
Indistinguishability Obfuscation from
Bilinear Maps and LPN Variants

TCC 2024

December 6, 2024

Seyoon Ragavan
MIT

Neekon Vafa
MIT

Vinod Vaikuntanathan
MIT

Indistinguishability Obfuscation
PPT algorithm , where inputs and outputs are circuits.𝒪

Indistinguishability Obfuscation
PPT algorithm , where inputs and outputs are circuits.𝒪

• Correctness: circuits , inputs , .∀ C x 𝒪 (C)(x) = C(x)

Indistinguishability Obfuscation
PPT algorithm , where inputs and outputs are circuits.𝒪

• Correctness: circuits , inputs , .∀ C x 𝒪 (C)(x) = C(x)

• Indistinguishability Security: For all same-size, functionally
equivalent circuits , C0, C1

𝒪 (C0) ≈c 𝒪 (C1) .

IO is “crypto-complete”
IO (+ other mild assumptions) implies:

IO is “crypto-complete”
IO (+ other mild assumptions) implies:

• Fully homomorphic encryption,

• ZK-SNARGs for NP,

• Functional encryption (FE),

IO is “crypto-complete”
IO (+ other mild assumptions) implies:

• Fully homomorphic encryption,

• ZK-SNARGs for NP,

• Functional encryption (FE),

• … much more.

Obfustopia

IO is “crypto-complete”
IO (+ other mild assumptions) implies:

• Fully homomorphic encryption,

• ZK-SNARGs for NP,

• Functional encryption (FE),

• … much more.

Can we build it?

Obfustopia

IO is “crypto-complete”
IO (+ other mild assumptions) implies:

• Fully homomorphic encryption,

• ZK-SNARGs for NP,

• Functional encryption (FE),

• … much more.

2013 - 2020:

Can we build it?

Obfustopia

IO is “crypto-complete”
IO (+ other mild assumptions) implies:

• Fully homomorphic encryption,

• ZK-SNARGs for NP,

• Functional encryption (FE),

• … much more.

2013 - 2020:

Can we build it?

Obfustopia

…maybe?

IO is “crypto-complete”
IO (+ other mild assumptions) implies:

• Fully homomorphic encryption,

• ZK-SNARGs for NP,

• Functional encryption (FE),

• … much more.

2013 - 2020:

2021: Jain, Lin, and Sahai:

Can we build it?

Obfustopia

…maybe?

IO is “crypto-complete”
IO (+ other mild assumptions) implies:

• Fully homomorphic encryption,

• ZK-SNARGs for NP,

• Functional encryption (FE),

• … much more.

2013 - 2020:

2021: Jain, Lin, and Sahai:

Can we build it?

Obfustopia

…maybe?

IO From Well-Founded Assumptions
Theorem [JLS ’21]: Construction of IO from (sub-exponential)

IO From Well-Founded Assumptions
Theorem [JLS ’21]: Construction of IO from (sub-exponential)

• ,Learning With Errors (LWE)

IO From Well-Founded Assumptions
Theorem [JLS ’21]: Construction of IO from (sub-exponential)

• ,

• ,

Learning With Errors (LWE)

Bilinear Maps (SXDH)

IO From Well-Founded Assumptions
Theorem [JLS ’21]: Construction of IO from (sub-exponential)

• ,

• ,

• , &

Learning With Errors (LWE)

Bilinear Maps (SXDH)

(Large-field) Learning Parity with Noise (LPN)

IO From Well-Founded Assumptions
Theorem [JLS ’21]: Construction of IO from (sub-exponential)

• ,

• ,

• , &

• .

Learning With Errors (LWE)

Bilinear Maps (SXDH)

(Large-field) Learning Parity with Noise (LPN)

PRGs in with polynomial stretchNC0

IO From Well-Founded Assumptions
Theorem [JLS ’22]: Construction of IO from (sub-exponential)

• ,

• ,

• , &

• .

Learning With Errors (LWE)

Bilinear Maps (DLIN)

(Large-field) Learning Parity with Noise (LPN)

PRGs in with polynomial stretchNC0

Theorem [RVV ’24]: Construction of IO from (sub-exponential)

• ,

• ,

• , &

•

Our Result

Learning With Errors (LWE)

Bilinear Maps (DLIN)

(Large-field) Learning Parity with Noise (LPN)

PRGs in with polynomial stretchNC0 “Local Functions with Noise” (LFN)

Theorem [RVV ’24]: Construction of IO from (sub-exponential)

• ,

• ,

• , &

•

Our Result

Learning With Errors (LWE)

Bilinear Maps (DLIN)

(Large-field) Learning Parity with Noise (LPN)

PRGs in with polynomial stretchNC0 “Local Functions with Noise” (LFN)

Weaker!

