Indistinguishability Obfuscation from
Bilinear Maps and LPN Variants

TCC 2024
December 6, 2024

Seyoon Ragavan Neekon Vafa Vinod Vaikuntanathan
MIT MIT MIT

Indistinguishability Obfuscation

PPT algorithm @, where inputs and outputs are circuits.

Indistinguishability Obfuscation

PPT algorithm @, where inputs and outputs are circuits.

« Correctness: V circuits C, inputs x, O (C)(x) = C(x).

Indistinguishability Obfuscation

PPT algorithm @, where inputs and outputs are circuits.

« Correctness: V circuits C, inputs x, O (C)(x) = C(x).

* Indistinguishability Security: For all same-size, functionally
equivalent circuits C), C;,

O (C()) ~.0 (Cl) .

1O is “crypto-complete”

O (+ other mild assumptions) implies:

1O is “crypto-complete”

O (+ other mild assumptions) implies:
* Fully homomorphic encryption,

 Z/K-SNARGs for NP,

* Functional encryption (FE),

1O is “crypto-complete”

O (+ other mild assumptions) implies:

* Fully homomorphic encryption,

 Z/K-SNARGs for NP,

* Functional encryption (FE),
g

e ... much more.

1O is “crypto-complete”

IO (+ other mild assumptions) implies: Can we build it?
* Fully homomorphic encryption,

 Z/K-SNARGs for NP,

* Functional encryption (FE),

e ... much more.

........

1O is “crypto-complete”

IO (+ other mild assumptions) implies: Can we build it?
* Fully homomorphic encryption, 5013 - 2020
 ZK-SNARGs for NP,

* Functional encryption (FE),

e ... much more.

........

1O is “crypto-complete”

IO (+ other mild assumptions) implies: Can we build it?

* Fully homomorphic encryption, 2013 - 2020: ...maybe?
« ZK-SNARGs for NP,

* Functional encryption (FE),

e ... much more.

T

1O is “crypto-complete”

IO (+ other mild assumptions) implies: Can we build it?
* Fully homomorphic encryption, 2013 - 2020: ...maybe?
* ZK-SNARGs for NP 2021: Jain, Lin, and Sahai:

* Functional encryption (FE),

e ... much more.

T

+ other mild assumptions) implies:
Fully homomorphic encryption

ZK-SNARGs for NP,

Functional encryption (FE

1O is “crypto-complete”

much more.

\

\

an we build it?

2013 - 2020: ...maybe?

2021: Jain, Lin, and Sahai

Boh

Ider siffe

the-

|O From Well-Founded Assumptions

Theorem [JLS '21]: Construction of 10 from (sub-exponential)

|O From Well-Founded Assumptions

Theorem [JLS '21]: Construction of 10 from (sub-exponential)

|O From Well-Founded Assumptions

Theorem [JLS '21]: Construction of 10 from (sub-exponential)

o :Bilinear Maps (SXDH)

|O From Well-Founded Assumptions

Theorem [JLS '21]: Construction of 10 from (sub-exponential)

, &

|O From Well-Founded Assumptions

Theorem [JLS '21]: Construction of 10 from (sub-exponential)

e iLearning With Errors (LWE):,

, &

|O From Well-Founded Assumptions

Theorem [JLS '22]: Construction of 10 from (sub-exponential)

, &

Our Result

Theorem [RVV ’24]: Construction of |10 from (sub-exponential)

. I:eaFng—Wfth—EFFer—(I:WI_%\

. (Large field) Learning Parity with Noise (LPN):, &

Our Result

Theorem [RVV ’24]: Construction of |10 from (sub-exponential)

(Large field) Learning Parity with Noise (LPN):, &

ocal Functions with Noise (LFN)

There is a distribution over NC" functions f : 75 — Z5, withm = n!te

ocal Functions with Noise (LFN)

There is a distribution over NC" functions f : 75 — Z5, withm = n!te

(. fis)de) ~, (.9).

