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* Indistinguishability Security: For all same-size, functionally
equivalent circuits C), C;,

O (C()) ~.0 (Cl) .
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ocal Functions with Noise (LFN)

There is a distribution over NC" functions f : 75 — Z5, withm = n!te

Each output bit

_—
depends on (f, f(s) & E) . (f, $)

O(1) input bits.
(1) inp s<—Z’§

e < Bern (n_‘s)m

Two ways to instantiate LFN:
1. PRGs in NC" (e.g., Goldreich’s PRGs): no noise! (5§ — o).
2. Sparse LPN*: fis a O(1)-sparse, linear function over Z,.

*Generalizing Sparse LPN to LFN was suggested by Aayush Jain, Rachel Lin, and an anonymous reviewet.
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Bilinear Maps Large-field LPN: PRGs-inNC”

[JLMS19]

[Wee20] Randomized
GJLS21] Algebraic Encodings

Compression (Garbled Circuits)
Degree-2 FE — Degree*-0(1) FE —>FET (@,
5
BV15, ...]

*Also need m*® locality
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Relaxing poly-stretch PRGs in NC"

We observe two weaker objects suffice to build FE from Degree*-O(1) FE:

1. Linear-stretch PRGs in NCV. [AIK08] shows implied by LFN.
2. Structured-seed PRG with degree O(1) (over Z) and locality m*:

a) SeedSample (1’1) — 0, where SeedSample takes m 1~ time.

1-Q(1)

by G :{0,1}"™ — {0,1}" has degree O(1) and locality m°.

c) G(o) =, 9.
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Structured-Seed PRG from LFN

First attempt:
1. SeedSample: Output o = (s — Z5,e < Bern (n_é)m), where m = n'*¢,

What goes wrong?

. If e € Z7 written in full, not even expanding.

» |f e is written as list of non-zero indices, expansion not in degree O(1).
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Algebraic Compression

Can we compress e < Bern (n_‘s)m so that expansion is degree O(1)??

Yes! (in fact, degree 2) [JLS21, JLS22]

Key idea: Interpret € < Bern (n_‘s)m as a sparse, square matrix:

—5 1/2—Q(1)

mn -~ =m (can remove this assumption on 0)

Total size of (U, V):

1/2 —Q(1)

non-zero entries

J/m

2o/ m - m1/2—£2(1) — ml—Q(l)_
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Structured-Seed PRG from LFN

Second attempt:

1. SeedSample: Output o = (S — 7, (U, VT Zﬁ % mlxzsz(n))

2. G{o) = f(s) @ e, where e is a reshaping of UV & Zﬁxﬁ.

Check properties:

a) Seed o can be computed in time m !~

b) Grhas degree-O(1) and locality m /=1,

c) Pseudorandom assuming LFN.
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Open Questions & Future Directions

1. Minimal assumptions for |O?
2. Post-quantum 10? (Need to replace bilinear maps.)

3. More crypto from LFN? Cryptanalysis”?






