Batch Arguments to NIZKs from One-Way Functions

Eli Bradley

Brent Waters

David J. Wu

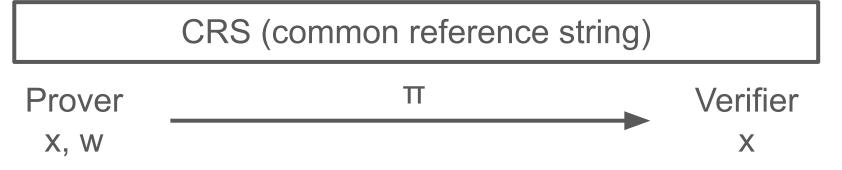
UT Austin

UT Austin NTT Research **UT** Austin

Non-Interactive Zero Knowledge Argument (NIZK) [GMR85, BFM88]

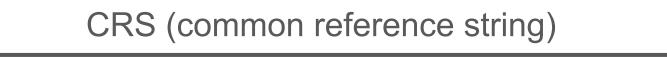
CRS (common reference string) Π Verifier Prover **X**, W Х For an NP Language L.

Non-Interactive Zero Knowledge Argument (NIZK) [GMR85, BFM88]



- Completeness: Honest proofs verify.
- Soundness: False statements don't verify.
- Zero-Knowledge: Proofs can be simulated without witnesses.

Batch Argument (BARG) [CJJ21a]



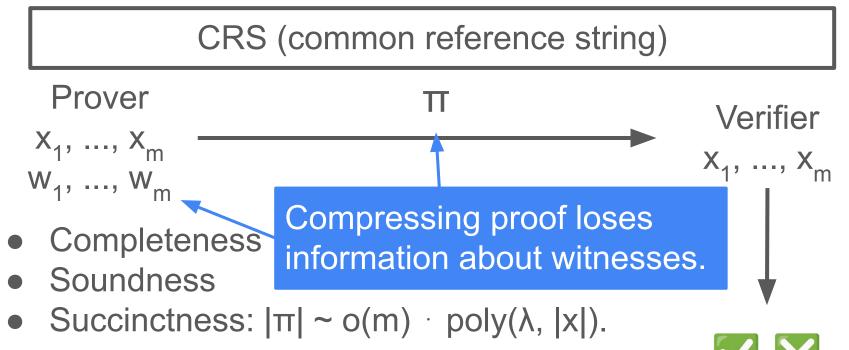
x₁, ..., x_m W₁, ..., W_m

Prover

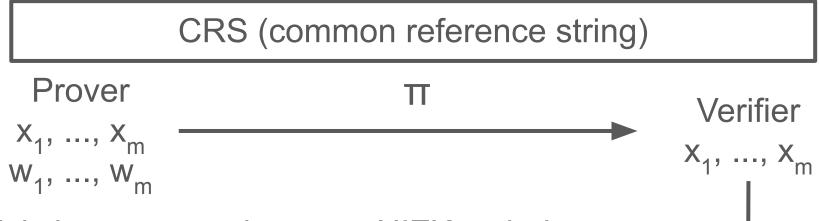
- Completeness
- Soundness
- Succinctness: $|\pi| \sim o(m) \cdot poly(\lambda, |x|)$.

VX

Batch Argument (BARG) [CJJ21a]



Batch Argument (BARG) [CJJ21a]



Existing constructions use NIZK techniques. [CJJ21b, WW22, DGKV22, CGJ⁺23]

Can we get NIZKs from BARGs?

YES!

Previous and Concurrent Works

- [CW23]: NIZK from BARG, Local PRG, dual-mode commitment.
- [BKP⁺23]: NIZK from BARG, dual-mode commitment.
 Concurrent update to [BKP⁺23]: NIZK from BARG, OWF.

Can we do it without additional assumptions?

Main Technical Result

(Adaptively-sound) BARG + OWF \Rightarrow NIZK

Construct hidden-bits generator and apply [KMY20] to get NIZK.

Hidden-Bits Generator [FLS90, QRW19, KMY20]

Prover
(r, st)
$$\leftarrow$$
 GenBits
 $A = \{1, 4, 5\}$
 $\pi \leftarrow$ Prove(st, A)
 r_1 r_2 r_3 r_4 r_5 r_6
 $A, (r_1, r_4, r_5), \pi$

- Binding: r_A corresponds to $r \in supp(GenBits)$.
- Hiding: Hidden bits remain pseudorandom.
- Sparsity: Density of supp(GenBits) in {0, 1}^m is low.

