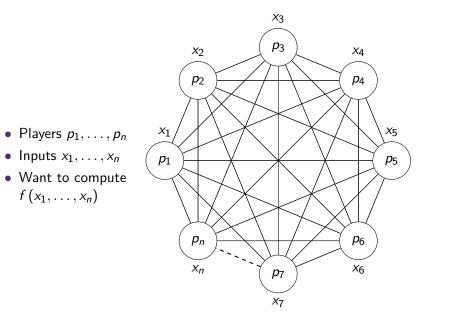
General Adversary Structures in BA and MPC with Active and Omission Corruption

Konstantinos Brazitikos and Vassilis Zikas

University of Edinburgh December 6 TCC 2024

Georgia Tech Gr

Secure Multi-Party Computation



Setting the landscape

Perfect Security

• Information theoretic security, no setup, with zero error probability

Setting the landscape

Perfect Security

• Information theoretic security, no setup, with zero error probability

Adversary Characterisation

- Unbounded
- Static
- Rushing

Mixed Adversary

Mixed Adversary

- Active Corruption (Malicious)
 - Full access and control
 - Can deviate arbitrarily

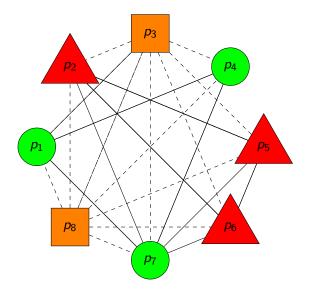
Mixed Adversary

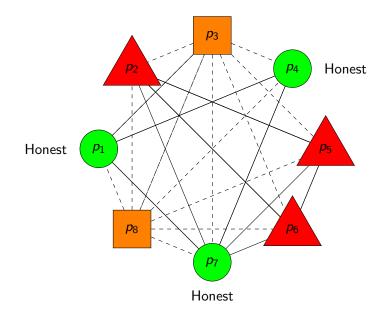
- Active Corruption (Malicious)
 - Full access and control
 - Can deviate arbitrarily
- Omission Corruption
 - No information leaks
 - Can obliviously block/erase any message

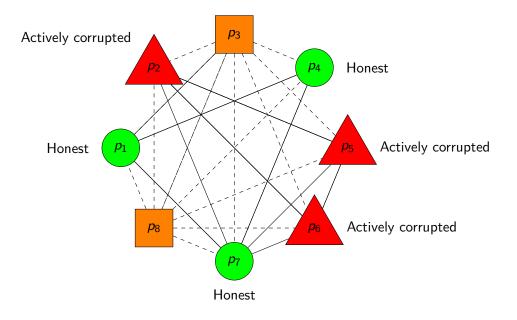
- Model real-life scenarios
 - Temporary connectivity issues (DoS, faulty connection, network outages, offline users)
 - If user can't follow the protocol entirely (going offline) but is still benign (unreliable but not malicious)

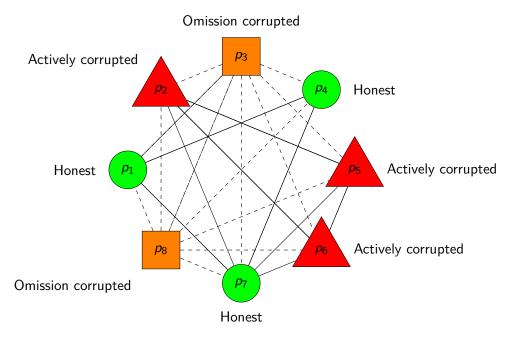
- Model real-life scenarios
 - Temporary connectivity issues (DoS, faulty connection, network outages, offline users)
 - If user can't follow the protocol entirely (going offline) but is still benign (unreliable but not malicious)
- Lies between active corruption and crash failures, more benign than the former, less benign than the latter

