in every round.

Thanks!

https://ia.cr/2024/1097

