Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

David Pointcheval^{1,2}

Robert Schädlich²

December 5, 2024

¹ Cosmian, Paris, France
 ² DIENS, École normale supérieure, PSL University, CNRS, Inria, Paris, France

Pointcheval, Schädlich Multi-Client Attr

Multi-Client Attribute-Based and Predicate Encryption

TCC 2024

Attribute-Based Encryption (ABE) [SW05]

$$\mathsf{Enc}(\mathsf{mpk},x,\mu) o \mathsf{ct}_x$$
 μ
 \mathfrak{v}_x
 v_f_1
 $\mathsf{KeyGen}(\mathsf{msk},f) o \mathsf{dk}_f$ \mathfrak{o}_f_3

Attribute-Based Encryption (ABE) [SW05]

Attribute-Based Encryption (ABE) [SW05]

Multi-Input Attribute-Based Encryption (MI-ABE) [BJK⁺18]

<u>Multi-Client</u> Attribute-Based Encryption (MC-ABE)

Pointcheval, Schädlich

Multi-Client Attribute-Based and Predicate Encryption TCC 2024 4/10

<u>Multi-Client</u> Attribute-Based Encryption (MC-ABE)

Pointcheval, Schädlich

Multi-Client Attribute-Based and Predicate Encryption TCC 2024 4/10

Multi-Client Attribute-Based Encryption (MC-ABE)

Multi-Client Attribute-Based and Predicate Encryption TCC 2024

Work	Policy Class	Assumption	Remarks
[C:AYY22]	NC ¹	KOALA	only arity 2
[C:ARYY23]	Р	Evasive LWE, Tensor LWE	

Work	Policy Class	Assumption	Remarks
[C:AYY22]	NC ¹	KOALA	only arity 2
[C:ARYY23]	Р	Evasive LWE, Tensor LWE	
			+++ supports corruptions
[EC:FFMV23]	Conjunctions of P	LWE	no collusions
[EC:FFMV23] [C:ATY23]	Conjunctions of P Conjunctions of NC ¹	LWE MDDH	no collusions

Note: MI-ABE for polynomial arity and NC¹ policies \Rightarrow Witness Encryption for NP

Note: MI-ABE for polynomial arity and NC¹ policies \Rightarrow Witness Encryption for NP

We consider settings that circumvent this implication.

1) Weaker Policies (→ cannot verify NP relation)

- MC-ABE for NC⁰ policies
- MC-ABE for constant-threshold policies

Note: MI-ABE for polynomial arity and NC¹ policies \Rightarrow Witness Encryption for NP

We consider settings that circumvent this implication.

- 1) Weaker Policies (→ cannot verify NP relation)
 - MC-ABE for NC⁰ policies
 - MC-ABE for constant-threshold policies
- 2) Short Inputs (→ WE with exp-size ciphertexts)
 - MC-ABE for NC¹ for parameters s.t. $|x_1|+\cdots+|x_n|=O(\log\lambda)$

Note: MI-ABE for polynomial arity and NC¹ policies \Rightarrow Witness Encryption for NP

We consider settings that circumvent this implication.

- 1) Weaker Policies (→ cannot verify NP relation)
 - MC-ABE for NC⁰ policies
 - MC-ABE for constant-threshold policies
- 2) Short Inputs (→ WE with exp-size ciphertexts)
 - MC-ABE for NC¹ for parameters s.t. $|x_1|+\cdots+|x_n|=O(\log\lambda)$
- Weaker Security Model (→ MC-ABE with OT labels ≠ MI-ABE)
 MC-ABE for NC¹ under one-time label restriction

What does already exist?

- 1) Direct Construction of MI-PE ([EC:FFMV23])
 - conjunctions of bounded-depth circuits
 - (poly arity and no corruptions) or (constant arity and corruptions)
 - no collusions!
- 2) Generic Compiler MI-ABE + Lockable Obfuscation \Rightarrow MI-PE ([C:AYY22])
 - only arity 2 (or constant arity and weak security)
 - no corruptions

What does already exist?