Verifier

Our Construction

Our Construction: Overview

$\mathsf{PRG} + \mathsf{BARG} \Rightarrow \mathsf{HBG}$

Why should this work?

Our Construction: Overview

Idea: Use **PRG** and **BARG** to build HBG.

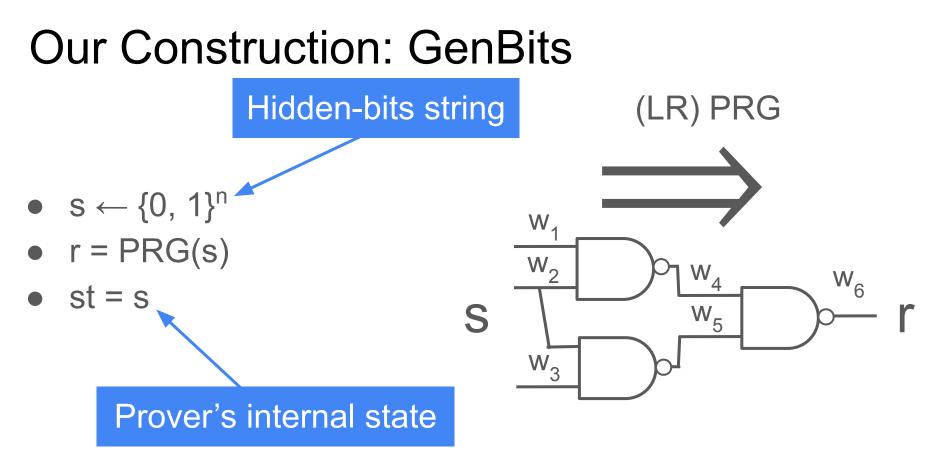
- Binding \Rightarrow BARG
- Hiding \Rightarrow PRG

Our Construction: Overview

Idea: Use **PRG** and **BARG** to build HBG.

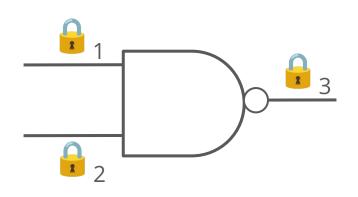
- Seed: PRG seed
- Output: PRG output
- Proof: BARG proof + openings

Template of [KMY20] for SNARGs, [CW23] for BARGs.



Our Construction: Prove 1 W 1 <mark>}</mark> 2 0 Commit W_{2} 2 • • • 🔒 t 🔑 t W

Our Construction: Prove



BARG over all internal gates.

Statement: $crs_1 crs_2 crs_3$ Witness: • Wire values W_1, W_2, W_3 • $\mathcal{P}_1 \mathcal{P}_2 \mathcal{P}_3$ Check commitments and $W_{3} = NAND(W_{1}, W_{2}).$

Our Construction: Prove

Output:

- Commitments $\frac{1}{2}$... $\frac{1}{2}$ t.
- Openings for revealed output wires.
- BARG proof π_{BARG} .

Binding: r_A corresponds to $r \in supp(GenBits)$.

Binding: r_A corresponds to r = PRG(s).

Check the PRG circuit is consistently evaluated.

Recall prover gives:

- Bit commitments to wire values.
- BARG proof each gate is correctly evaluated.
- Openings for output bits.

Proof π :

- Commitments $\frac{1}{2}$... $\frac{1}{2}$ t. $\boxed{2}$
- Openings for revealed output wires.
- BARG proof π_{BARG} . ?

