Indistinguishability Obfuscation from Bilinear Maps and LPN Variants

- TCC 2024
- December 6, 2024

Vinod Vaikuntanathan MIT

Indistinguishability Obfuscation

PPT algorithm $\mathcal O$, where inputs and outputs are circuits.

Indistinguishability Obfuscation

PPT algorithm $\mathcal O$, where inputs and outputs are circuits.

• **Correctness**: \forall circuits *C*, inputs *x*, $\mathcal{O}(C)(x) = C(x)$.

Indistinguishability Obfuscation

PPT algorithm $\mathcal O$, where inputs and outputs are circuits.

- **Correctness**: \forall circuits *C*, inputs *x*, $\mathcal{O}(C)(x) = C(x)$.
- **• Indistinguishability Security**: For all same-size, functionally equivalent circuits $C_0, C_1,$

 $\mathcal{O}(C_0) \approx_c \mathcal{O}(C_1)$.

IO is "crypto-complete"

IO (+ other mild assumptions) implies:

-
-
-
-
-
- -
-
-
- -
-
-
-
-
-
-
-
-
-
-
- -
-
-
- -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

IO is "crypto-complete"

IO (+ other mild assumptions) implies:

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
-
-
-
-
-
- -
-
-
- -
-
-
-
-
-
-
-
-
-
-
- -
-
-
- -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

IO is "crypto-complete"

IO (+ other mild assumptions) implies:

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- … much more.

IO is "crypto-complete" **Can we build it?**

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- … much more.

IO is "crypto-complete" **Can we build it?**

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- … much more.

2013 - 2020:

IO is "crypto-complete" **Can we build it?**

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- … much more.

2013 - 2020: …maybe?

IO is "crypto-complete" **Can we build it?**

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- … much more.

2021: Jain, Lin, and Sahai:

2013 - 2020: …maybe?

IO is "crypto-complete" **Can we build it?**

- Fully homomorphic encryption,
- ZK-SNARGs for NP,
- Functional encryption (FE),
- … much more.

2021: Jain, Lin, and Sahai:

2013 - 2020: …maybe?

Theorem [JLS '21]: Construction of IO from (sub-exponential)

Our Result

• **PRGs** in NC⁰ with polynomial stretch **"Local Functions with Noise" (LFN)**

Our Result

• **PRGs** in NC⁰ with polynomial stretch **"Local Functions with Noise" (LFN)**

Weaker

Local Functions with Noise (LFN) There is a distribution over NC^0 functions $f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^m$, with $m=n^{1+\varepsilon},$

Local Functions with Noise (LFN) There is a distribution over NC^0 functions $f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^m$, with $m=n^{1+\varepsilon},$

$(f, f(s) \oplus e) \approx_c (f, \$).$

Local Functions with Noise (LFN) There is a distribution over NC^0 functions $f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^m$, with $m=n^{1+\varepsilon},$

 $(f, f(s) \oplus e) \approx_c (f, \$).$ $s \leftarrow \mathbb{Z}_2^n$ 2 $e \leftarrow$ Bern $(n^{-\delta})$ *m*

 $(f, f(s) \oplus e) \approx_c (f, \$).$

m

 $(f, f(s) \oplus e) \approx_c (f, \$).$

m

Two ways to instantiate LFN:

 $(f, f(s) \oplus e) \approx_c (f, \$).$

Two ways to instantiate LFN: 1. PRGs in NC^0 (e.g., Goldreich's PRGs): no noise! $(\delta \rightarrow \infty)$.

$$
(n^{-\delta})^m
$$

$$
e) \approx_c (f, \varphi).
$$

Two ways to instantiate LFN: 1. PRGs in NC⁰ (e.g., Goldreich's PRGs): no noise! $(\delta \rightarrow \infty)$. 2. Sparse LPN^{*}: *f* is a $O(1)$ -sparse, linear function over \mathbb{Z}_2 .

$$
(n^{-\delta})^m
$$

*Generalizing Sparse LPN to LFN was suggested by Aayush Jain, Rachel Lin, and an anonymous reviewer.

IO from "2.5 Assumptions"

Another interpretation:

-
-
-
-
-
-
- -

IO from "2.5 Assumptions"

Another interpretation:

Overview of [JLS22]

Overview of [JLS22]

Bilinear Maps Degree-2 FE [JLMS19] [Wee20] [GJLS21]

Overview of [JLS22]

 * Also need m^e locality

We observe two **weaker** objects suffice to build FE from Degree*-*O*(1) FE:

We observe two **weaker** objects suffice to build FE from Degree*-*O*(1) FE:

1. Linear-stretch PRGs in $NC⁰$.

We observe two **weaker** objects suffice to build FE from Degree*-*O*(1) FE:

