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Learning With Errors

LWE, 4 : ndimension, p modulus, ¢ ~ R/Z error distribution

Given noisy samples (a, (a,s) + e), where

a« Z’z} uniformly random, s € Z’z} unknown, e < ¢ small error,

(search-LWE) output S.



Learning With Errors

LWE, 4 : ndimension, p modulus, ¢ ~ R/Z error distribution

Given noisy samples (a, (a,s) + e), where

a« Z’{,‘ uniformly random, s € Z’{,‘ unknown, e < ¢ small error,

(search-LWE) output S.
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Learning With Errors

LWE

npe - hdimension, p modulus, ¢ ~ R/Z error distribution

Given noisy samples (a, b), where
a < Zz uniformly random and b € Z,,
(decision-LWE) output

YES if samples are from the LWE distribution for s and ¢,

NO if samples are uniformly random.



Lattices

Lattice:
An infinite discrete set of vectors in R™

consisting of all integer linear combinations
L ={a;b; +--+aib,: ay,..,a; € Z}

of some linearly independent vectors b, ..., b, € R™.

Theset{b,, ..., b, }is called a basis.




Shortest Vector Problem

SVP | :

Given a basis B for lattice £ c R",

find a shortest non-zero lattice vector x, L

i.e.x € L\ {0}, such that [|x]|| = 4, (£). o o




Shortest Vector Problem

SVP | :

Given a basis B for lattice £ c R",

find a shortest non-zero lattice vector x, L

i.e.x € L\ {0}, such that [|x]|| = 4, (£). o o

GapSVP,, | is an approximate decision variant.




Bounded Distance Decoding

BDD, : «a > 0 distance approximation factor
. . . . . .
Given a basis B for a full-rank lattice £L € R"
and a target vector v € R" close to the lattice, o o \\\
| .&\
|\ Vv ,'
find a lattice vector x € L closestto v, ® ° '\ e

i.e. X € Lsuchthat|lv—x]||, < a-21;(L).



Hardness of LWE

[Regev, 2009] — quantum reduction from worst-case lattice problems to decision-LWE

quantum classical

GapSVP, > |BDD,, > | LWEn,¢




Hardness of LWE

[Peikert, 2009] — classical reduction, but modulus becomes exponential

GapSVP,

classical
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classical
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LWE 5,6

p = exp(n)




Hardness of LWE

[Brakerski, Peikert, Langlois, Regev, Stehle, 2013] — classical reduction with polynomial modulus

classical classical

GapSVP, > BDD, > | LWE, 5

l classical

binary-LWE, 2 , 4

l classical

p = poly(n) | LWE,2, 4
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BDD,,

Hardness of LWE

— | LWE; ;¢

binary-LWE, 2 , 4

p = exp(n)

LWE, 2 , 4

p = poly(n)




Algorithms for Lattice Problems

GapSVP, | — BDD, | —— | LWE;, 4 | — binary-LWE, 2, 4 | ——— LWE, 2 , 4

R

Fastest algorithms for these

oroblems run in 29 time
(for polynomial approximation factor).
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Conjecture: known algorithms
are the best possible
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—

than 220/7) time.
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What the Reduction says about LWE Algorithms

[Blum-Kalai-Wasserman, 2000] — Best known algorithm for LWE,, ,, 5 runs in 201087 /1081 time,
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Closing the Gap

How to close this gap?

We change our perspective!
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Security 1n Practice

What does it mean for a cryptosystem to be 256-bit secure?

(a) The fastest algorithm for breaking the cryptosystem runs in 22° time.

(b) No reasonably efficient algorithm can break the cryptosystem with probability > 272°°.

This is what we usually want
for cryptographic security
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An alternative measure of computational hardness:

The maximum success probability of any PPT algorithm that finds a solution.



An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any PPT algorithm that finds a solution.

Can we study worst-case to average-case reductions under this framework?



An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any PPT algorithm that finds a solution.

Can we study worst-case to average-case reductions under this framework?

Yes (this talk!)
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Success Probability of Solving LWE

Trivial algorithm (guess the error): Success probability for solving LWE,, , 4 is )

All other algorithms are not PPT, so it is unlikely that we can achieve better than this.
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LLL / Slide Reduction + guess coefficients: Success probability of solving GapSVP,, is 2~-0(n*/logn)
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Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving GapSVP,, is 2~-0(n*/logn)

Known techniques do not seem to improve this when restricted to PPT algorithms,

so it is unlikely that we can achieve much better than this.

