
Batch Arguments to NIZKs
from One-Way Functions

Brent WatersEli Bradley David J. Wu
UT Austin UT Austin

NTT Research
UT Austin

Non-Interactive Zero Knowledge Argument
(NIZK) [GMR85, BFM88]

Prover
x, w

Verifier
x

π

For an NP
Language L. ✅ ❎

2

CRS (common reference string)

Non-Interactive Zero Knowledge Argument
(NIZK) [GMR85, BFM88]

Prover
x, w

Verifier
x

π

● Completeness: Honest proofs verify.
● Soundness: False statements don’t verify.
● Zero-Knowledge: Proofs can be simulated

without witnesses. ✅ ❎
3

CRS (common reference string)

Batch Argument (BARG) [CJJ21a]

Prover
x1, ..., xm
w1, ..., wm

Verifier
x1, ..., xm

π

● Completeness
● Soundness
● Succinctness: |π| ~ o(m) ⋅ poly(λ, |x|).

✅ ❎
4

CRS (common reference string)

Batch Argument (BARG) [CJJ21a]

Prover
x1, ..., xm
w1, ..., wm

Verifier
x1, ..., xm

π

● Completeness
● Soundness
● Succinctness: |π| ~ o(m) ⋅ poly(λ, |x|).

✅ ❎

Compressing proof loses
information about witnesses.

5

CRS (common reference string)

Batch Argument (BARG) [CJJ21a]

Prover
x1, ..., xm
w1, ..., wm

Verifier
x1, ..., xm

π

Existing constructions use NIZK techniques.
[CJJ21b, WW22, DGKV22, CGJ+23]

✅ ❎
6

CRS (common reference string)

Can we get NIZKs from BARGs?

YES!
7

Previous and Concurrent Works
● [CW23]: NIZK from BARG, Local PRG, dual-mode

commitment.
● [BKP+23]: NIZK from BARG, dual-mode commitment.

○ Concurrent update to [BKP+23]: NIZK from BARG,
OWF.

Can we do it without additional assumptions?

8

Main Technical Result

(Adaptively-sound) BARG + OWF ⇒ NIZK

Construct hidden-bits generator and apply
[KMY20] to get NIZK.

9

Hidden-Bits Generator
[FLS90, QRW19, KMY20]

Prover Verifier

A = {1, 4, 5} A, (r1, r4, r5), π

r1 r2 r3 r4 r5 r6(r, st) ← GenBits

✅ ❎
● Binding: rA corresponds to r ∈ supp(GenBits).
● Hiding: Hidden bits remain pseudorandom.
● Sparsity: Density of supp(GenBits) in {0, 1}m is low.

10

π ← Prove(st, A)

Our Construction

11

Our Construction: Overview

PRG + BARG ⟹ HBG

Why should this work?

12

Our Construction: Overview

Idea: Use PRG and BARG to build HBG.

● Binding ⇒ BARG
● Hiding ⇒ PRG

13

Our Construction: Overview

Idea: Use PRG and BARG to build HBG.

● Seed: PRG seed
● Output: PRG output
● Proof: BARG proof + openings

Template of [KMY20] for SNARGs, [CW23] for BARGs.

14

Our Construction: GenBits

● s ← {0, 1}n

● r = PRG(s)
● st = s

w1
w2

w3

w4
w5

w6

⟹(LR) PRG

rs

Hidden-bits string

Prover’s internal state
15

Our Construction: Prove
w1

w2

⋮

wt

🔒1 🔑1

🔒2 🔑2

⋮ ⋮

🔒t 🔑t

Commit

16

Our Construction: Prove

BARG over all
internal gates.

Statement:
● crs1 crs2 crs3
● 🔒1 🔒2 🔒3
Witness:
● Wire values w1, w2, w3
● 🔑1 🔑2 🔑3

Check commitments and
w3 = NAND(w1, w2).

17

🔒1

🔒2

🔒3

Our Construction: Prove
Output:

● Commitments 🔒1 ⋯ 🔒t.
● Openings for revealed output wires.
● BARG proof πBARG.

18

Security: Binding

19

Binding: rA corresponds to r ∈ supp(GenBits).

Security: Binding

20

Binding: rA corresponds to r = PRG(s).

Check the PRG circuit is consistently evaluated.

Recall prover gives:

● Bit commitments to wire values.
● BARG proof each gate is correctly evaluated.
● Openings for output bits.

Security: Hiding
Proof π:

● Commitments🔒1 ... 🔒t. ✅
● Openings for revealed output wires. ✅
● BARG proof πBARG. ❓

21

Security: Hiding
Proof π:

● Commitments🔒1 ... 🔒t. ✅
● Openings for revealed output wires. ✅
● BARG proof πBARG. ✅

22

PRG leakage-resilience

Summary
● We constructed a hidden-bits generator from:

○ Adaptively sound BARG
○ Leakage-resilient wPRF (⇐ OWF)
○ One-time dual-mode bit commitment (⇐ OWF)

● We get NIZK from the same assumptions [KMY20].

23

Additional Results

24

Somewhere-sound BARG + PKE ⇒ NIZK

Weaker than
adaptive

soundness.

Stronger than
OWF.

Open Problems
Can we get NIZK with weaker assumptions?

● NIZK from index BARG [CJJ21b]?
● NIZK from non-adaptively sound BARG?

25

Thank you!

https://eprint.iacr.org/2023/1938.pdf

26

Getting Adaptively-Sound BARG
Somewhere-soundness

+ sub-exponential index hiding

⟹ Adaptive soundness.

27

i*

Forgery

Security: Binding

BARG soundness ⟹ gate consistency

🔒1

🔒2

🔒3

w1 w3

w2

w3 = NAND(w1, w2)

28

Binding: rA corresponds to r = PRG(s).

w3 = w’3

Security: Binding

BC statistical binding ⟹ wire consistency
29

🔒3🔒3

Binding: rA corresponds to r = PRG(s).

Security: Binding

Openings ⟹ output consistency

ri

30

��

Binding: rA corresponds to r = PRG(s).

(PRG(s), leak(s))

≈c

(Uniform, leak(s))

Leakage-Resilient PRG

x1

x2

⋮

xℓ

s1

s2

s3

s4

s5

s6

⋮

sn

∀ leak: {0, 1}n→{0, 1}ℓ

31

(PRG(s), leak(s))

≈c

(Uniform, leak(s))

Leakage-Resilient PRG

x1

x2

⋮

xℓ

s1

s2

s3

s4

s5

s6

⋮

sn

∀ leak: {0, 1}n→{0, 1}ℓ

32

Leakage Resilient wPRF