- Model real-life scenarios
 - Temporary connectivity issues (DoS, faulty connection, network outages, offline users)
 - If user can't follow the protocol entirely (going offline) but is still benign (unreliable but not malicious)
- Lies between active corruption and crash failures, more benign than the former, less benign than the latter
- A lot of recent work on omissions









General Adversary Model [HM97]

Description through adversary structure $\ensuremath{\mathcal{Z}}$

- More expressive than threshold model, can describe situations that threshold cannot
- Contains classes Z_1, Z_2, \ldots that the adversary can select from

General Adversary Model [HM97]

Description through adversary structure $\ensuremath{\mathcal{Z}}$

- More expressive than threshold model, can describe situations that threshold cannot
- Contains classes Z_1, Z_2, \ldots that the adversary can select from

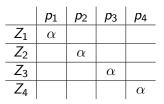
Adversary class Z_i of structure \mathcal{Z}

Contains a pair (A_i, Ω_i) of corrupted parties

- Set of actively corrupted parties A_i
- Set of omission-corrupted parties Ω_i

General Adversary Model: An Example

$$Z_1 = (\{p_1\}, \emptyset), Z_2 = (\{p_2\}, \emptyset), Z_3 = (\{p_3\}, \emptyset), Z_4 = (\{p_4\}, \emptyset)$$



4 player secure MPC with only one player corrupted

General Adversary Model: An Impossibility Example

$$Z_1 = (\{p_1\}, \{p_3\}), Z_2 = (\{p_2\}, \{p_3\}), Z_3 = (\emptyset, \{p_4\})$$

 p_3 or p_4 always corrupted, p_3 cannot send message to p_4

Previous work

	Gen. Adv.	Active	Omis.	Perf. Sec.	Comp. Sec.	
t < n/3		\checkmark		\checkmark		[PSL80]
t < n/3		\checkmark		\checkmark		[LPS80]
$A_1 \cup A_2 \cup A_3 \neq \mathcal{P}$	\checkmark	\checkmark		\checkmark		[HM97]
$A_1 \cup A_2 \cup A_3 \cup$	\checkmark	\checkmark		\checkmark		[BFH+]
$(F_1 \cap F_2 \cap F_3) \neq \mathcal{P}$						
t < n/2			\checkmark	\checkmark		[PR03]
$3t_a + 2t_\omega < n$		\checkmark	\checkmark	\checkmark		[ZHM09]
$2t_a + t_r + t_s < n$		\checkmark	\checkmark		\checkmark	[ELT22]
$2t_a + t_r + t_s < n$		\checkmark	\checkmark		\checkmark	[LS23]
$2t_a + t_r + t_s < n$		\checkmark	\checkmark		\checkmark	[LSS24]
This work	\checkmark	\checkmark	\checkmark	\checkmark		[BZ24]

Our contributions

Our contributions

General Adversary for Active and Omission corruption

- Sufficient and necessary security condition for Byzantine Agreement (BA)
- Sufficient and necessary security condition for MPC
- Both results are optimal and cannot be improved

Our contributions

General Adversary for Active and Omission corruption

- Sufficient and necessary security condition for Byzantine Agreement (BA)
- Sufficient and necessary security condition for MPC
- Both results are optimal and cannot be improved

Simulation based definitions and proofs

- First ever UC treatment of the problem
- All existing Gen. Adv. protocols use composition but no composable treatment

Our results: Tight characterization for perfectly secure MPC

Necessary and sufficient condition for MPC $C_{MPC}^{(A,\Omega)}(\mathcal{P},\mathcal{Z})$

For an adversary structure ${\cal Z}$ and a player set ${\cal P}$ we can get secure MPC if and only if we have

- condition for BA
- condition for SMT for every pair of players

Our results: Tight characterization for perfectly secure MPC

Necessary and sufficient condition for MPC $C_{MPC}^{(A,\Omega)}(\mathcal{P},\mathcal{Z})$

For an adversary structure ${\cal Z}$ and a player set ${\cal P}$ we can get secure MPC if and only if we have