Local Functions with Noise (LFN)
There is a distribution over functions , with ,NC0 f : ℤn

2 → ℤm
2 m = n1+ε

Local Functions with Noise (LFN)
There is a distribution over functions , with ,NC0 f : ℤn

2 → ℤm
2 m = n1+ε

.(f, f(s) ⊕ e) ≈c (f, $)

Local Functions with Noise (LFN)
There is a distribution over functions , with ,NC0 f : ℤn

2 → ℤm
2 m = n1+ε

.(f, f(s) ⊕ e) ≈c (f, $)
s ← ℤn

2
e ← Bern (n−δ)m

Local Functions with Noise (LFN)
There is a distribution over functions , with ,NC0 f : ℤn

2 → ℤm
2 m = n1+ε

.(f, f(s) ⊕ e) ≈c (f, $)
s ← ℤn

2
e ← Bern (n−δ)m

Each output bit
depends on

 input bits.O(1)

Local Functions with Noise (LFN)
There is a distribution over functions , with ,NC0 f : ℤn

2 → ℤm
2 m = n1+ε

.(f, f(s) ⊕ e) ≈c (f, $)
s ← ℤn

2
e ← Bern (n−δ)m

Two ways to instantiate LFN:

Each output bit
depends on

 input bits.O(1)

Local Functions with Noise (LFN)
There is a distribution over functions , with ,NC0 f : ℤn

2 → ℤm
2 m = n1+ε

.(f, f(s) ⊕ e) ≈c (f, $)
s ← ℤn

2
e ← Bern (n−δ)m

Two ways to instantiate LFN:
1. PRGs in (e.g., Goldreich’s PRGs): no noise! ().NC0 δ → ∞

Each output bit
depends on

 input bits.O(1)

Local Functions with Noise (LFN)
There is a distribution over functions , with ,NC0 f : ℤn

2 → ℤm
2 m = n1+ε

.(f, f(s) ⊕ e) ≈c (f, $)
s ← ℤn

2
e ← Bern (n−δ)m

Two ways to instantiate LFN:
1. PRGs in (e.g., Goldreich’s PRGs): no noise! ().NC0 δ → ∞
2. Sparse LPN*: is a -sparse, linear function over .f O(1) ℤ2

*Generalizing Sparse LPN to LFN was suggested by Aayush Jain, Rachel Lin, and an anonymous reviewer.

Each output bit
depends on

 input bits.O(1)

Sparse LPN over ℤ2

A ∈ ℤm×n
2 ,

samples
m = n1+ϵ

Sparse LPN over ℤ2

A ∈ ℤm×n
2

 non-
zero entries

per row

O(1)

,

samples
m = n1+ϵ

Sparse LPN over ℤ2

A ∈ ℤm×n
2

s

⊕

 non-
zero entries

per row

O(1)

s ← ℤn
2

e ← Bern (n−δ)m

A,

samples
m = n1+ϵ

e

Sparse LPN over ℤ2

A ∈ ℤm×n
2

s

⊕

 non-
zero entries

per row

O(1)

s ← ℤn
2

e ← Bern (n−δ)m

A, ≈c (A, $)

samples
m = n1+ϵ

e

IO from “2.5 Assumptions”
Another interpretation:

Theorem [RVV ’24]: Construction of IO from (sub-exponential)

• ,

• , &

• .

IO from “2.5 Assumptions”

Bilinear Maps (DLIN)

(Large-field) LPN

(Sparse) LPN

Another interpretation:

Overview of [JLS22]

Overview of [JLS22]

Bilinear Maps

Degree- FE2

[JLMS19]
[Wee20]
[GJLS21]

Overview of [JLS22]

Bilinear Maps

Degree- FE2

Large-field LPN

Degree*- FEO(1)

[JLMS19]
[Wee20]
[GJLS21]

*Also need localitymϵ

Overview of [JLS22]

Bilinear Maps

Degree- FE2

Large-field LPN

Degree*- FEO(1)

Algebraic

Compression

[JLMS19]
[Wee20]
[GJLS21]

*Also need localitymϵ

Overview of [JLS22]

Bilinear Maps

Degree- FE2

Large-field LPN

Degree*- FEO(1)

PRGs in NC0

FE

Algebraic

Compression

[JLMS19]
[Wee20]
[GJLS21]

*Also need localitymϵ

Overview of [JLS22]

Bilinear Maps

Degree- FE2

Large-field LPN

Degree*- FEO(1)

PRGs in NC0

FE

Algebraic

Compression

Randomized

Encodings

(Garbled Circuits)

[JLMS19]
[Wee20]
[GJLS21]