- 1) Direct Construction of MI-PE ([EC:FFMV23])
 - conjunctions of bounded-depth circuits
 - (poly arity and no corruptions) or (constant arity and corruptions)
 - no collusions!
- 2) Generic Compiler MI-ABE + Lockable Obfuscation \Rightarrow MI-PE ([C:AYY22])
 - only arity 2 (or constant arity and weak security)
 - no corruptions

This Work — A New Generic Compiler

Constant-Arity MC-ABE + Lockable Obfuscation \Rightarrow Constant-Arity MC-PE

TCC 2024

Framework for Pairing-based KP-ABE

Linear Secret Sharing SchemeShare $(s, f) \rightarrow (s_1^0, \dots, s_n^0, s_1^1, \dots, s_n^1)$ if $f(x_1, \dots, x_n) = 1$, then
FindCoeff $(x_1, \dots, x_n, f) \rightarrow (\omega_1, \dots, \omega_n)$, s.t. $\sum_{i \in [n]} \omega_i \cdot s_i^{x_i} = s$ if $f(x_1, \dots, x_n) = 0$, then $(s_1^{x_1}, \dots, s_n^{x_n}) \approx \$$

8/10

Framework for Pairing-based KP-ABE

EncryptionLinear Secret Sharing SchemeShare(s, f) \rightarrow ($s_1^0, \ldots, s_n^0, s_1^1, \ldots, s_n^1$)Image: $[\mathbf{u}^\top \mathbf{v}]_t$ if $f(x_1, \ldots, x_n) = 1$, then
FindCoeff(x_1, \ldots, x_n, f) \rightarrow ($\omega_1, \ldots, \omega_n$), s.t. $\sum_{i \in [n]} \omega_i \cdot s_i^{x_i} = s$
if $f(x_1, \ldots, x_n) = 0$, then $(s_1^{x_1}, \ldots, s_n^{x_n}) \approx \$$

8/10

 $\begin{array}{l} \mbox{Linear Secret Sharing Scheme}\\ \mbox{Share}(s,f) \rightarrow (s_1^0,\ldots,s_n^0,s_1^1,\ldots,s_n^1)\\ \mbox{if } f(x_1,\ldots,x_n) = 1, \mbox{then}\\ \mbox{FindCoeff}(x_1,\ldots,x_n,f) \rightarrow (\omega_1,\ldots,\omega_n), \mbox{ s.t. } \sum_{i\in[n]} \omega_i \cdot s_i^{x_i} = s\\ \mbox{if } f(x_1,\ldots,x_n) = 0, \mbox{then } (s_1^{x_1},\ldots,s_n^{x_n}) \approx \$ \end{array}$

8/10

Pointcheval, Schädlich

Multi-Client Attribute-Based and Predicate Encryption

TCC 2024 9/10

Pointcheval, Schädlich

Multi-Client Attribute-Based and Predicate Encryption

9/10

TCC 2024

Pointcheval, Schädlich

Multi-Client Attribute-Based and Predicate Encryption

9/10

TCC 2024

TCC 2024

Pointcheval, Schädlich

Multi-Client Attribute-Based and Predicate Encryption

Conclusion

- definition of MC-ABE and MC-PE
- construction of MC-ABE for global policies from SXDH
- generic compiler for constant-arity MC-ABE \Rightarrow constant-arity MC-PE from LWE
- previous to this work, these results were unknown even for MI-ABE

Conclusion

- definition of MC-ABE and MC-PE
- construction of MC-ABE for global policies from SXDH
- generic compiler for constant-arity MC-ABE \Rightarrow constant-arity MC-PE from LWE
- previous to this work, these results were unknown even for MI-ABE

Thank you for your attention!

Multi-Client Attribute-Based and Predicate Encryption

TCC 2024 10/10

ADDITIONAL MATERIAL

Pointcheval, Schädlich

Multi-Client Attribute-Based and Predicate Encryption

TCC 2024 11/10

From MC-ABE to MC-PE using Lockable Obfuscation)

Pointcheval, Schädlich

Multi-Client Attribute-Based and Predicate Encryption

12/10

TCC 2024

From MC-ABE to MC-PE using Lockable Obfuscation)

"Communication" between the obfuscated circuits?

Pointcheval, Schädlich

Multi-Client Attribute-Based and Predicate Encryption

12/10

TCC 2024

From MC-ABE to MC-PE using Lockable Obfuscation