BDD,, is closely related to GapSVP, for y = poly(n) = l,

(04

so it is unlikely we can achieve better than known algorithms.



A Natural Conjecture

Conjecture:

(informal) No algorithm can solve BDD, on an arbitrary n-rank lattice for « = 1/poly(n)

in polynomial time with success probability better than p—n*/logn



What We Show

Trivial algorithm:  Success probability for efficiently solving LWE,, ,, 4 is DR

Conjecture = Maximum success probability for efficiently solving LWE,, ,,  is p~ "/ o)




What We Show

Trivial algorithm: Success probability for efficiently solving LWE,, ,, 4 is DR

Tight!

Conjecture = Maximum success probability for efficiently solving LWE,, ,,  is p~ "/ log® n),




Limitations of the Original Reduction
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Limitations of the Original Reduction

1 call 1 call

BDD,, LWE, , 4 — binary-LWE, 2, 4 | —— LWE, 2 ,
poly calls poly calls Making polynomially many oracle calls
causes an exponential loss in success probability!

mod-BDD, ,, | — | gen-LWE, ,, 1

1 call
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Limitations of the Original Reduction

Reduction algorithm for P — Q makes k calls to oracle for Q.
Success probability of solving Q is = € = success probability of solving P is = &3

Success probability of solving P is < & = success probability of solving Q is < o1/k,

We want just O(1) oracle calls to get a meaningful conclusion.



BDD,,

1 call

A 4

mod-BDD,, ,,

1 call

Our Reduction

LWEn’p’gb 1 call
1 call
gen-LWE,, ,, p

binary-LWE, 2 , 4

1 call

LWE; 2 , 4

We make a single oracle call in each step
and suffer at most a polynomial loss
in success probability.




BDD,,

1 call

A 4

mod-BDD, ,,

1 call

Our Reduction

LWEn’p’(p 1 call
1 call
gen-LWE;, ,, p

binary-LWE, 2 , 4

1 call

LWE,; 2 , 4

We use the same techniques as [Regev, 2005] and [Brakerski+, 2013],
but with great care to the explicit loss in success probability and number of oracle calls.




Our Main Result

Theorem 1: (informal) If no PPT algorithm can solve BDD,, fora € (0,1/2)

7
. . - o=
with success probability greater than 2 <1°8 n>,

then no PPT algorithm can solve search-LWE,, , 4 (even for binary secret)

n

for dimension n, and modulus p = poly(n) with success probability 2 logn,




BDD,,

mod-BDD, ,,

Our Reduction

LWE, pop | —

binary-LWE, 2 , 4

— | gen -LWEn,p,@

LWE, 2 , 4




success prob. g

Trivial: blow up

modulus top = 2™

BDD,,

success prob. g

mod-BDD, ,,

Our Proof Techniques



Our Proof Techniques

mod-BDD, ,, | — | gen-LWE,, ,,

success prob. \_/ success prob.

q—¢€ q
Generate discrete Gaussian

samples and use them to
generate LWE samples




Our Proof Techniques

success prob. g

LWE

a

n,p,o

Carefully sample Gaussian
noise that guarantees
optimal success probability

gen-LWEn,p,D

success prob.
q

(1+¢€)3




Our Proof Techniques

success prob. g success prob. g success prob. g

LWE — | binary-LWE, 2, o | ——— |LWE, 2 ,, 4

n,p,o

These reductions preserve success probability



Our Second Result

Theorem 2: (informal) If no algorithm can solve search-LWE,, ,, for polynomial modulus
with success probability & in expected polynomial time,
then no PPT algorithm can “solve” decision-LWE,, ,,

with probability = «a.



Future Directions

Establish a similar result for GapSVP — BDD (or prove impossibility).

Reductions BDD — search-LWE and search-LWE — decision-LWE are disconnected,
because expected polynomial-time is a fundamental part of the second reduction.

|s a workaround possible?

Use this alternative framework to study the complexity of other computational problems

relevant to cryptography or learning.



Future Directions

Establish a similar result for GapSVP — BDD (or prove impossibility).

Reductions BDD — search-LWE and search-LWE — decision-LWE are disconnected,
because expected polynomial-time is a fundamental part of the second reduction.

|s a workaround possible?

Use this alternative framework to study the complexity of other computational problems

relevant to cryptography or learning.

Thank you! Questions?
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