ocal Functions with Noise (LFN)

There is a distribution over NC" functions f : 75 — Z5, withm = n!te

(L fisDe)~, (.$).
S «— 27,
e — Bern (n_‘s)m

ocal Functions with Noise (LFN)

There is a distribution over NC" functions f : 75 — Z5, withm = n!te

Each output bit

_—
depends on (f, f(s) & E) . (f, $)

O(1) input bits.
(1) inp s<—Z’§

e < Bern (n_‘s)m

ocal Functions with Noise (LFN)

There is a distribution over NC" functions f : 75 — Z5, withm = n!te

Each output bit

_—
depends on (f, f(s) & E) . (f, $)

O(1) input bits.
(1) inp s<—Z’§
~S5\M
e<—Bern(n)

Two ways to instantiate LFN:

ocal Functions with Noise (LFN)

There is a distribution over NC" functions f : 75 — Z5, withm = n!te

Each output bit

_—
depends on (f, f(s) & E) . (f, $)

O(1) input bits.
(1) inp s<—Z’§
~S5\M
e<—Bern(n)

Two ways to instantiate LFN:
1. PRGs in NC" (e.g., Goldreich’s PRGs): no noise! (5§ — o).

ocal Functions with Noise (LFN)

There is a distribution over NC" functions f : 75 — Z5, withm = n!te

Each output bit

_—
depends on (f, f(s) & E) . (f, $)

O(1) input bits.
(1) inp s<—Z’§

e < Bern (n_‘s)m

Two ways to instantiate LFN:
1. PRGs in NC" (e.g., Goldreich’s PRGs): no noise! (5§ — o).
2. Sparse LPN*: fis a O(1)-sparse, linear function over Z,.

*Generalizing Sparse LPN to LFN was suggested by Aayush Jain, Rachel Lin, and an anonymous reviewet.

Sparse LPN over Z,

m = n I+€
samples

Sparse LPN over Z,

O(1) non-
Zero entries
per row

m = n1+€

samples

Sparse LPN over Z,

O(1) non-
, l IS<_ Z |

Zero entries
per row
e «— Bern

m = n1+€

samples

Sparse LPN over Z,

O(1) non-
, l S < Z |

Zero entries
per row
e «— Bern

m = n1+€

samples

|O from “2.5 Assumptions”

Another interpretation:

O from “2.5 Assumptions”

Another interpretation:

Theorem [RVV '24]. Construction of IO from (sub-exponential)

Overview of [JLS22]

Overview of [JLS22]

[JLMS19]
Wee20]
(GJLS21]

Degree-2 FE

Overview of [JLS22]

[JLMS19]
[Wee20)]
[GJLS21]

Degree-2 FE — Degree*-0O(1) FE

Also need m® locality

Overview of [JLS22]

Bilinear Maps Large-field LPN
[JLMS19]
[Wee20]
GdLS21 Algebraic
Compression

Degree-2 FE — Degree*-O(1) FE

Also need m® locality

Overview of [JLS22]

Bilinear Maps Large-field LPN; PRGs in NC"
[JLMS19]
[Wee20]
(GJLS21] Algebraic
Compression

Degree-2 FE —— Degree*-0O(1) FE — FE

Also need m® locality

Overview of [JLS22]

Bilinear Maps Large-field LPN: PRGs in NC";

[JLMS19]

E\E/VieSZO] Randomized

(GJLS21] Algebraic Encodings
Compression (Garbled Circuits)

Degree-2 FE —— Degree*-0O(1) FE — FE

Also need m® locality

Overview of [JLS22]

Bilinear Maps Large-field LPN: PRGs in NC*

[JLMS19]

[Wee20] Randomized
GJLS21] Algebraic Encodings

Compression (Garbled Circuits)
Degree-2 FE — Degree*-0(1) FE —>FET (@,
5
BV15, ...]