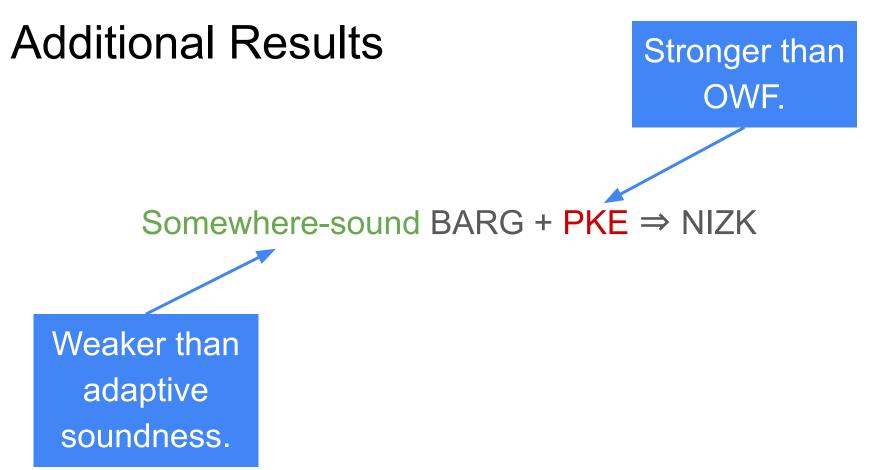
Proof π :

- Commitments $\frac{1}{2}$... $\frac{1}{2}$ t. $\boxed{2}$
- Openings for revealed output wires.
- BARG proof π_{BARG} .

PRG leakage-resilience

Summary

- We constructed a hidden-bits generator from:
 - Adaptively sound BARG
 - Leakage-resilient wPRF (⇐ OWF)
 - One-time dual-mode bit commitment (⇐ OWF)
- We get NIZK from the same assumptions [KMY20].



Open Problems

Can we get NIZK with weaker assumptions?

- NIZK from index BARG [CJJ21b]?
- NIZK from non-adaptively sound BARG?

Thank you!

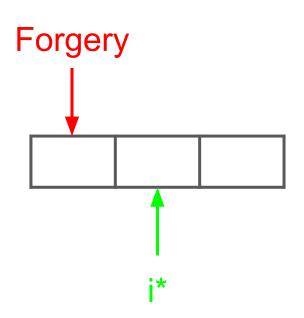
https://eprint.iacr.org/2023/1938.pdf

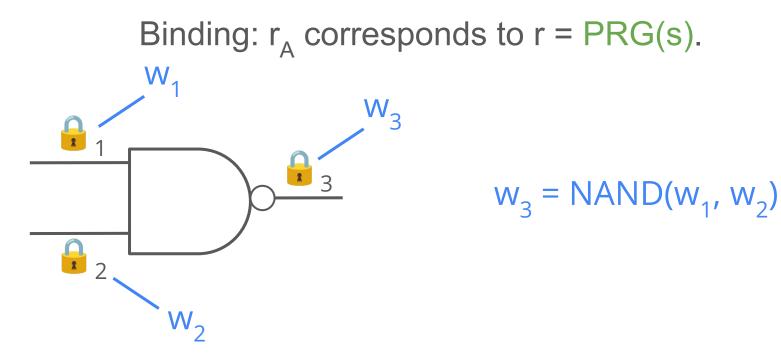
Getting Adaptively-Sound BARG

Somewhere-soundness

+ sub-exponential index hiding

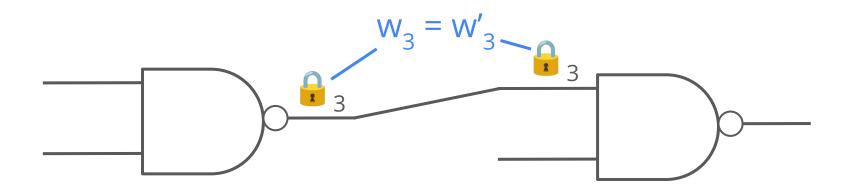
 \Rightarrow Adaptive soundness.





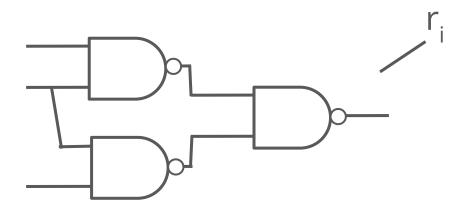
BARG soundness \Rightarrow gate consistency

Binding: r_A corresponds to r = PRG(s).



BC statistical binding \Rightarrow wire consistency

Binding: r_A corresponds to r = PRG(s).



 $Openings \Rightarrow output \ consistency$

Leakage-Resilient PRG

 \forall leak: $\{0, 1\}^n \rightarrow \{0, 1\}^{\ell}$

(PRG(s), leak(s))

≈_c (Uniform, leak(s))