1. Linear-stretch PRGs in NC⁰. [AlK08] shows implied by LFN.

We observe two **weaker** objects suffice to build FE from Degree*-*O*(1) FE:

Relaxing poly-stretch PRGs in $NC⁰$

- 1. Linear-stretch PRGs in NC⁰. [AlK08] shows implied by LFN.
- 2. Structured-seed PRG with degree $O(1)$ (over $\mathbb Z$) and locality m^e : *ϵ*

- 1. Linear-stretch PRGs in NC⁰. [AlK08] shows implied by LFN.
- 2. Structured-seed PRG with degree $O(1)$ (over $\mathbb Z$) and locality m^e : *ϵ*
	- a) SeedSample $(1^{\lambda}) \rightarrow \sigma$, where SeedSample takes $m^{1-\Omega(1)}$ time.

We observe two **weaker** objects suffice to build FE from Degree*-*O*(1) FE:

We observe two **weaker** objects suffice to build FE from Degree*-*O*(1) FE:

- a) SeedSample $(1^{\lambda}) \rightarrow \sigma$, where SeedSample takes $m^{1-\Omega(1)}$ time.
	- $m^{1-\Omega(1)} \rightarrow \{0,1\}^m$ has degree $O(1)$ and locality m^{ϵ}

Relaxing poly-stretch PRGs in $NC⁰$

- 1. Linear-stretch PRGs in NC⁰. [AlK08] shows implied by LFN.
- 2. Structured-seed PRG with degree $O(1)$ (over $\mathbb Z$) and locality m^e : *ϵ*

b) $G: \{0,1\}^m \stackrel{\cdot \cdot \cdot \cdot}{\longrightarrow} \{0,1\}^m$ has degree $O(1)$ and locality $m^e.$

- 1. Linear-stretch PRGs in NC⁰. [AlK08] shows implied by LFN.
- 2. Structured-seed PRG with degree $O(1)$ (over $\mathbb Z$) and locality m^e : *ϵ*
	- a) SeedSample $(1^{\lambda}) \rightarrow \sigma$, where SeedSample takes $m^{1-\Omega(1)}$ time.
	- b) $G: \{0,1\}^m \stackrel{\cdot \cdot \cdot \cdot}{\longrightarrow} \{0,1\}^m$ has degree $O(1)$ and locality $m^e.$ $m^{1-\Omega(1)} \rightarrow \{0,1\}^m$ has degree $O(1)$ and locality m^{ϵ}
	- c) $G(\sigma) \approx_c S$.

We observe two **weaker** objects suffice to build FE from Degree*-*O*(1) FE:

First attempt:

First attempt:

First attempt:

-
- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}.$

First attempt:

-
- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}.$

What goes wrong?

First attempt:

-
- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}.$

What goes wrong?

• If $e \in \mathbb{Z}_2^m$ written in full, not even expanding. *m* 2

First attempt:

- If $e \in \mathbb{Z}_2^m$ written in full, not even expanding. *m* 2
-

1. SeedSample: Output $\sigma = \left(s \leftarrow \mathbb{Z}_2^n, e \leftarrow \text{Bern}(n^{-\delta})^m\right)$, where $m = n^{1+\epsilon}$.) *m*), where $m = n^{1+\epsilon}$

2.
$$
G_f(\sigma) = f(s) \oplus e
$$
.

What goes wrong?

• If **e** is written as list of non-zero indices, **expansion not in degree** *O*(1).

-
-
-
-
-
-
-

Algebraic Compression Can we compress $\mathbf{e} \leftarrow \text{Bern}\left(n^{-\delta}\right)^m$ so that expansion is degree $O(1)?$

Yes! (in fact, degree 2) [JLS21, JLS22]

Can we compress $\mathbf{e} \leftarrow \text{Bern}\left(n^{-\delta}\right)^m$ so that expansion is degree $O(1)?$

-
- $\mathsf{Key}\ \mathsf{idea}\colon \mathsf{Interpret}\ \mathbf{e} \leftarrow \mathsf{Bern}\left(n^{-\delta}\right)^m\ \mathsf{as}\ \mathsf{a}\ \mathsf{sparse}\ \mathsf{square}\ \mathsf{matrix}\ \mathsf{matrix}\ \mathsf{in}\ \mathsf{in}\$ *m*

Yes! (in fact, degree 2) [JLS21, JLS22]

Can we compress $\mathbf{e} \leftarrow \text{Bern}\left(n^{-\delta}\right)^m$ so that expansion is degree $O(1)?$

Yes! (in fact, degree 2) [JLS21, JLS22] $\mathsf{Key}\ \mathsf{idea}\colon \mathsf{Interpret}\ \mathbf{e} \leftarrow \mathsf{Bern}\left(n^{-\delta}\right)^m\ \mathsf{as}\ \mathsf{a}\ \mathsf{sparse}\ \mathsf{square}\ \mathsf{matrix}\ \mathsf{matrix}\ \mathsf{in}\ \mathsf{in}\$