- condition for BA
- condition for SMT for every pair of players

$$C_{MPC}^{(A,\Omega)}(\mathcal{P},\mathcal{Z}) \Longleftrightarrow C_{BA}^{(A,\Omega)}(\mathcal{P},\mathcal{Z}) \land \forall p_s, p_r \in \mathcal{P}: \ C_{SMT}^{(A,\Omega)}(\mathcal{P},\mathcal{Z},p_s,p_r)$$

Our results: Security Condition for BA

Sufficient and Necessary Condition $C_{BA}^{(A,\Omega)}(\mathcal{P},\mathcal{Z})$

For an adversary structure ${\cal Z}$ and a player set ${\cal P}$ we get secure BA if and only if the following holds.

Our results: Security Condition for BA

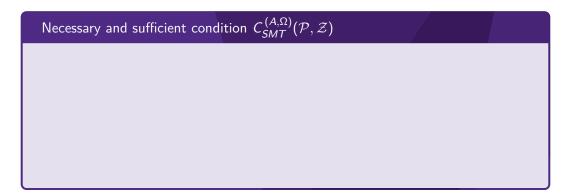
Sufficient and Necessary Condition $C_{BA}^{(A,\Omega)}(\mathcal{P},\mathcal{Z})$

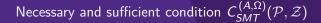
For an adversary structure ${\cal Z}$ and a player set ${\cal P}$ we get secure BA if and only if the following holds.

 $C_{BA}^{(A,\Omega)}(\mathcal{P},\mathcal{Z}) \iff$ For any three classes with indices i, j, k:

 $A_i \cup A_j \cup A_k \cup (\Omega_i \cap \Omega_j) \neq \mathcal{P}$

In contrast with the condition for active/fail: $A_i \cup A_j \cup A_k \cup (F_i \cap F_j \cap F_k) \neq \mathcal{P}$ [AFM99]





We have detSMT between a pair of parties p_s , p_r if and only if the following holds:

Necessary and sufficient condition $C_{SMT}^{(A,\Omega)}(\mathcal{P},\mathcal{Z})$

We have detSMT between a pair of parties p_s , p_r if and only if the following holds: $C_{SMT}^{(A,\Omega)}(\mathcal{P}, \mathcal{Z}) \iff$ For any three indices i, j, k:

> $p_s \in (\Omega_i \cap \Omega_j) \land p_r \in \Omega_k \implies$ $A_i \cup A_j \cup \Omega_k \cup (\Omega_i \cap \Omega_j) \neq \mathcal{P}$

Necessary and sufficient condition $C_{SMT}^{(A,\Omega)}(\mathcal{P},\mathcal{Z})$

We have detSMT between a pair of parties p_s , p_r if and only if the following holds: $C_{SMT}^{(A,\Omega)}(\mathcal{P}, \mathcal{Z}) \iff$ For any three indices i, j, k:

> $p_s \in (\Omega_i \cap \Omega_j) \land p_r \in \Omega_k \implies$ $A_i \cup A_j \cup \Omega_k \cup (\Omega_i \cap \Omega_j) \neq \mathcal{P}$

- and respectively for $(p_r \in \Omega_i \cap \Omega_j \land p_s \in \Omega_k)$

Our approach for Omissions

Our approach for Omissions

Difficulty dealing with them

Cannot tell whose fault it is when a message is dropped

Our approach for Omissions

Difficulty dealing with them

Cannot tell whose fault it is when a message is dropped

Our strategy

- Make protocols identifiable to detect omission-corrupted players
- Parties are either publicly identified or self-identified (we call them zombies) and step down from participating

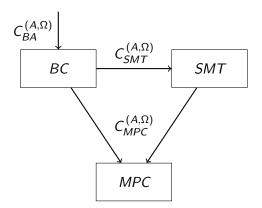
Pathway of our solution

Pathway of our solution

Our structure

- Consensus/Broadcast primitive
- Detectable SMT primitive
- Detectable MPC
- Robust MPC

Overview



Questions?