Indistinguishability Obfuscation from **Bilinear Maps and LPN Variants**

- **TCC 2024**
- December 6, 2024

Vinod Vaikuntanathan MIT

Indistinguishability Obfuscation

PPT algorithm \mathcal{O} , where inputs and outputs are circuits.

Indistinguishability Obfuscation

PPT algorithm \mathcal{O} , where inputs and outputs are circuits.

• Correctness: \forall circuits C, inputs x, $\mathcal{O}(C)(x) = C(x)$.

Indistinguishability Obfuscation

PPT algorithm \mathcal{O} , where inputs and outputs are circuits.

- Correctness: \forall circuits C, inputs x, $\mathcal{O}(C)(x) = C(x)$.
- Indistinguishability Security: For all same-size, functionally equivalent circuits C_0, C_1 ,

 $\mathcal{O}(C_0) \approx_c \mathcal{O}(C_1).$

IO is "crypto-complete"

IO is "crypto-complete"

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),

IO is "crypto-complete"

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- ... much more.

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- ... much more.

IO (+ other mild assumptions) implies:

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- ... much more.

2013 - 2020:

IO (+ other mild assumptions) implies:

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- ... much more.

2013 - 2020: ...maybe?

IO (+ other mild assumptions) implies:

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- ... much more.

2013 - 2020: ...maybe?

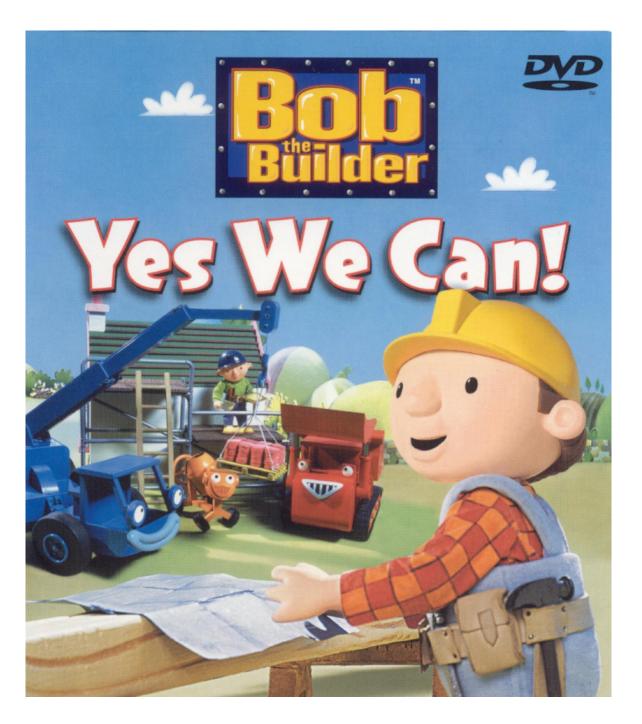
2021: Jain, Lin, and Sahai:

IO (+ other mild assumptions) implies:

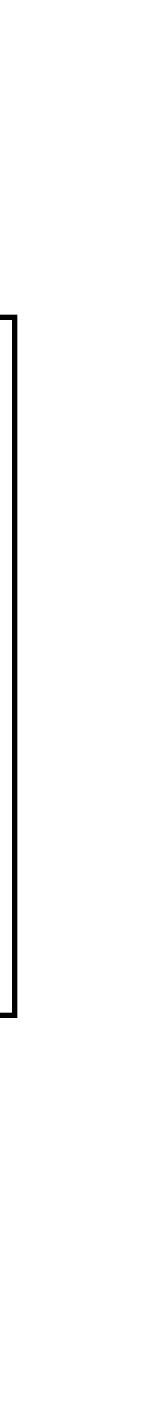
- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- ... much more.

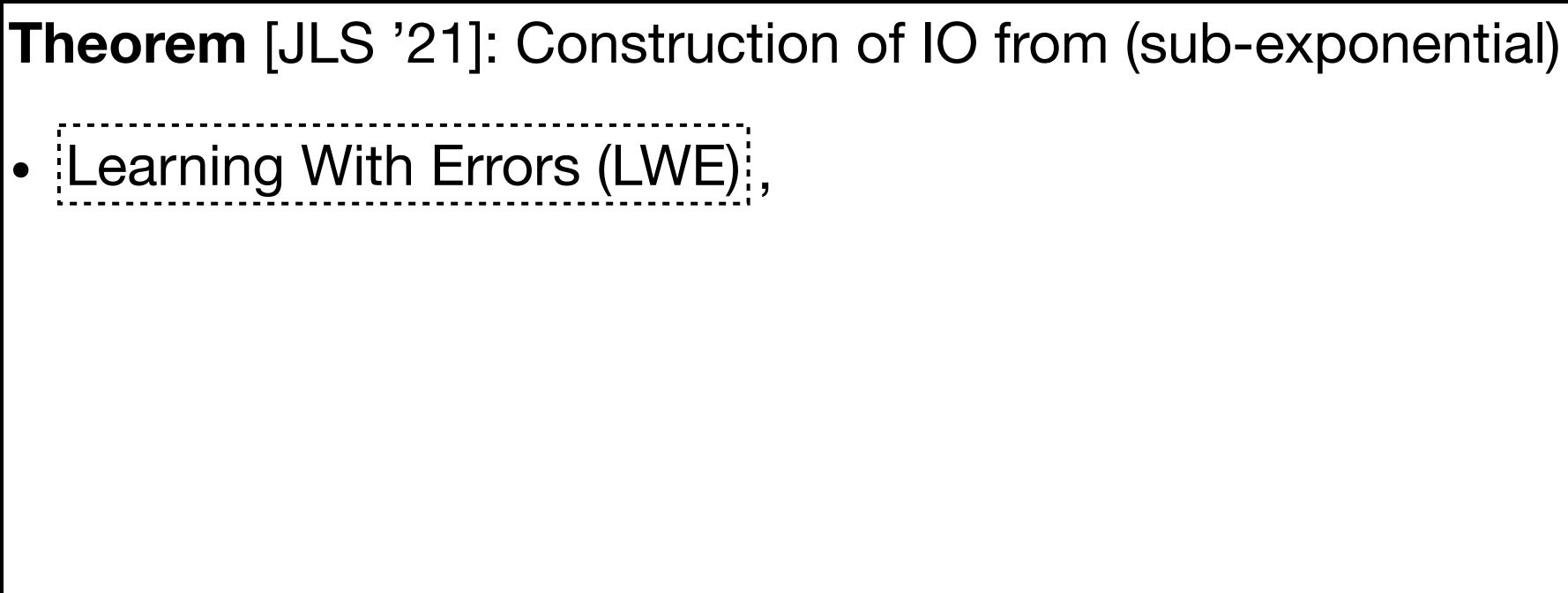
2013 - 2020: ...maybe?

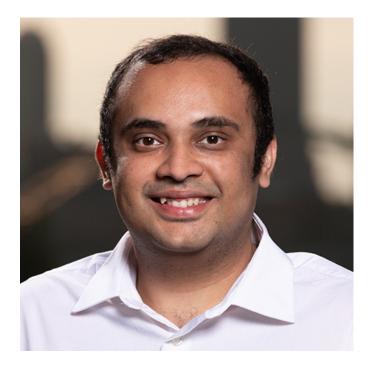
2021: Jain, Lin, and Sahai:

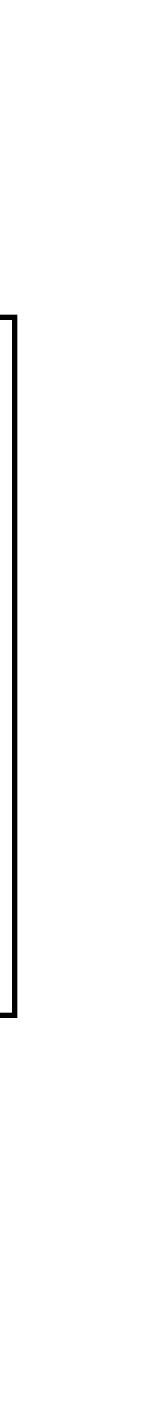


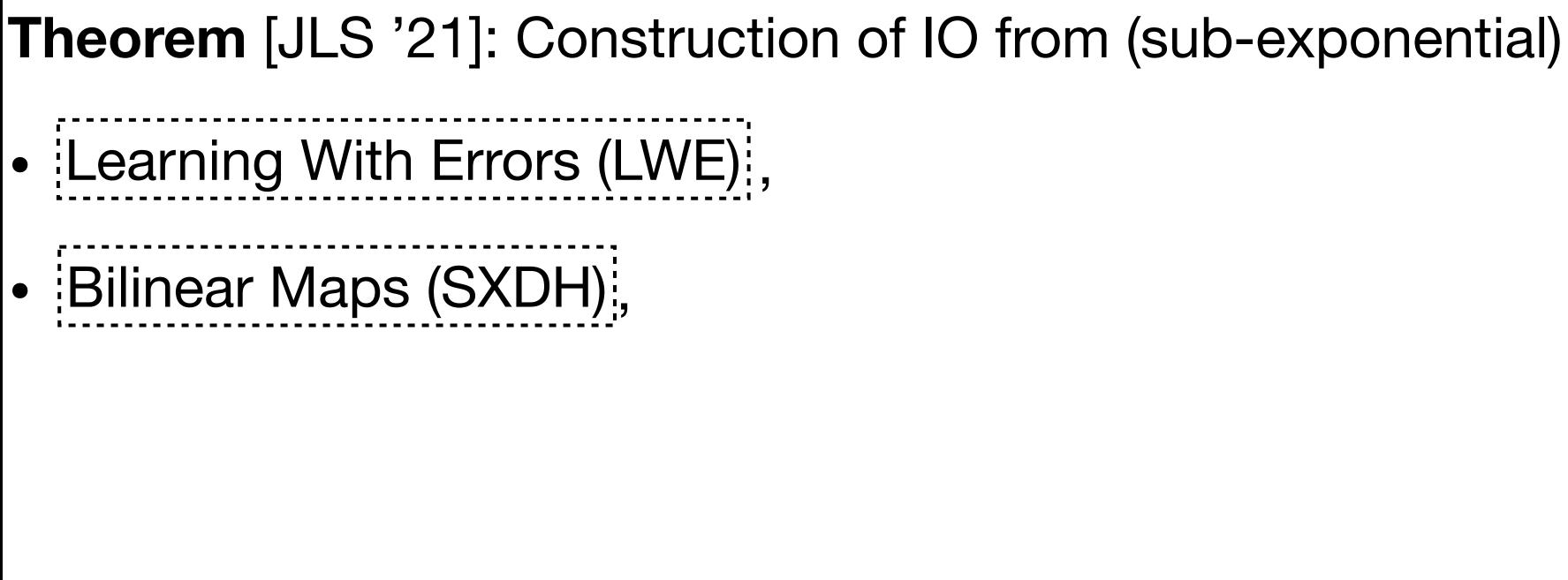
Theorem [JLS '21]: Construction of IO from (sub-exponential)