Also need m® locality

Overview Of [J L822]

Bilinear Maps Large-field LPN: PRGs-inNC”

[JLMS19]

[Wee20] Randomized
GJLS21] Algebraic Encodings

Compression (Garbled Circuits)
Degree-2 FE — Degree*-0(1) FE —>FET (@,
5
BV15, ...]

Also need m® locality

Relaxing poly-stretch PRGs in NC"

We observe two weaker objects suffice to build FE from Degree*-O(1) FE:

Relaxing poly-stretch PRGs in NC"

We observe two weaker objects suffice to build FE from Degree*-O(1) FE:

1. Linear-stretch PRGs in NC°.

Relaxing poly-stretch PRGs in NC"

We observe two weaker objects suffice to build FE from Degree*-O(1) FE:

1. Linear-stretch PRGs in NC". [AIK08] shows implied by LFN.

Relaxing poly-stretch PRGs in NC"

We observe two weaker objects suffice to build FE from Degree*-O(1) FE:

1. Linear-stretch PRGs in NC". [AIK08] shows implied by LFN.

2. Structured-seed PRG with degree O(1) (over Z) and locality m*:

Relaxing poly-stretch PRGs in NC"

We observe two weaker objects suffice to build FE from Degree*-O(1) FE:

1. Linear-stretch PRGs in NCV. [AIK08] shows implied by LFN.
2. Structured-seed PRG with degree O(1) (over Z) and locality m*:

a) SeedSample (1’1) — 0, where SeedSample takes m 1~ time.

Relaxing poly-stretch PRGs in NC"

We observe two weaker objects suffice to build FE from Degree*-O(1) FE:

1. Linear-stretch PRGs in NCV. [AIK08] shows implied by LFN.
2. Structured-seed PRG with degree O(1) (over Z) and locality m*:

a) SeedSample (1’1) — 0, where SeedSample takes m 1~ time.

1-Q(1)

by G :{0,1}"™ — {0,1}" has degree O(1) and locality m°.

Relaxing poly-stretch PRGs in NC"

We observe two weaker objects suffice to build FE from Degree*-O(1) FE:

1. Linear-stretch PRGs in NCV. [AIK08] shows implied by LFN.
2. Structured-seed PRG with degree O(1) (over Z) and locality m*:

a) SeedSample (1’1) — 0, where SeedSample takes m 1~ time.

1-Q(1)

by G :{0,1}"™ — {0,1}" has degree O(1) and locality m°.

c) G(o) =, 9.

Structured-Seed PRG from LFN

First attempt:

Structured-Seed PRG from LFN

First attempt:

1. SeedSample: Output o = (s — Z5,e < Bern (n_é)m), where m = n'*¢,

Structured-Seed PRG from LFN

First attempt:

1. SeedSample: Output o = (s — Z5,e < Bern (n_é)m), where m = n'*¢,

2. Gf(a) = f(s) D e.

Structured-Seed PRG from LFN

First attempt:

1. SeedSample: Output o = (s — Z5,e < Bern (n_é)m), where m = n'*¢,

2. Gf(a) = f(s) D e.

What goes wrong?

Structured-Seed PRG from LFN

First attempt:

1. SeedSample: Output o = (s — Z5,e < Bern (n_é)m), where m = n'*¢,

What goes wrong?

. If e € Z7 written in full, not even expanding.

Structured-Seed PRG from LFN

First attempt:
1. SeedSample: Output o = (s — Z5,e < Bern (n_é)m), where m = n'*¢,

What goes wrong?

. If e € Z7 written in full, not even expanding.

» |f e is written as list of non-zero indices, expansion not in degree O(1).

Algebraic Compression

Algebraic Compression

Can we compress ¢ < Bern (n_‘s)m so that expansion is degree O(1)?

Algebraic Compression

Can we compress ¢ < Bern (n_‘s)m so that expansion is degree O(1)?

Yes! (in fact, degree 2) [JLS21, JLS22]

Algebraic Compression

Can we compress ¢ < Bern (n_‘s)m so that expansion is degree O(1)?