-
- *m*

Can we compress $\mathbf{e} \leftarrow \text{Bern}\left(n^{-\delta}\right)^m$ so that expansion is degree $O(1)?$

 $\mathsf{Key}\ \mathsf{idea}\colon \mathsf{Interpret}\ \mathbf{e} \leftarrow \mathsf{Bern}\left(n^{-\delta}\right)^m\ \mathsf{as}\ \mathsf{a}\ \mathsf{sparse}\ \mathsf{square}\ \mathsf{matrix}\ \mathsf{matrix}\ \mathsf{in}\ \mathsf{in}\$

-
- *m*
-

-
-
-

Second attempt:

Second attempt:

1. SeedSample: Output $\sigma = \left(s \leftarrow \mathbb{Z}_2^n\right)$

n
2, $\left(\mathbf{U}, \mathbf{V}^{\mathsf{T}} \in \mathbb{Z}_{2}^{\sqrt{m} \times m^{1/2-\Omega(1)}}\right)$

Second attempt:

- 1. SeedSample: Output $\sigma = \left(s \leftarrow \mathbb{Z}_2^n\right)$
- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$, where \mathbf{e} is a reshaping of $\mathbf{U}\mathbf{V} \in \mathbb{Z}_2^{\sqrt{m} \times \sqrt{m}}$.

n
2, $\left(\mathbf{U}, \mathbf{V}^{\mathsf{T}} \in \mathbb{Z}_{2}^{\sqrt{m} \times m^{1/2-\Omega(1)}}\right)$ 2

Second attempt:

- 1. SeedSample: Output $\sigma = \left(s \leftarrow \mathbb{Z}_2^n\right)$
- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$, where \mathbf{e} is a reshaping of $\mathbf{U}\mathbf{V} \in \mathbb{Z}_2^{\sqrt{m} \times \sqrt{m}}$.

n
2, $\left(\mathbf{U}, \mathbf{V}^{\mathsf{T}} \in \mathbb{Z}_{2}^{\sqrt{m} \times m^{1/2-\Omega(1)}}\right)$ 2

Check properties:

Second attempt:

- 1. SeedSample: Output $\sigma = \left(s \leftarrow a\right)$
- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$, where \mathbf{e} is a reshaping of $\mathbf{U}\mathbf{V} \in \mathbb{Z}_2^{\sqrt{m} \times \sqrt{m}}$. 2

$$
- \mathbb{Z}_2^n, \left(\mathbf{U}, \mathbf{V}^\top \in \mathbb{Z}_2^{\sqrt{m} \times m^{1/2 - \Omega(1)}} \right)
$$

Check properties:

a) Seed σ can be computed in time

$$
=m^{1-\Omega(1)}.
$$

Second attempt:

- 1. SeedSample: Output $\sigma = \left(s \leftarrow \right)$
- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$, where \mathbf{e} is a reshaping of $\mathbf{U}\mathbf{V} \in \mathbb{Z}_2^{\sqrt{m} \times \sqrt{m}}$. 2

$$
- \mathbb{Z}_2^n, \left(\mathbf{U}, \mathbf{V}^\top \in \mathbb{Z}_2^{\sqrt{m} \times m^{1/2 - \Omega(1)}} \right)
$$

Check properties:

- a) Seed σ can be computed in time
- b) G_f has degree- $O(1)$ and locality

$$
m^{1-\Omega(1)}
$$

Second attempt:

- 1. SeedSample: Output $\sigma = \left(s \leftarrow \mathbb{Z}_2^n\right)$
- 2. $G_f(\sigma) = f(\mathbf{s}) \oplus \mathbf{e}$, where \mathbf{e} is a reshaping of $\mathbf{U}\mathbf{V} \in \mathbb{Z}_2^{\sqrt{m} \times \sqrt{m}}$. 2

- a) Seed σ can be computed in time $m^{1-\Omega(1)}$.
- b) G_f has degree- $O(1)$ and locality $m^{1/2-\Omega(1)}$.
- c) Pseudorandom assuming LFN.

n
2, $\left(\mathbf{U}, \mathbf{V}^{\mathsf{T}} \in \mathbb{Z}_{2}^{\sqrt{m} \times m^{1/2-\Omega(1)}}\right)$

Check properties:

Open Questions & Future Directions

Open Questions & Future Directions

1. Minimal assumptions for IO?

Open Questions & Future Directions

1. Minimal assumptions for IO?

2. Post-quantum IO? (Need to replace bilinear maps.)
Open Questions & Future Directions

1. Minimal assumptions for IO?

2. Post-quantum IO? (Need to replace bilinear maps.)

3. More crypto from LFN? Cryptanalysis?

Thanks!