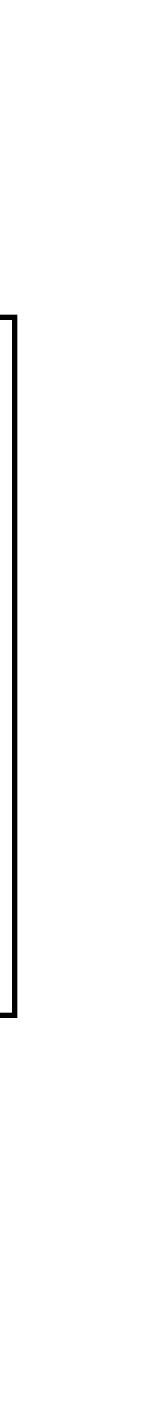


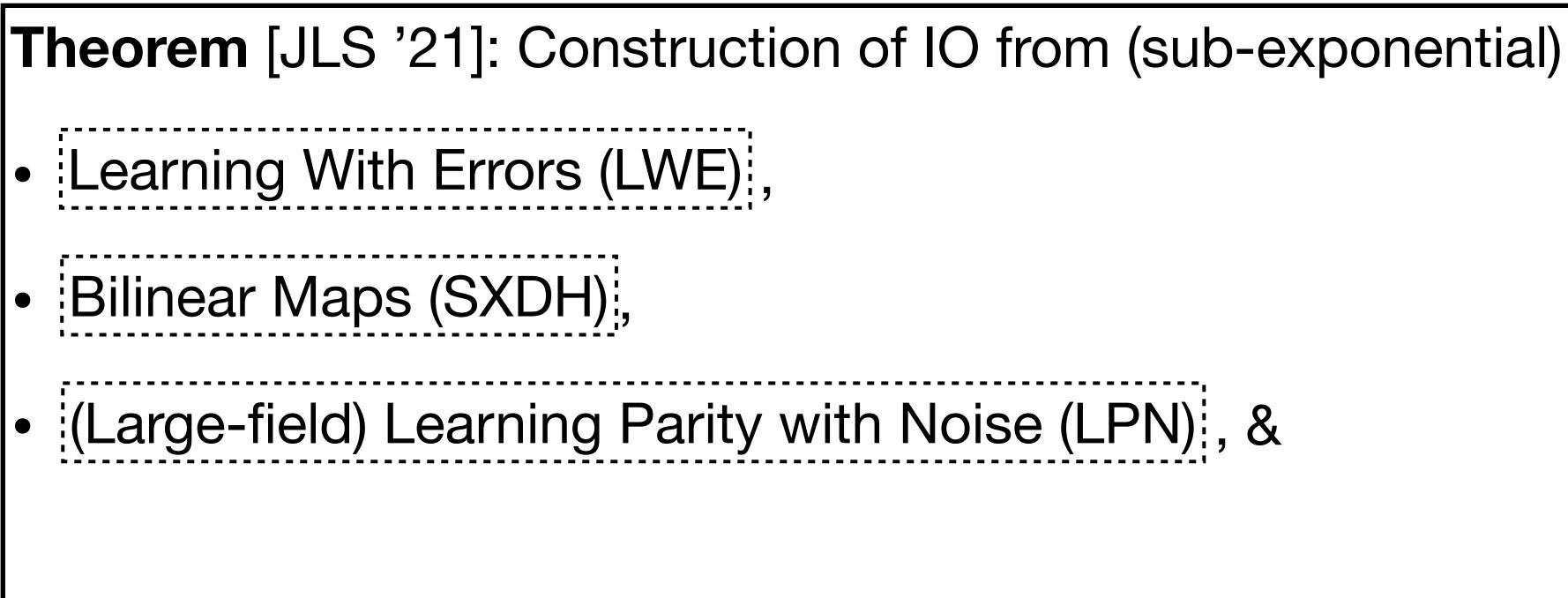


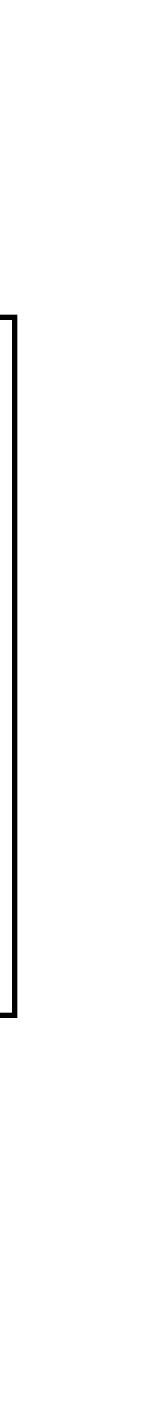


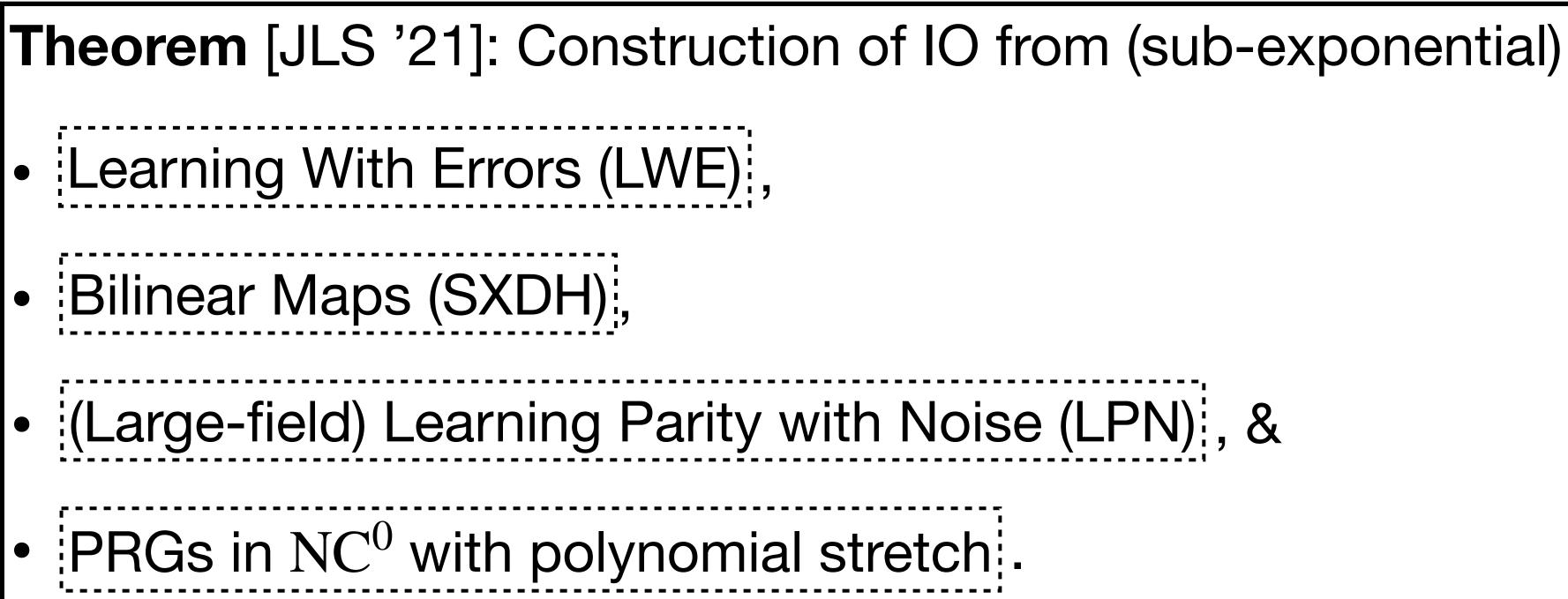


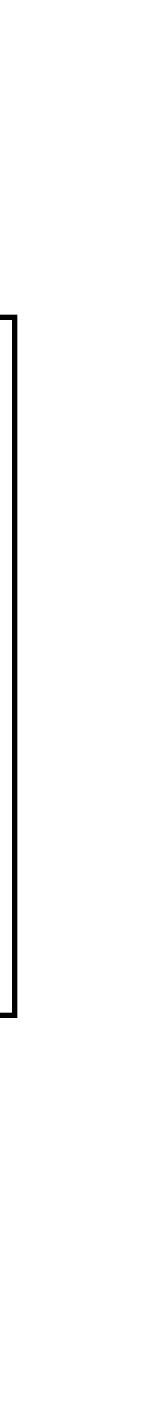


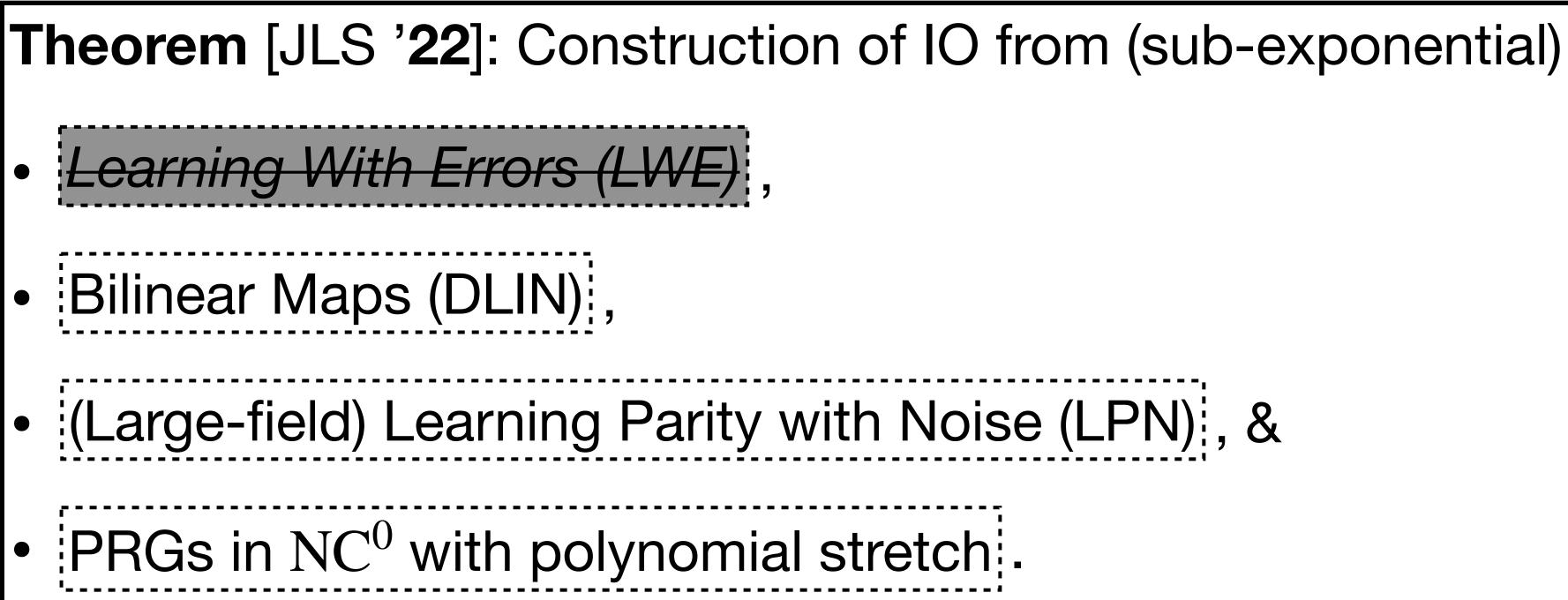


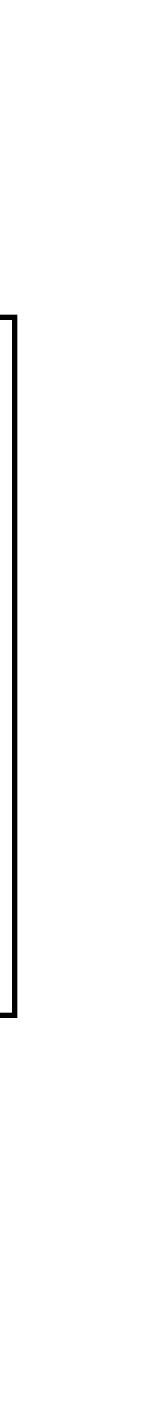


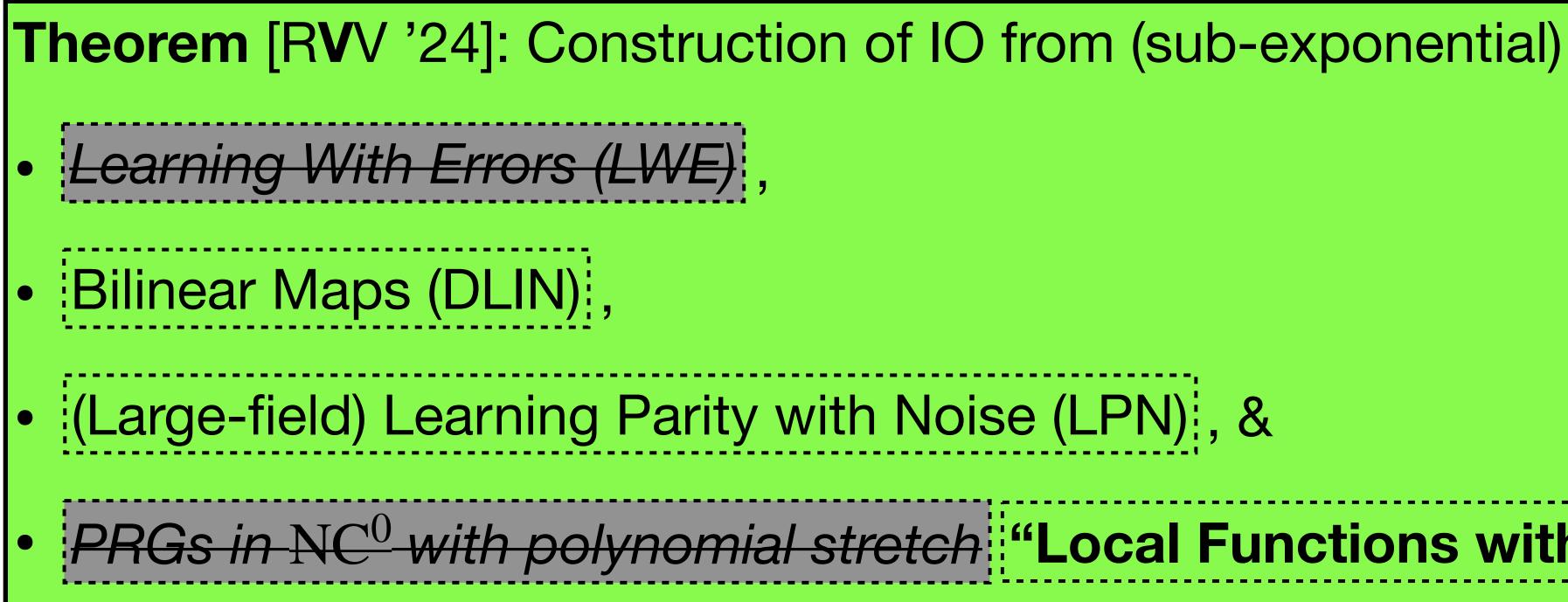






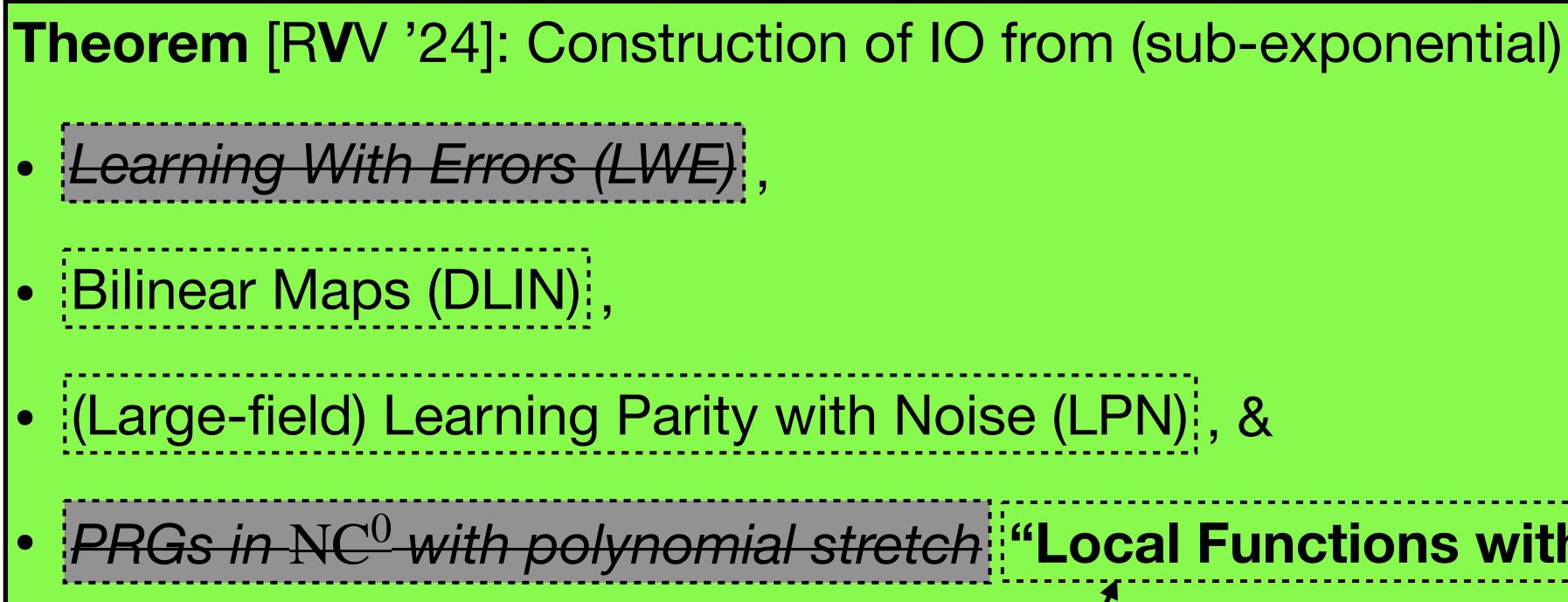






Our Result

PRGs in NC⁰ with polynomial stretch "Local Functions with Noise" (LFN)



Our Result

PRGs in NC⁰ with polynomial stretch "Local Functions with Noise" (LFN)

Weaker

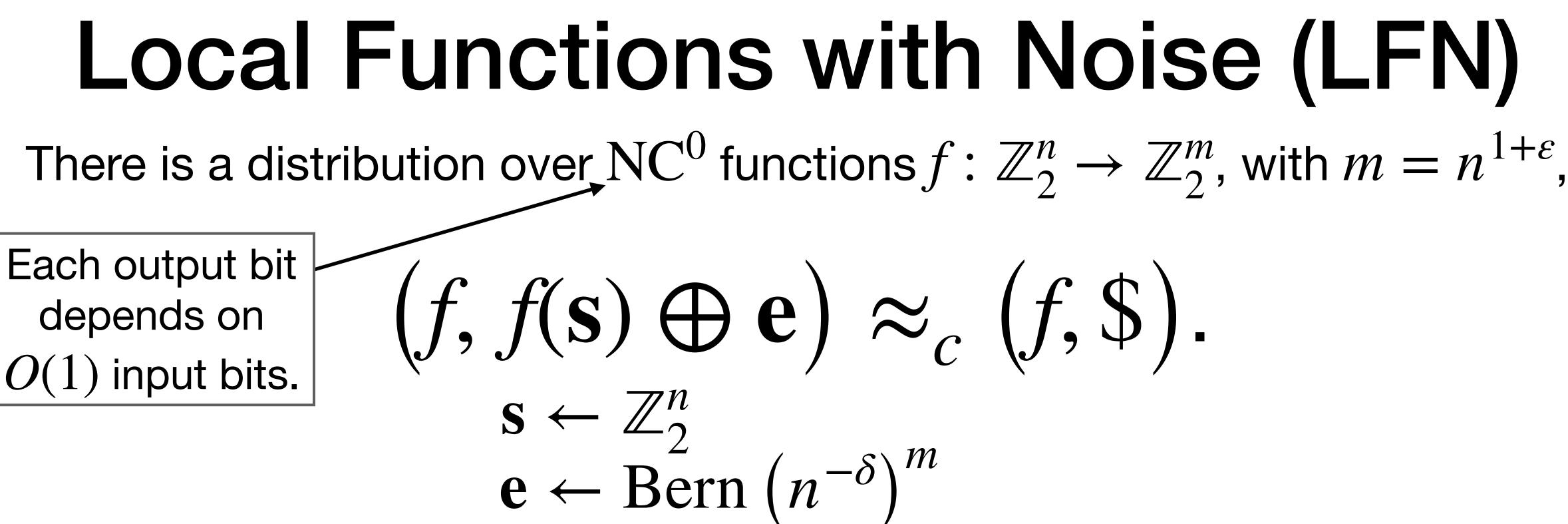