*Also need localitymϵ

Overview of [JLS22]

Bilinear Maps

Degree- FE2

Large-field LPN

Degree*- FEO(1)

PRGs in NC0

FE IO

Algebraic

Compression

Randomized

Encodings

(Garbled Circuits)

[JLMS19]
[Wee20]
[GJLS21]

[AJ15,
BV15, …]

*Also need localitymϵ

Overview of [JLS22]

Bilinear Maps

Degree- FE2

Large-field LPN

Degree*- FEO(1)

PRGs in NC0

FE IO

[JLMS19]
[Wee20]
[GJLS21]

[AJ15,
BV15, …]

“Local Functions with Noise” (LFN)

Algebraic

Compression

Randomized

Encodings

(Garbled Circuits)

*Also need localitymϵ

Relaxing poly-stretch PRGs in NC0

We observe two weaker objects suffice to build FE from Degree*- FE:O(1)

Relaxing poly-stretch PRGs in NC0

We observe two weaker objects suffice to build FE from Degree*- FE:O(1)

1. Linear-stretch PRGs in .NC0

Relaxing poly-stretch PRGs in NC0

We observe two weaker objects suffice to build FE from Degree*- FE:O(1)

1. Linear-stretch PRGs in .NC0 [AIK08] shows implied by LFN.

Relaxing poly-stretch PRGs in NC0

We observe two weaker objects suffice to build FE from Degree*- FE:O(1)

1. Linear-stretch PRGs in .NC0

2. Structured-seed PRG with degree (over) and locality :O(1) ℤ mϵ

[AIK08] shows implied by LFN.

Relaxing poly-stretch PRGs in NC0

We observe two weaker objects suffice to build FE from Degree*- FE:O(1)

1. Linear-stretch PRGs in .NC0

2. Structured-seed PRG with degree (over) and locality :O(1) ℤ mϵ

a) , where takes time.SeedSample (1λ) → σ SeedSample m1−Ω(1)

[AIK08] shows implied by LFN.

Relaxing poly-stretch PRGs in NC0

We observe two weaker objects suffice to build FE from Degree*- FE:O(1)

1. Linear-stretch PRGs in .NC0

2. Structured-seed PRG with degree (over) and locality :O(1) ℤ mϵ

a) , where takes time.SeedSample (1λ) → σ SeedSample m1−Ω(1)

b) has degree and locality .G : {0,1}m1−Ω(1) → {0,1}m O(1) mϵ

[AIK08] shows implied by LFN.

Relaxing poly-stretch PRGs in NC0

We observe two weaker objects suffice to build FE from Degree*- FE:O(1)

1. Linear-stretch PRGs in .NC0

2. Structured-seed PRG with degree (over) and locality :O(1) ℤ mϵ

a) , where takes time.SeedSample (1λ) → σ SeedSample m1−Ω(1)

b) has degree and locality .G : {0,1}m1−Ω(1) → {0,1}m O(1) mϵ

c) .G(σ) ≈c $

[AIK08] shows implied by LFN.

Structured-Seed PRG from LFN
First attempt:

Structured-Seed PRG from LFN
First attempt:

1. : Output , where .SeedSample σ = (s ← ℤn
2, e ← Bern (n−δ)m) m = n1+ϵ

Structured-Seed PRG from LFN
First attempt:

1. : Output , where .SeedSample σ = (s ← ℤn
2, e ← Bern (n−δ)m) m = n1+ϵ

2. .Gf(σ) = f(s) ⊕ e

Structured-Seed PRG from LFN
First attempt:

1. : Output , where .SeedSample σ = (s ← ℤn
2, e ← Bern (n−δ)m) m = n1+ϵ

2. .Gf(σ) = f(s) ⊕ e

What goes wrong?

Structured-Seed PRG from LFN
First attempt:

1. : Output , where .SeedSample σ = (s ← ℤn
2, e ← Bern (n−δ)m) m = n1+ϵ

2. .Gf(σ) = f(s) ⊕ e

What goes wrong?

• If written in full, not even expanding.e ∈ ℤm
2

Structured-Seed PRG from LFN
First attempt:

1. : Output , where .SeedSample σ = (s ← ℤn
2, e ← Bern (n−δ)m) m = n1+ϵ

2. .Gf(σ) = f(s) ⊕ e

What goes wrong?

• If written in full, not even expanding.e ∈ ℤm
2

• If is written as list of non-zero indices, expansion not in degree .e O(1)

Algebraic Compression

Algebraic Compression
Can we compress so that expansion is degree e ← Bern (n−δ)m O(1)?

Algebraic Compression
Can we compress so that expansion is degree e ← Bern (n−δ)m O(1)?

