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Indistinguishability Obfuscation
PPT algorithm , where inputs and outputs are circuits.𝒪

• Correctness:  circuits , inputs , .∀ C x 𝒪 (C)(x) = C(x)

• Indistinguishability Security: For all same-size, functionally 
equivalent circuits , C0, C1

𝒪 (C0) ≈c 𝒪 (C1) .
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Our Result

Learning With Errors (LWE)

Bilinear Maps (DLIN)

(Large-field) Learning Parity with Noise (LPN)

PRGs in  with polynomial stretchNC0 “Local Functions with Noise” (LFN)

Weaker!
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Local Functions with Noise (LFN)
There is a distribution over  functions , with ,NC0 f : ℤn

2 → ℤm
2 m = n1+ε

.(f, f(s) ⊕ e) ≈c (f, $)
s ← ℤn

2
e ← Bern (n−δ)m

Two ways to instantiate LFN:
1. PRGs in  (e.g., Goldreich’s PRGs): no noise! ( ).NC0 δ → ∞
2. Sparse LPN*:  is a -sparse, linear function over .f O(1) ℤ2

*Generalizing Sparse LPN to LFN was suggested by Aayush Jain, Rachel Lin, and an anonymous reviewer.
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zero entries 

per row

O(1)

s ← ℤn
2

e ← Bern (n−δ)m

A, ≈c (A, $)
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m = n1+ϵ
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IO from “2.5 Assumptions”

Bilinear Maps (DLIN)

(Large-field) LPN

(Sparse) LPN

Another interpretation:
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Relaxing poly-stretch PRGs in  NC0

We observe two weaker objects suffice to build FE from Degree*-  FE:O(1)

1. Linear-stretch PRGs in .NC0

2. Structured-seed PRG with degree  (over ) and locality :O(1) ℤ mϵ

a) , where  takes  time.SeedSample (1λ) → σ SeedSample m1−Ω(1)

b)  has degree  and locality .G : {0,1}m1−Ω(1) → {0,1}m O(1) mϵ

c) .G(σ) ≈c $

[AIK08] shows implied by LFN.
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Structured-Seed PRG from LFN
First attempt:

1. : Output , where .SeedSample σ = (s ← ℤn
2, e ← Bern (n−δ)m) m = n1+ϵ

2. .Gf(σ) = f(s) ⊕ e

What goes wrong?

• If  written in full, not even expanding.e ∈ ℤm
2

• If  is written as list of non-zero indices, expansion not in degree .e O(1)
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Algebraic Compression
Can we compress  so that expansion is degree e ← Bern (n−δ)m O(1)?

Yes! (in fact, degree )2

Key idea: Interpret  as a sparse, square matrix:e ← Bern (n−δ)m
 [JLS21, JLS22] 

=
V m1/2−Ω(1)

m
U

m1/2−Ω(1)

m

Total size of : 

.

(U, V)
2 ⋅ m ⋅ m1/2−Ω(1) = m1−Ω(1)

(can remove this assumption on )δ

m

m

e
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Structured-Seed PRG from LFN
Second attempt:

1. : Output SeedSample σ = (s ← ℤn
2, (U, V⊤ ∈ ℤ m × m1/2−Ω(1)

2 ))
2. , where  is a reshaping of .Gf(σ) = f(s) ⊕ e e UV ∈ ℤ m× m

2

Check properties:

a) Seed  can be computed in time .σ m1−Ω(1)

b)  has degree-  and locality .Gf O(1) m1/2−Ω(1)

c) Pseudorandom assuming LFN.
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Open Questions & Future Directions
1. Minimal assumptions for IO?

2. Post-quantum IO? (Need to replace bilinear maps.)

3. More crypto from LFN? Cryptanalysis?



Thanks!