Local Functions with Noise (LFN) There is a distribution over NC⁰ functions $f : \mathbb{Z}_2^n \to \mathbb{Z}_2^m$, with $m = n^{1+\varepsilon}$,

Local Functions with Noise (LFN) There is a distribution over NC⁰ functions $f : \mathbb{Z}_2^n \to \mathbb{Z}_2^m$, with $m = n^{1+\varepsilon}$,

$(f, f(\mathbf{s}) \oplus \mathbf{e}) \approx_c (f, \$).$

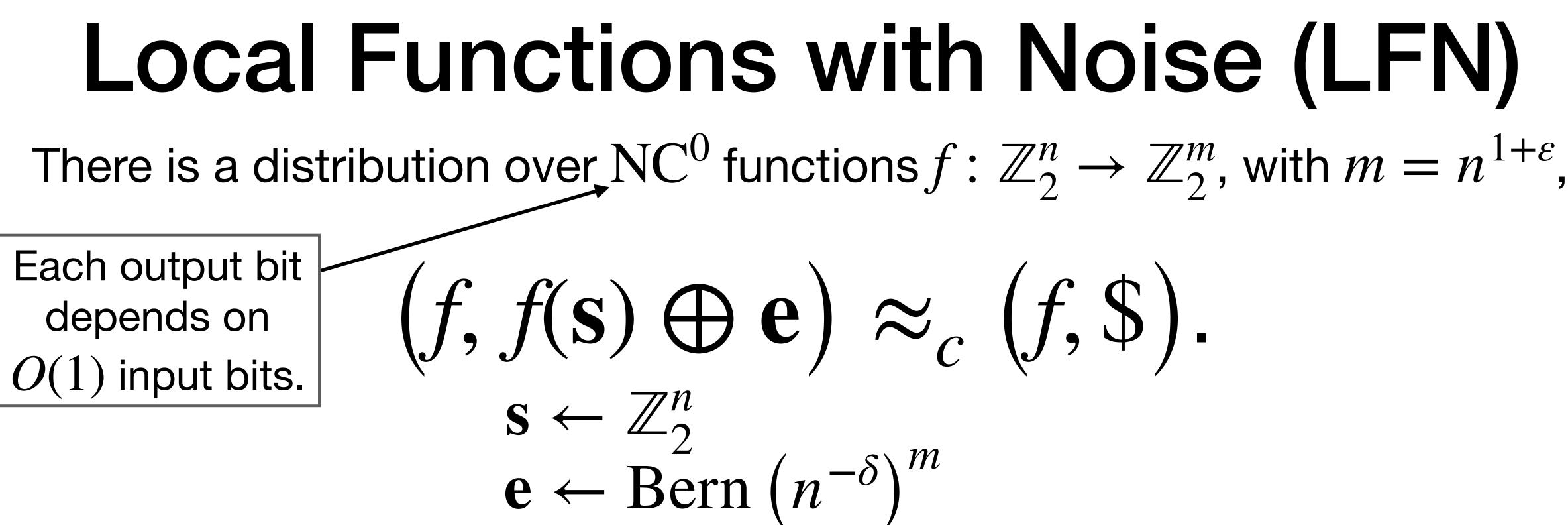
Local Functions with Noise (LFN) There is a distribution over NC⁰ functions $f : \mathbb{Z}_2^n \to \mathbb{Z}_2^m$, with $m = n^{1+\varepsilon}$,

 $(f, f(\mathbf{s}) \oplus \mathbf{e}) \approx_c (f, \$).$ $\mathbf{s} \leftarrow \mathbb{Z}_2^n$ $\mathbf{e} \leftarrow \operatorname{Bern}(n^{-\delta})^m$



Local Functions with Noise (LFN)