Yes! (in fact, degree)2 [JLS21, JLS22]

Algebraic Compression
Can we compress so that expansion is degree e ← Bern (n−δ)m O(1)?

Yes! (in fact, degree)2

Key idea: Interpret as a sparse, square matrix:e ← Bern (n−δ)m
 [JLS21, JLS22]

Algebraic Compression
Can we compress so that expansion is degree e ← Bern (n−δ)m O(1)?

Yes! (in fact, degree)2

Key idea: Interpret as a sparse, square matrix:e ← Bern (n−δ)m
 [JLS21, JLS22]

m

m

e

Algebraic Compression
Can we compress so that expansion is degree e ← Bern (n−δ)m O(1)?

Yes! (in fact, degree)2

Key idea: Interpret as a sparse, square matrix:e ← Bern (n−δ)m
 [JLS21, JLS22]

(can remove this assumption on)δ

m

m

e

non-zero entries

mn−δ = m1/2−Ω(1)

Algebraic Compression
Can we compress so that expansion is degree e ← Bern (n−δ)m O(1)?

Yes! (in fact, degree)2

Key idea: Interpret as a sparse, square matrix:e ← Bern (n−δ)m
 [JLS21, JLS22]

=
V m1/2−Ω(1)

m
U

m1/2−Ω(1)

m

(can remove this assumption on)δ

m

m

e

non-zero entries

mn−δ = m1/2−Ω(1)

Algebraic Compression
Can we compress so that expansion is degree e ← Bern (n−δ)m O(1)?

Yes! (in fact, degree)2

Key idea: Interpret as a sparse, square matrix:e ← Bern (n−δ)m
 [JLS21, JLS22]

=
V m1/2−Ω(1)

m
U

m1/2−Ω(1)

m

Total size of :

.

(U, V)
2 ⋅ m ⋅ m1/2−Ω(1) = m1−Ω(1)

(can remove this assumption on)δ

m

m

e

non-zero entries

mn−δ = m1/2−Ω(1)

Structured-Seed PRG from LFN
Second attempt:

Structured-Seed PRG from LFN
Second attempt:

1. : Output SeedSample σ = (s ← ℤn
2, (U, V⊤ ∈ ℤ m × m1/2−Ω(1)

2))

Structured-Seed PRG from LFN
Second attempt:

1. : Output SeedSample σ = (s ← ℤn
2, (U, V⊤ ∈ ℤ m × m1/2−Ω(1)

2))
2. , where is a reshaping of .Gf(σ) = f(s) ⊕ e e UV ∈ ℤ m× m

2

Structured-Seed PRG from LFN
Second attempt:

1. : Output SeedSample σ = (s ← ℤn
2, (U, V⊤ ∈ ℤ m × m1/2−Ω(1)

2))
2. , where is a reshaping of .Gf(σ) = f(s) ⊕ e e UV ∈ ℤ m× m

2

Check properties:

Structured-Seed PRG from LFN
Second attempt:

1. : Output SeedSample σ = (s ← ℤn
2, (U, V⊤ ∈ ℤ m × m1/2−Ω(1)

2))
2. , where is a reshaping of .Gf(σ) = f(s) ⊕ e e UV ∈ ℤ m× m

2

Check properties:

a) Seed can be computed in time .σ m1−Ω(1)

Structured-Seed PRG from LFN
Second attempt:

1. : Output SeedSample σ = (s ← ℤn
2, (U, V⊤ ∈ ℤ m × m1/2−Ω(1)

2))
2. , where is a reshaping of .Gf(σ) = f(s) ⊕ e e UV ∈ ℤ m× m

2

Check properties:

a) Seed can be computed in time .σ m1−Ω(1)

b) has degree- and locality .Gf O(1) m1/2−Ω(1)

Structured-Seed PRG from LFN
Second attempt:

1. : Output SeedSample σ = (s ← ℤn
2, (U, V⊤ ∈ ℤ m × m1/2−Ω(1)

2))
2. , where is a reshaping of .Gf(σ) = f(s) ⊕ e e UV ∈ ℤ m× m

2

Check properties:

a) Seed can be computed in time .σ m1−Ω(1)

b) has degree- and locality .Gf O(1) m1/2−Ω(1)

c) Pseudorandom assuming LFN.

Open Questions & Future Directions

Open Questions & Future Directions
1. Minimal assumptions for IO?

Open Questions & Future Directions
1. Minimal assumptions for IO?

2. Post-quantum IO? (Need to replace bilinear maps.)

Open Questions & Future Directions
1. Minimal assumptions for IO?

2. Post-quantum IO? (Need to replace bilinear maps.)

3. More crypto from LFN? Cryptanalysis?

Thanks!