Yes! (in fact, degree 2) [JLS21, JLS22]

Key idea: Interpret € «<— Bern (n_‘s)m as a sparse, square matrix:

Algebraic Compression

Can we compress ¢ < Bern (n_‘s)m so that expansion is degree O(1)?

Yes! (in fact, degree 2) [JLS21, JLS22]

Key idea: Interpret € «<— Bern (n_‘s)m as a sparse, square matrix:

Algebraic Compression

Can we compress ¢ < Bern (n_‘s)m so that expansion is degree O(1)?

Yes! (in fact, degree 2) [JLS21, JLS22]

Key idea: Interpret € «<— Bern (n_‘s)m as a sparse, square matrix:

=0 = g 112-Q(1)

non-zero entries

(can remove this assumption on 0)

Algebraic Compression

Can we compress e < Bern (n_‘s)m so that expansion is degree O(1)??

Yes! (in fact, degree 2) [JLS21, JLS22]

Key idea: Interpret e «<— Bern (n_é)m as a sparse, square matrix;

=0 = g 112-Q(1)

non-zero entries

(can remove this assumption on 0)

e ——
— /m 7
—

J/m

—

\/% 1y 12-Q(1)

Algebraic Compression

Can we compress e < Bern (n_‘s)m so that expansion is degree O(1)??

Yes! (in fact, degree 2) [JLS21, JLS22]

Key idea: Interpret € < Bern (n_‘s)m as a sparse, square matrix:

—5 1/2—Q(1)

mn -~ =m (can remove this assumption on 0)

Total size of (U, V):

1/2 —Q(1)

non-zero entries

J/m

2o/ m - m1/2—£2(1) — ml—Q(l)_

Structured-Seed PRG from LFN

Second attempt:

Structured-Seed PRG from LFN

Second attempt:

1. SeedSample: Output o = (S — 7, (U, VT Zﬁ % mlxzsz(n))

Structured-Seed PRG from LFN

Second attempt:

1. SeedSample: Output o = (S — 7, (U, VT Zﬁ % mlxzsz(n))

2. G{o) = f(s) @ e, where e is a reshaping of UV & Zﬁxﬁ.

Structured-Seed PRG from LFN

Second attempt:

1. SeedSample: Output o = (S — 7, (U, VT Zﬁ % mlxzsz(n))

2. G{o) = f(s) @ e, where e is a reshaping of UV & Zﬁxﬁ.

Check properties:

Structured-Seed PRG from LFN

Second attempt:

1. SeedSample: Output o = (S — 7, (U, VT Zﬁ % mlxzsz(n))

2. G{o) = f(s) @ e, where e is a reshaping of UV & Zﬁxﬁ.

Check properties:

a) Seed o can be computed in time m !~

Structured-Seed PRG from LFN

Second attempt:

1. SeedSample: Output o = (S — 7, (U, VT Zﬁ % mlxzsz(n))

2. G{o) = f(s) @ e, where e is a reshaping of UV & Zﬁxﬁ.

Check properties:

a) Seed o can be computed in time m !~

b) Grhas degree-O(1) and locality m /=1,

Structured-Seed PRG from LFN

Second attempt:

1. SeedSample: Output o = (S — 7, (U, VT Zﬁ % mlxzsz(n))

2. G{o) = f(s) @ e, where e is a reshaping of UV & Zﬁxﬁ.

Check properties:

a) Seed o can be computed in time m !~

b) Grhas degree-O(1) and locality m /=1,

c) Pseudorandom assuming LFN.

Open Questions & Future Directions

Open Questions & Future Directions

1. Minimal assumptions for O

Open Questions & Future Directions

1. Minimal assumptions for O

2. Post-quantum 10? (Need to replace bilinear maps.)

Open Questions & Future Directions

1. Minimal assumptions for |O?
2. Post-quantum 10? (Need to replace bilinear maps.)

3. More crypto from LFN? Cryptanalysis”?