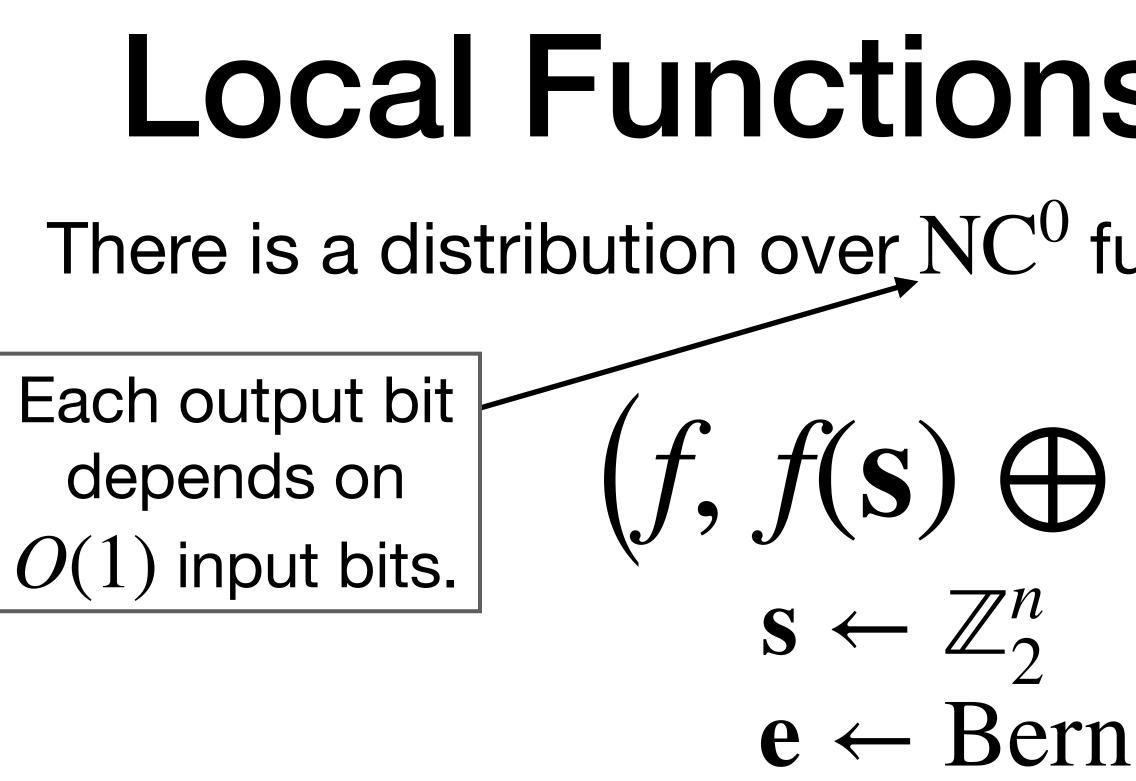
 $(f, f(\mathbf{s}) \oplus \mathbf{e}) \approx_c (f, \$).$



Two ways to instantiate LFN:

Local Functions with Noise (LFN)

 $(f, f(\mathbf{s}) \oplus \mathbf{e}) \approx_c (f, \$).$

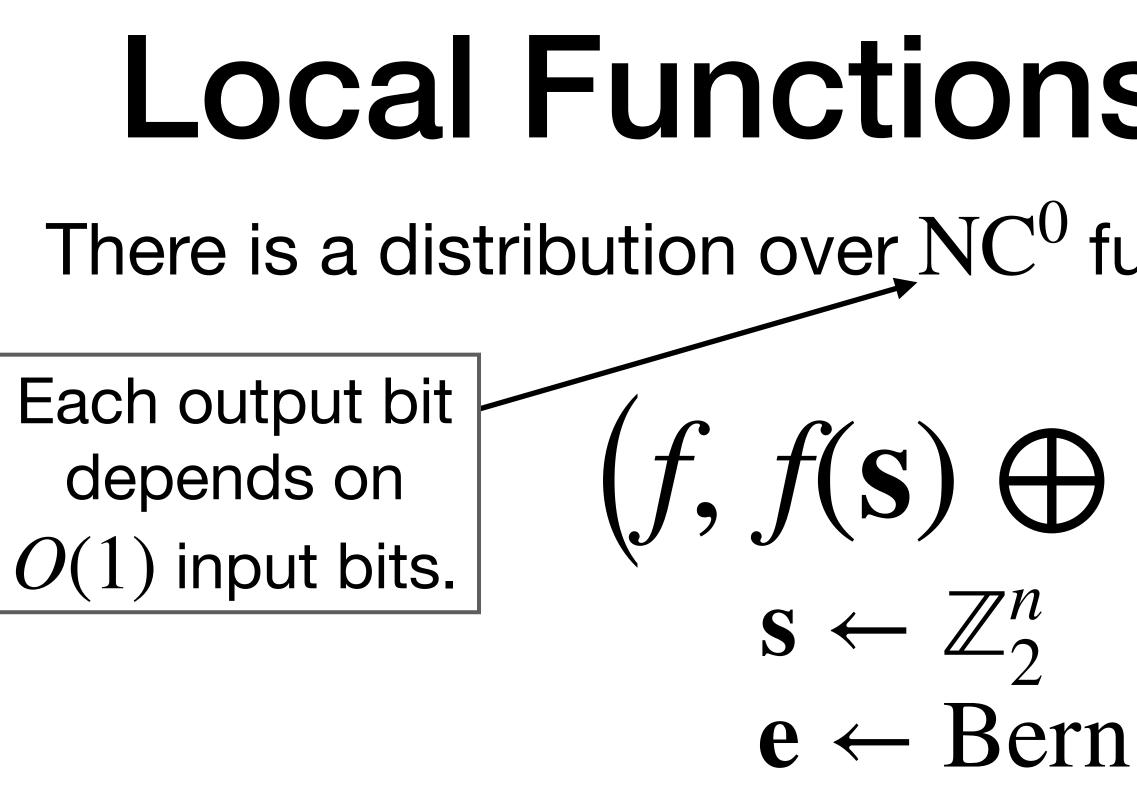


Two ways to instantiate LFN: 1. PRGs in NC⁰ (e.g., Goldreich's PRGs): no noise! ($\delta \rightarrow \infty$).

Local Functions with Noise (LFN) There is a distribution over NC⁰ functions $f : \mathbb{Z}_2^n \to \mathbb{Z}_2^m$, with $m = n^{1+\varepsilon}$,

 $(f, f(\mathbf{s}) \oplus \mathbf{e}) \approx_c (f, \$).$

$$(n^{-\delta})^m$$



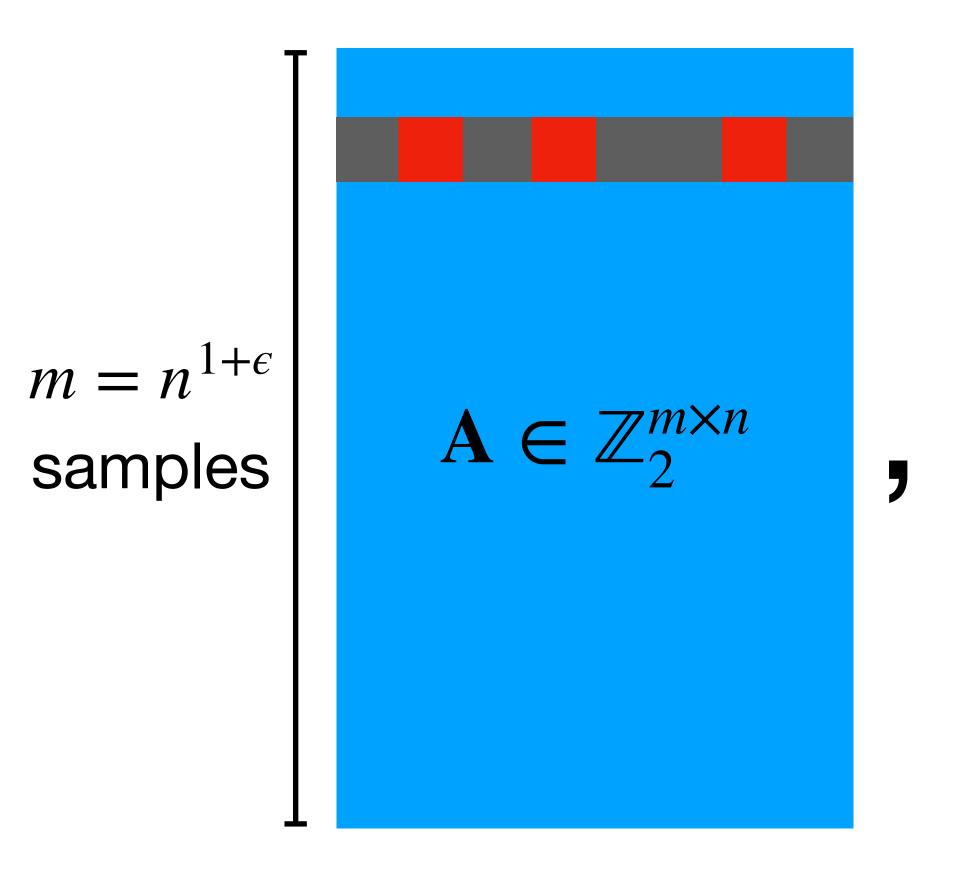
Two ways to instantiate LFN: 1. PRGs in NC⁰ (e.g., Goldreich's PRGs): no noise! ($\delta \rightarrow \infty$). 2. Sparse LPN*: f is a O(1)-sparse, linear function over \mathbb{Z}_2 .

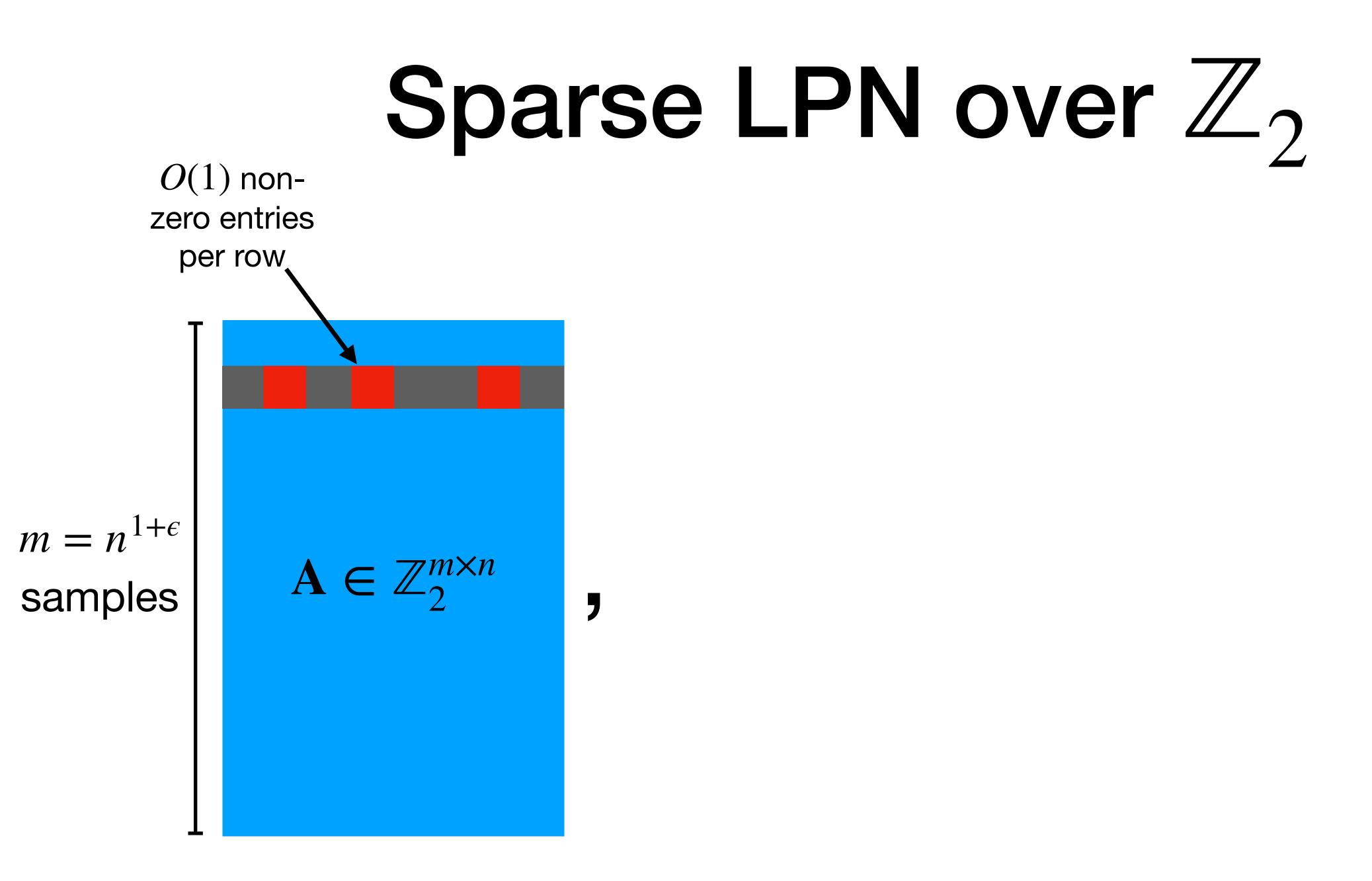
*Generalizing Sparse LPN to LFN was suggested by Aayush Jain, Rachel Lin, and an anonymous reviewer.

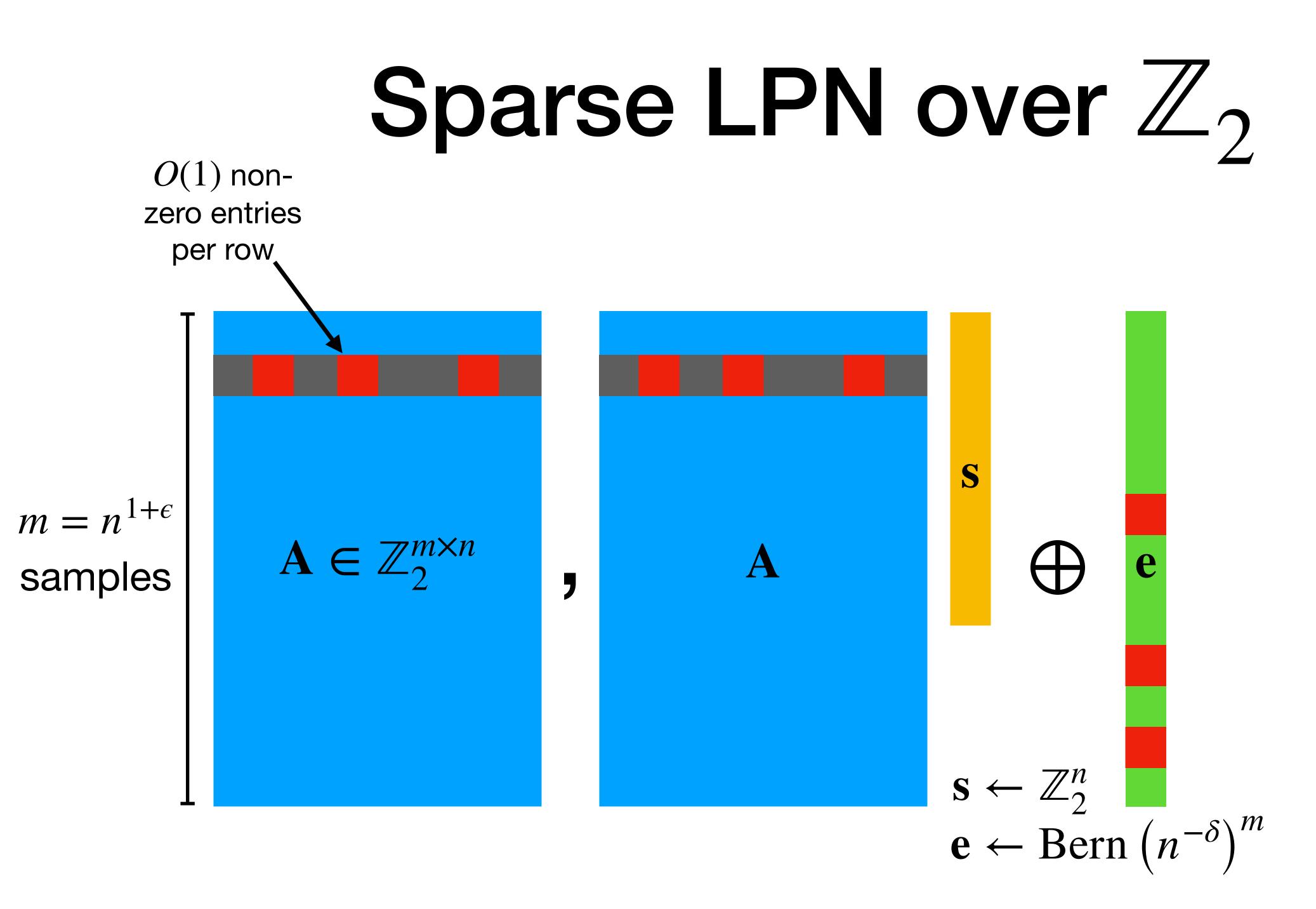
Local Functions with Noise (LFN) There is a distribution over NC⁰ functions $f: \mathbb{Z}_2^n \to \mathbb{Z}_2^m$, with $m = n^{1+\varepsilon}$,

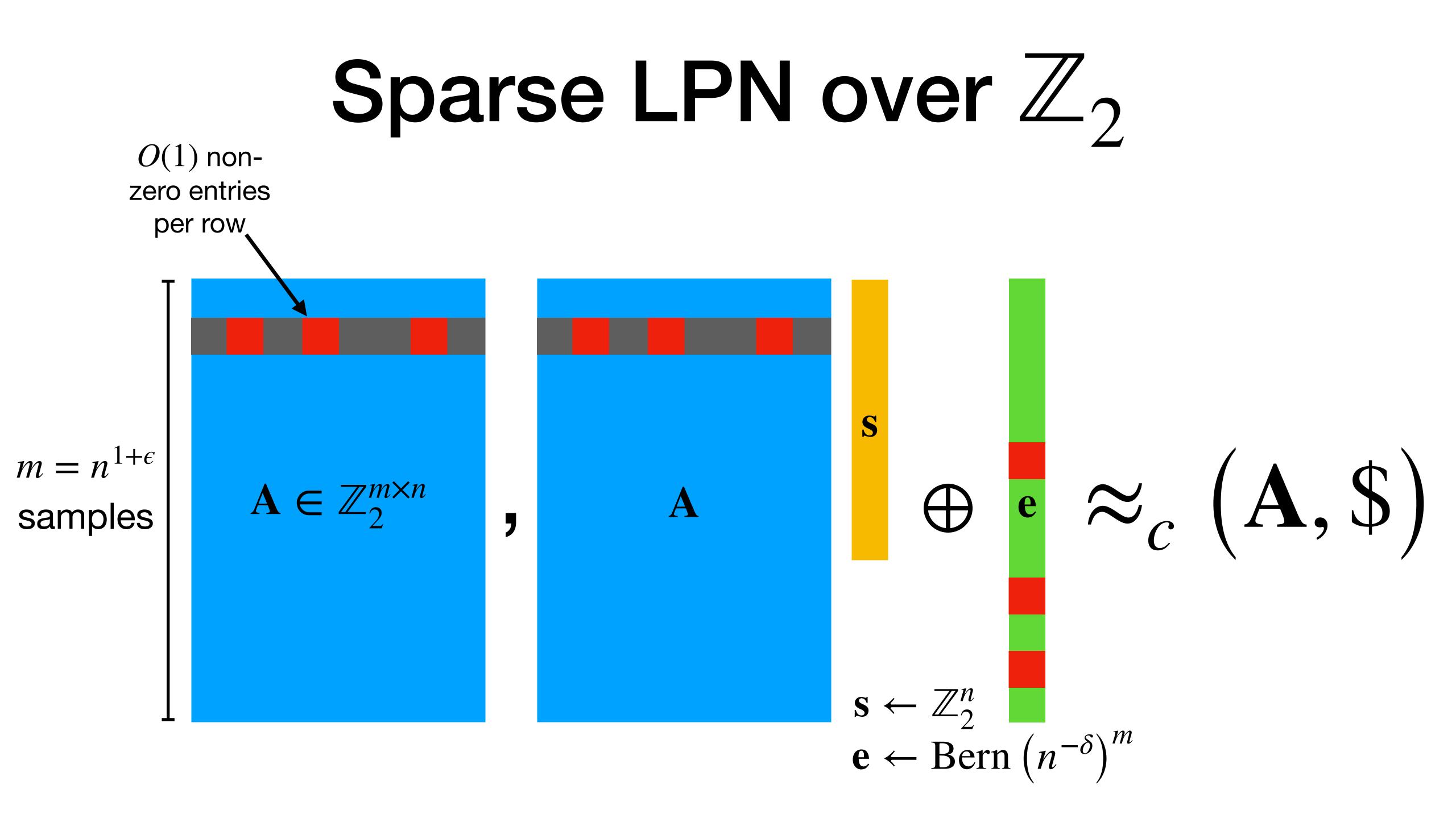
$$\mathbf{e}) \approx_{c} (f, \$).$$

$$(n^{-\delta})^m$$







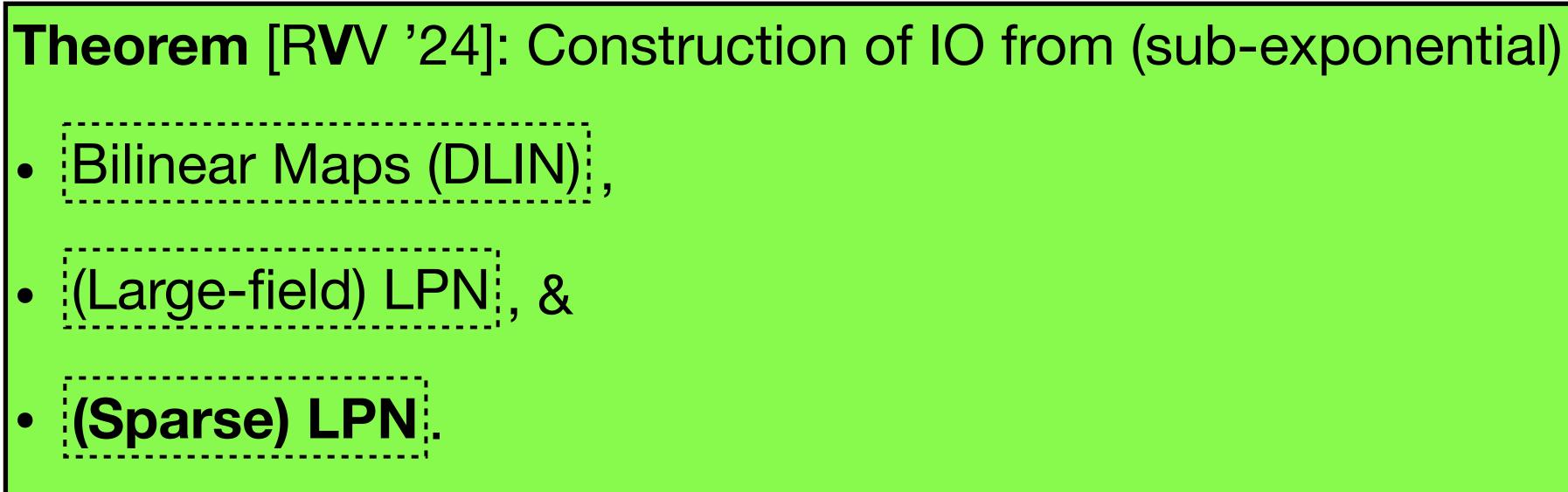


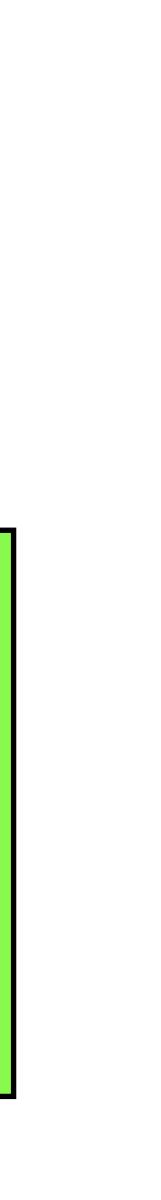
IO from "2.5 Assumptions"

Another interpretation:

IO from "2.5 Assumptions"

Another interpretation:



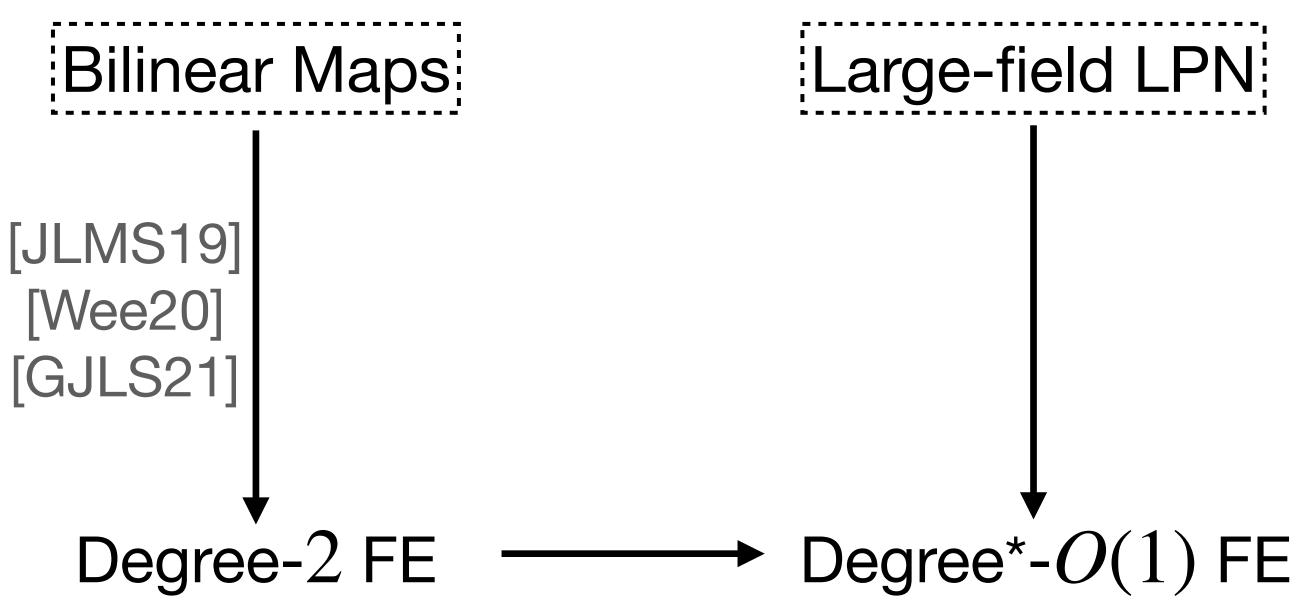


Overview of [JLS22]

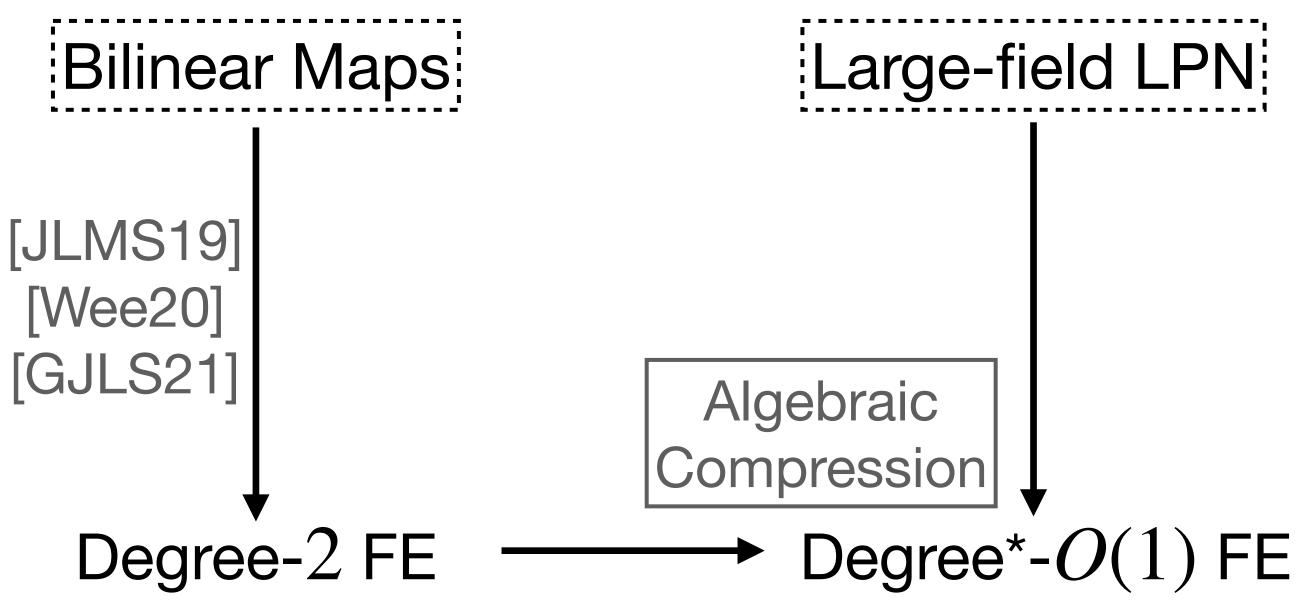
Overview of [JLS22]

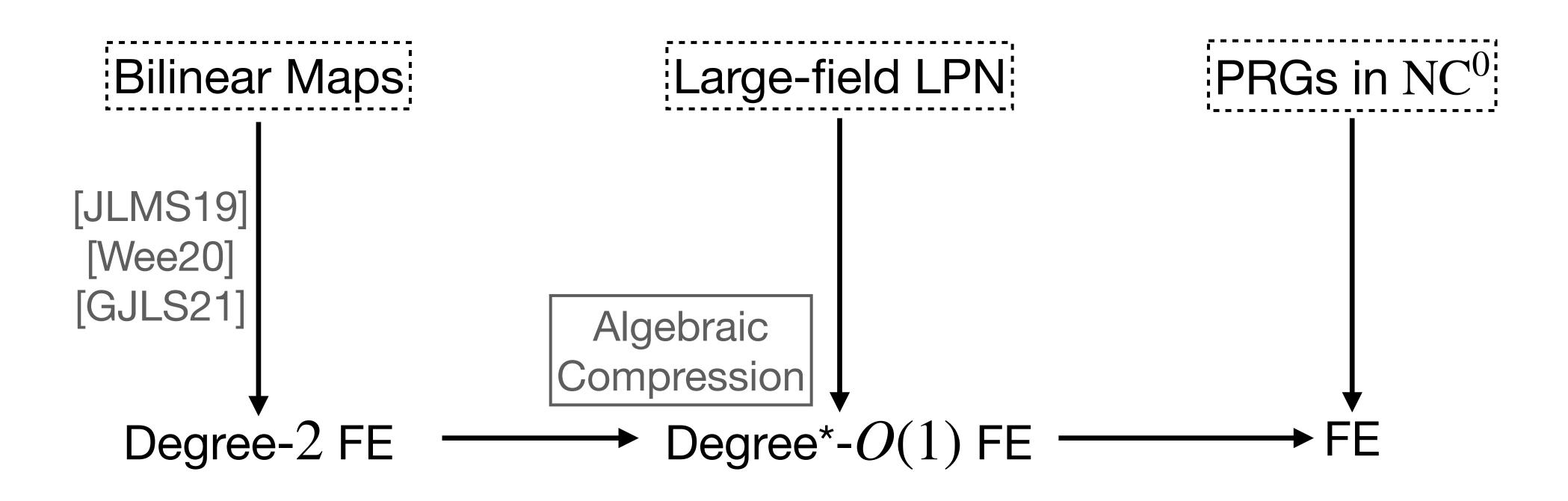
Bilinear Maps [JLMS19] [Wee20] [GJLS21] Degree-2 FE

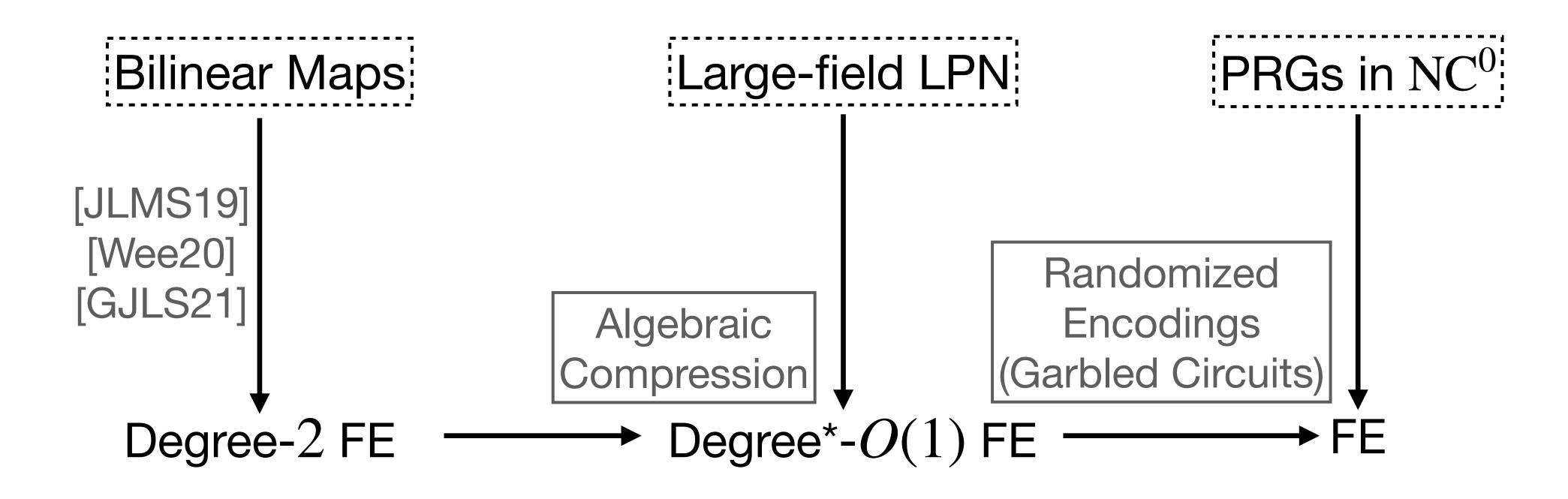
Overview of [JLS22]

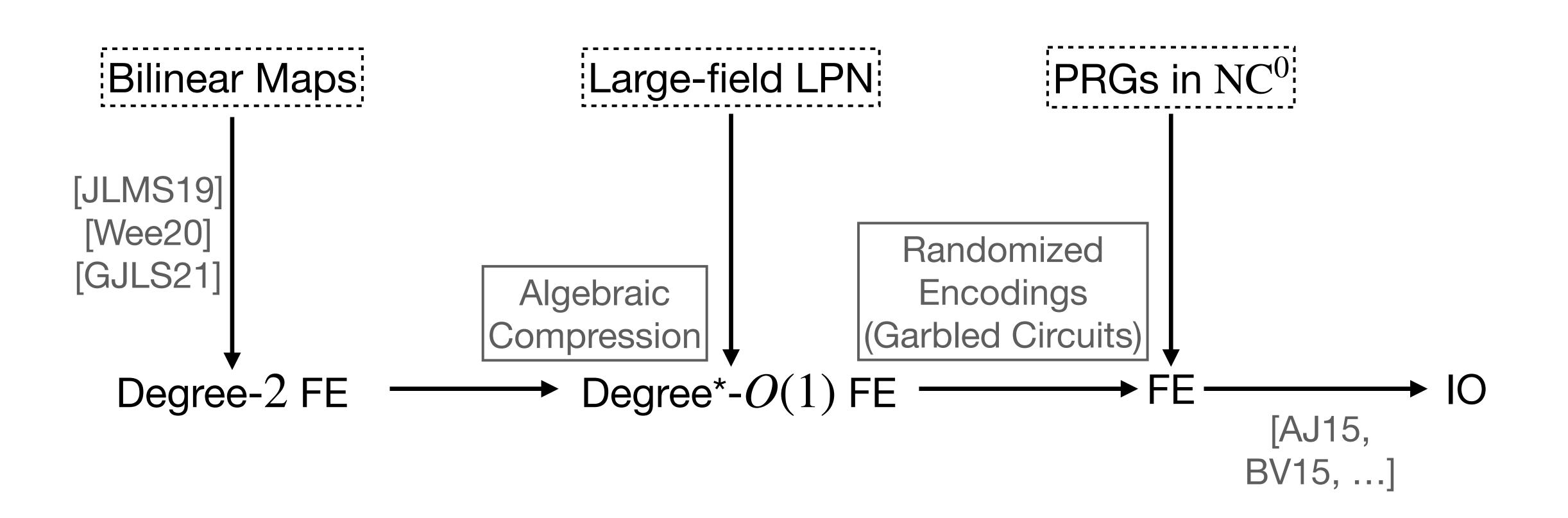


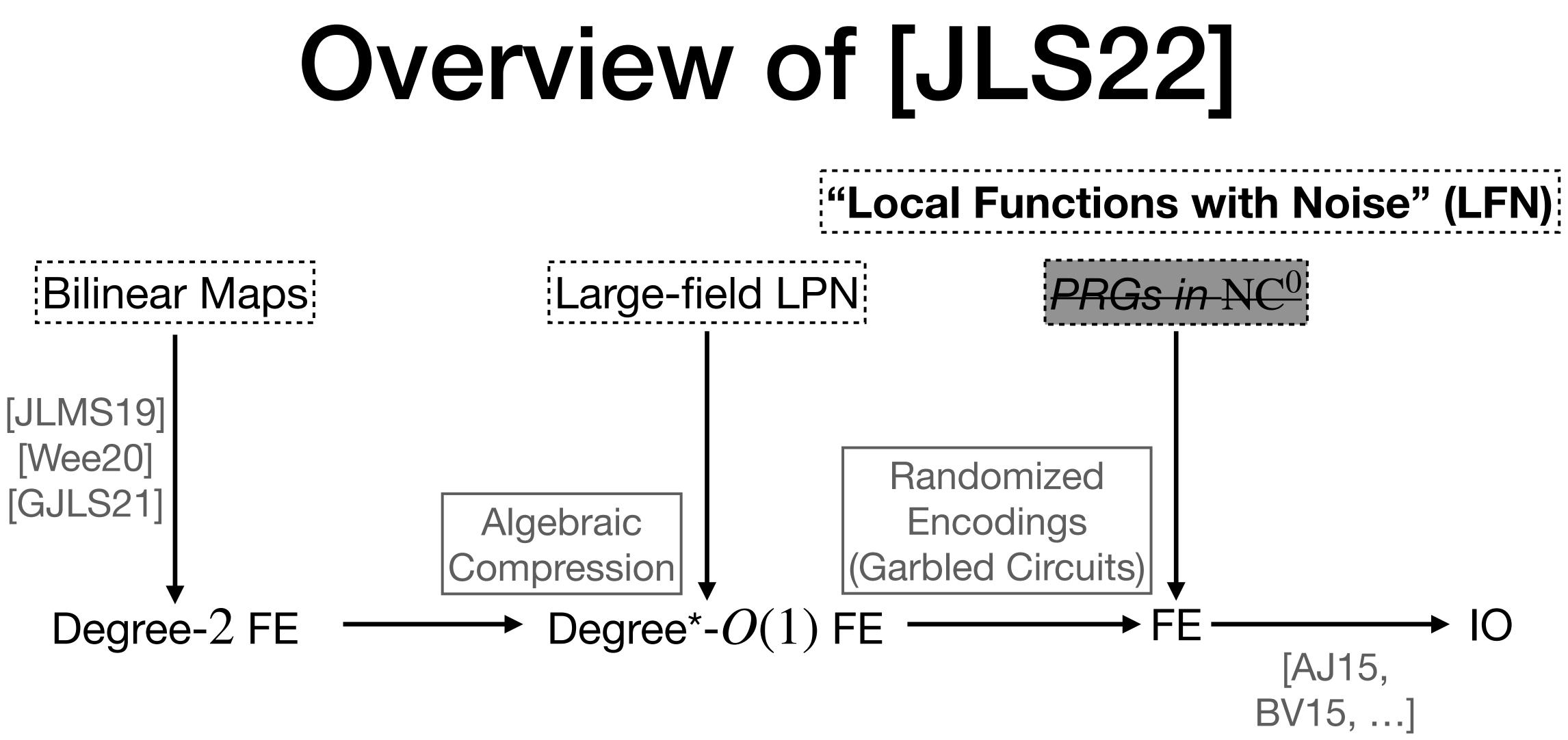
*Also need m^{ϵ} locality











Relaxing poly-stretch PRGs in NC^0

Relaxing poly-stretch PRGs in NC^0

We observe two weaker objects suffice to build FE from Degree*-O(1) FE:

1. Linear-stretch PRGs in NC^{0} .

- 1. Linear-stretch PRGs in NC⁰. [AIK08] shows implied by LFN. \checkmark

- 1. Linear-stretch PRGs in NC⁰. [AIK08] shows implied by LFN. \checkmark
- 2. Structured-seed PRG with degree O(1) (over \mathbb{Z}) and locality m^{ϵ} :

- 1. Linear-stretch PRGs in NC⁰. [AIK08] shows implied by LFN. \checkmark
- 2. Structured-seed PRG with degree O(1) (over \mathbb{Z}) and locality m^{ϵ} :
 - a) SeedSample $(1^{\lambda}) \rightarrow \sigma$, where SeedSample takes $m^{1-\Omega(1)}$ time.

- 1. Linear-stretch PRGs in NC⁰. [AIK08] shows implied by LFN. \checkmark
- 2. Structured-seed PRG with degree O(1) (over \mathbb{Z}) and locality m^{ϵ} :

b) $G: \{0,1\}^{m^{1-\Omega(1)}} \rightarrow \{0,1\}^m$ has degree O(1) and locality m^{ϵ} .

- a) SeedSample $(1^{\lambda}) \rightarrow \sigma$, where SeedSample takes $m^{1-\Omega(1)}$ time.

- 1. Linear-stretch PRGs in NC⁰. [AIK08] shows implied by LFN. \checkmark
- 2. Structured-seed PRG with degree O(1) (over \mathbb{Z}) and locality m^{ϵ} :
 - a) SeedSample $(1^{\lambda}) \rightarrow \sigma$, where SeedSample takes $m^{1-\Omega(1)}$ time.
 - b) $G: \{0,1\}^{m^{1-\Omega(1)}} \rightarrow \{0,1\}^m$ has degree O(1) and locality m^{ϵ} .
 - c) $G(\sigma) \approx_c$ \$.

First attempt:

First attempt:

1. SeedSample: Output $\sigma = \left(\mathbf{s} \leftarrow \mathbb{Z}_2^n, \mathbf{e} \leftarrow \text{Bern} \left(n^{-\delta} \right)^m \right)$, where $m = n^{1+\epsilon}$.

First attempt:

- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$.

1. SeedSample: Output $\sigma = (\mathbf{s} \leftarrow \mathbb{Z}_2^n, \mathbf{e} \leftarrow \text{Bern}(n^{-\delta})^m)$, where $m = n^{1+\epsilon}$.

First attempt:

- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$.

What goes wrong?

1. SeedSample: Output $\sigma = (\mathbf{s} \leftarrow \mathbb{Z}_2^n, \mathbf{e} \leftarrow \text{Bern}(n^{-\delta})^m)$, where $m = n^{1+\epsilon}$.

First attempt:

- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$.

What goes wrong?

• If $\mathbf{e} \in \mathbb{Z}_2^m$ written in full, **not even expanding**.

1. SeedSample: Output $\sigma = (\mathbf{s} \leftarrow \mathbb{Z}_2^n, \mathbf{e} \leftarrow \text{Bern}(n^{-\delta})^m)$, where $m = n^{1+\epsilon}$.

First attempt:

2.
$$G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$$
.

What goes wrong?

- If $\mathbf{e} \in \mathbb{Z}_2^m$ written in full, **not even expanding**.

1. SeedSample: Output $\sigma = (\mathbf{s} \leftarrow \mathbb{Z}_2^n, \mathbf{e} \leftarrow \text{Bern}(n^{-\delta})^m)$, where $m = n^{1+\epsilon}$.

• If e is written as list of non-zero indices, expansion not in degree O(1).

Algebraic Compression Can we compress $\mathbf{e} \leftarrow \text{Bern} (n^{-\delta})^m$ so that expansion is degree O(1)?

Yes! (in fact, degree 2) [JLS21, JLS22]

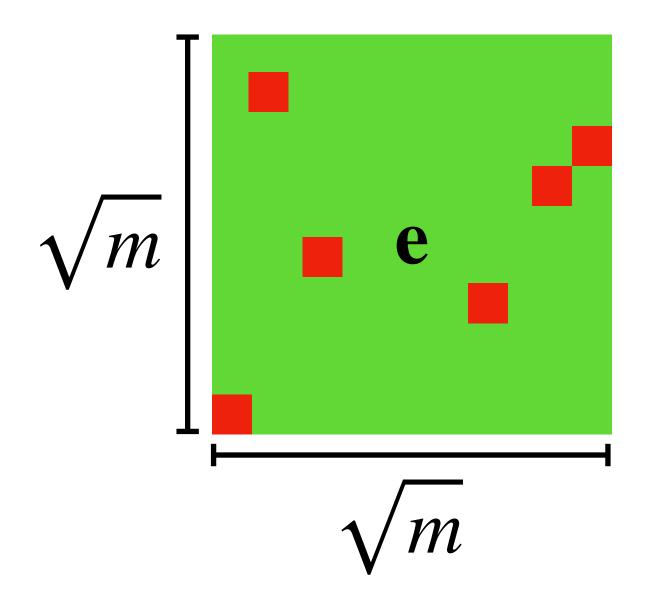
Can we compress $\mathbf{e} \leftarrow \text{Bern}(n^{-\delta})^m$ so that expansion is degree O(1)?

Yes! (in fact, degree 2) [JLS21, JLS22]

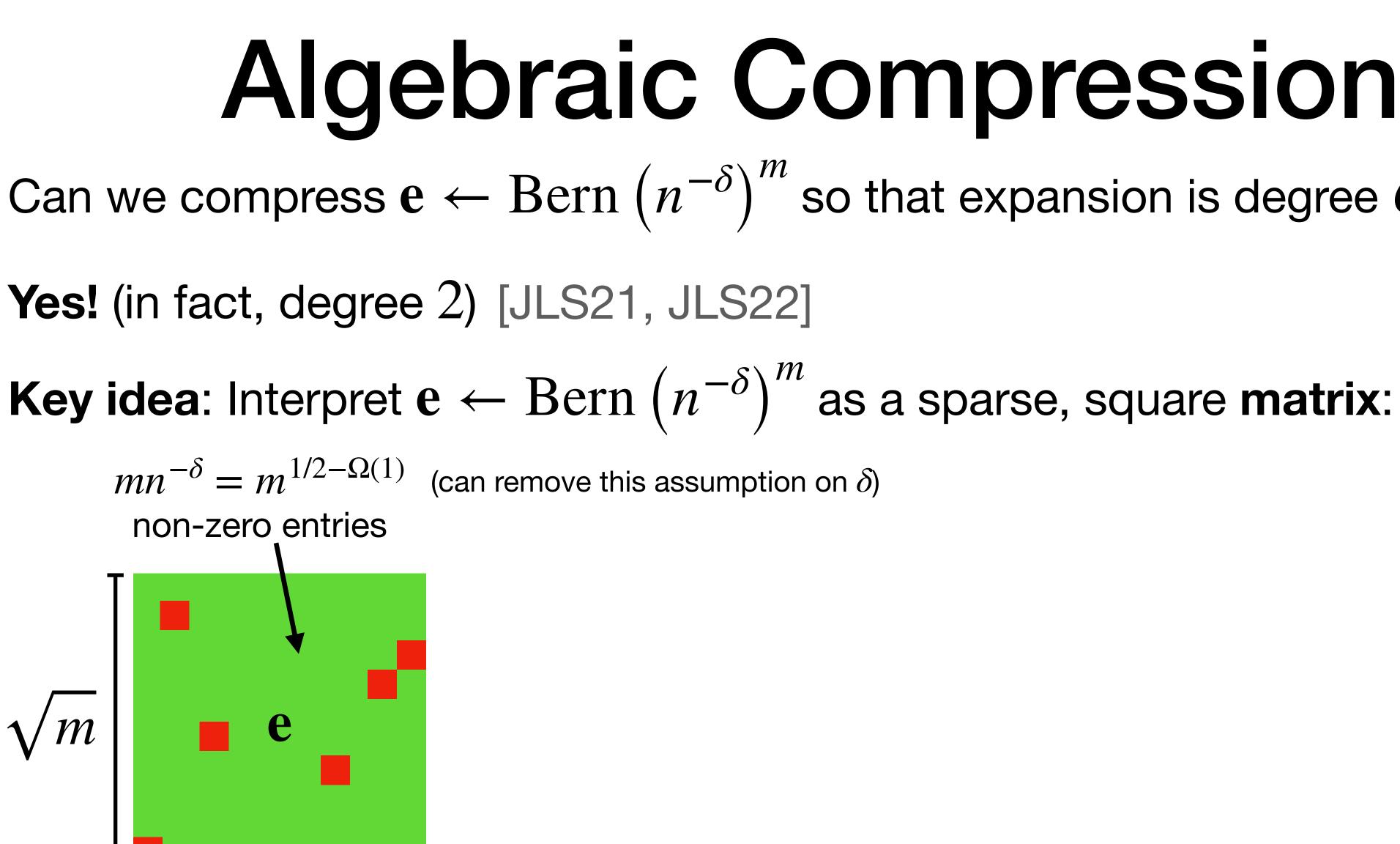
Can we compress $\mathbf{e} \leftarrow \text{Bern}(n^{-\delta})^m$ so that expansion is degree O(1)?

- **Key idea**: Interpret $\mathbf{e} \leftarrow \text{Bern}(n^{-\delta})^m$ as a sparse, square matrix:

Yes! (in fact, degree 2) [JLS21, JLS22] **Key idea**: Interpret $\mathbf{e} \leftarrow \text{Bern} (n^{-\delta})^m$ as a sparse, square matrix:



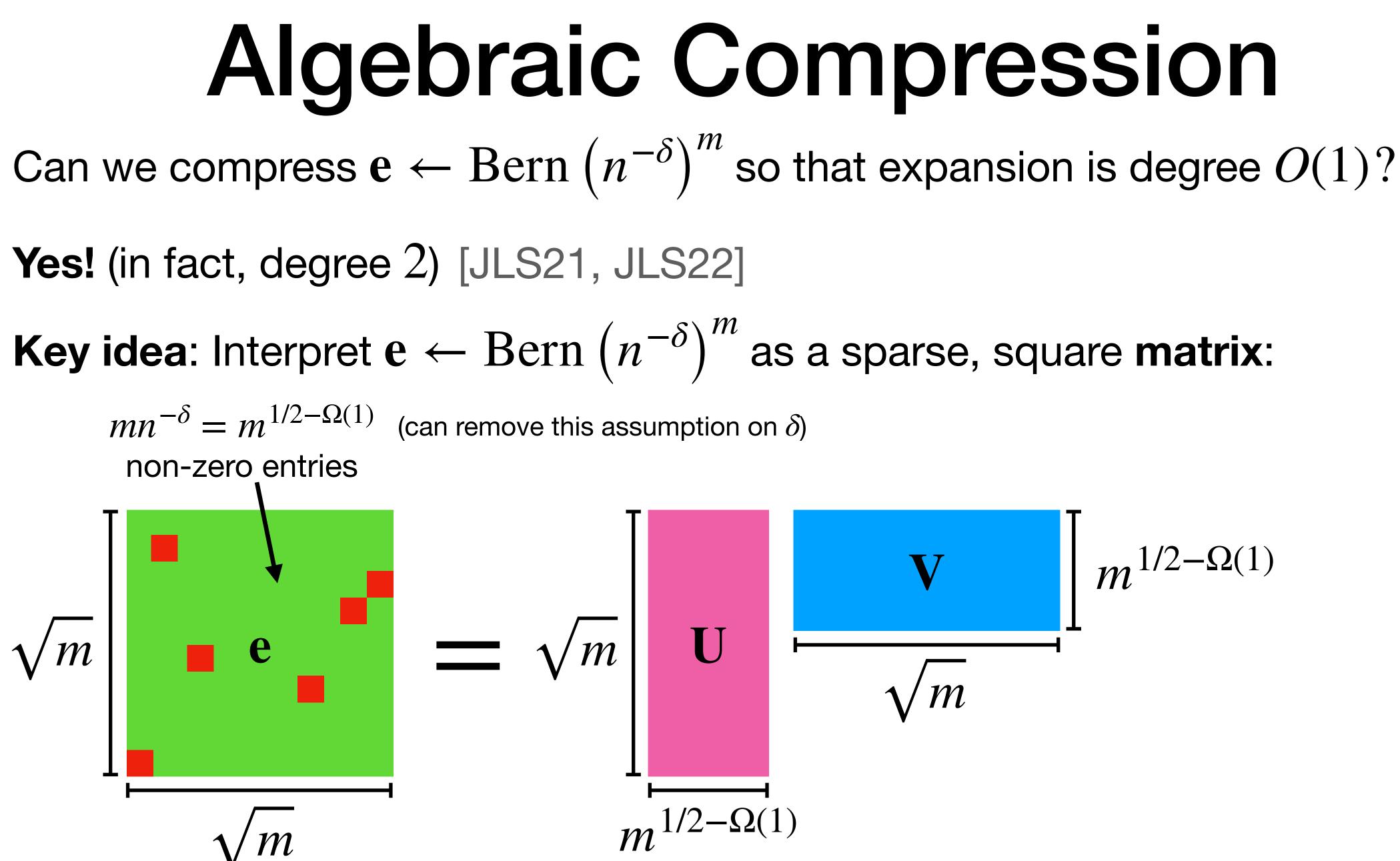
Can we compress $\mathbf{e} \leftarrow \text{Bern}(n^{-\delta})^m$ so that expansion is degree O(1)?

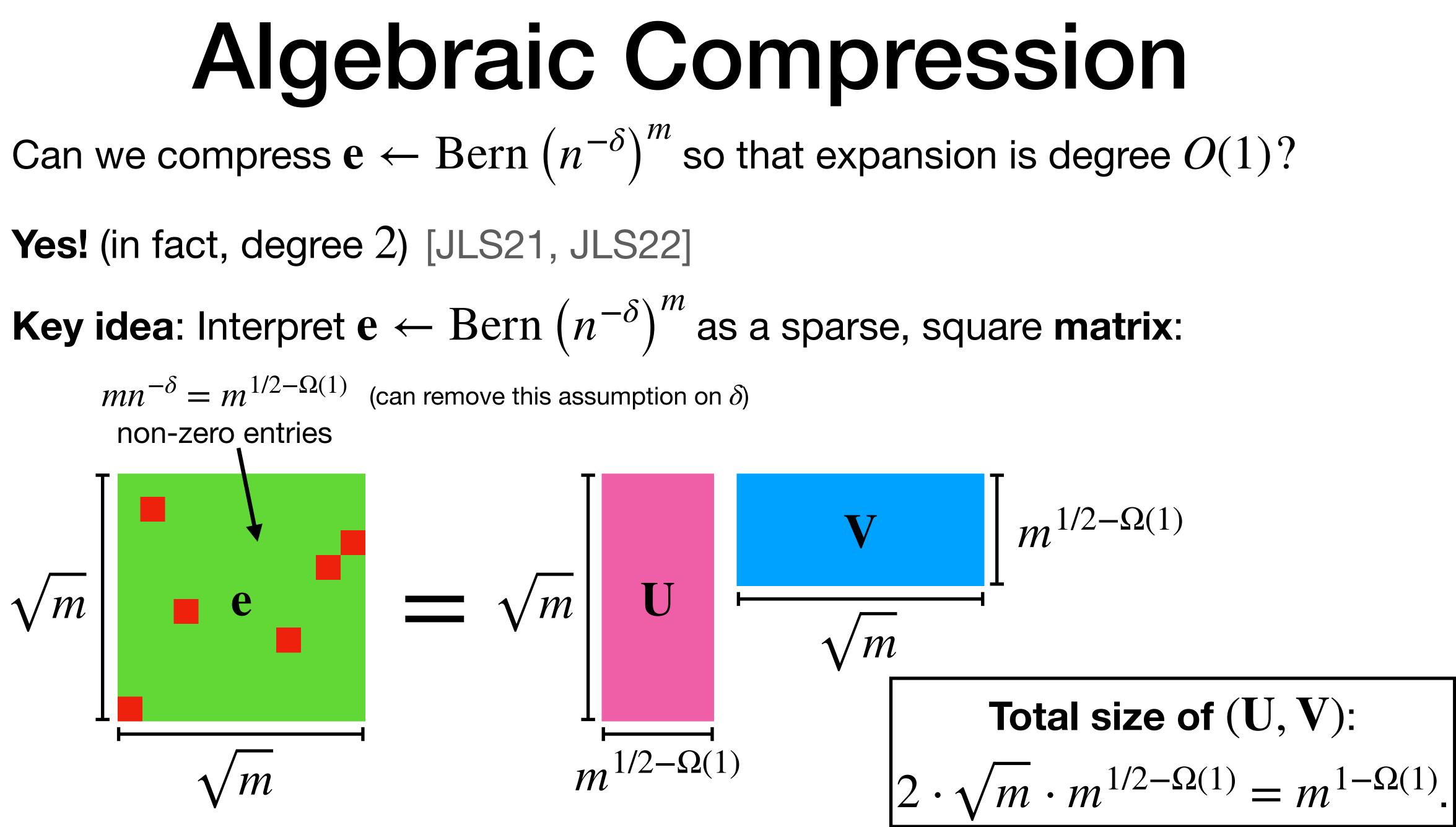


m

Algebraic Compression

Can we compress $\mathbf{e} \leftarrow \text{Bern} (n^{-\delta})^m$ so that expansion is degree O(1)?





Second attempt:

Second attempt:

1. SeedSample: Output $\sigma = \left(\mathbf{s} \leftarrow \mathbb{Z}_2^n, \left(\mathbf{U}, \mathbf{V}^{\mathsf{T}} \in \mathbb{Z}_2^{\sqrt{m} \times m^{1/2 - \Omega(1)}} \right) \right)$

Second attempt:

- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$, where \mathbf{e} is a reshaping of $\mathbf{UV} \in \mathbb{Z}_2^{\sqrt{m} \times \sqrt{m}}$.

1. SeedSample: Output $\sigma = \left(\mathbf{s} \leftarrow \mathbb{Z}_2^n, \left(\mathbf{U}, \mathbf{V}^{\mathsf{T}} \in \mathbb{Z}_2^{\sqrt{m} \times m^{1/2 - \Omega(1)}} \right) \right)$

Second attempt:

- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$, where \mathbf{e} is a reshaping of $\mathbf{UV} \in \mathbb{Z}_2^{\sqrt{m} \times \sqrt{m}}$.

Check properties:

1. SeedSample: Output $\sigma = \left(\mathbf{s} \leftarrow \mathbb{Z}_2^n, \left(\mathbf{U}, \mathbf{V}^\top \in \mathbb{Z}_2^{\sqrt{m} \times m^{1/2 - \Omega(1)}} \right) \right)$

Second attempt:

- 1. SeedSample: Output $\sigma = \left(\mathbf{s} \leftarrow \right)$
- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$, where \mathbf{e} is a reshaping of $\mathbf{UV} \in \mathbb{Z}_2^{\sqrt{m} \times \sqrt{m}}$.

Check properties:

a) Seed σ can be computed in time

$$-\mathbb{Z}_{2}^{n},\left(\mathbf{U},\mathbf{V}^{\mathsf{T}}\in\mathbb{Z}_{2}^{\sqrt{m}\times m^{1/2-\Omega(1)}}\right)\right)$$

$$e^{m^{1-\Omega(1)}}$$
.

Second attempt:

- 1. SeedSample: Output $\sigma = \left(\mathbf{s} \leftarrow \right)$
- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$, where \mathbf{e} is a reshaping of $\mathbf{UV} \in \mathbb{Z}_2^{\sqrt{m} \times \sqrt{m}}$.

Check properties:

- a) Seed σ can be computed in time
- b) G_f has degree-O(1) and locality

$$-\mathbb{Z}_{2}^{n},\left(\mathbf{U},\mathbf{V}^{\mathsf{T}}\in\mathbb{Z}_{2}^{\sqrt{m}\times m^{1/2-\Omega(1)}}\right)\right)$$

$$e^{m^{1-\Omega(1)}}$$
.
 $m^{1/2-\Omega(1)}$.

Second attempt:

- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$, where \mathbf{e} is a reshaping of $\mathbf{UV} \in \mathbb{Z}_2^{\sqrt{m} \times \sqrt{m}}$.

Check properties:

- a) Seed σ can be computed in time $m^{1-\Omega(1)}$.
- b) G_f has degree-O(1) and locality $m^{1/2-\Omega(1)}$.
- c) Pseudorandom assuming LFN.

1. SeedSample: Output $\sigma = \left(\mathbf{s} \leftarrow \mathbb{Z}_2^n, \left(\mathbf{U}, \mathbf{V}^{\mathsf{T}} \in \mathbb{Z}_2^{\sqrt{m} \times m^{1/2 - \Omega(1)}} \right) \right)$

1. Minimal assumptions for IO?

1. Minimal assumptions for IO?

2. Post-quantum IO? (Need to replace bilinear maps.)

1. Minimal assumptions for IO?

2. Post-quantum IO? (Need to replace bilinear maps.)

3. More crypto from LFN? Cryptanalysis?

Thanks!