
Perfectly-Secure MPC with
Constant Online Communication

Complexity
Yifan Song

Tsinghua University & Shanghai Qi Zhi Institute

Xiaxi Ye

Tsinghua University

Multiparty Computation

Setting

• 𝑛 parties

• 𝑡 corrupted parties

• Optimal resilience: 𝑛 = 3𝑡 + 1

• Synchronous network

Goal
• Perfect security

2

Communication Complexity

|𝐶|: circuit size, 𝐷: circuit depth, 𝑛: number of parties, counted by field elements

Reference Overall Communication Online Communication Security Adversary

[BH08] 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) Optimal
Resilience

𝑛 = 3𝑡 + 1

Malicious with GOD

[GLS19] 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝑛3)

3

Communication Complexity

Reference Overall Communication Online Communication Security Adversary

[BH08] 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) Optimal
Resilience

𝑛 = 3𝑡 + 1

Malicious with GOD

[GLS19] 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝑛3)

[DN07] 𝑂(𝐶 ⋅ 𝑛) 𝑂(𝐶 ⋅ 𝑛) Optimal
Resilience

𝑛 = 2𝑡 + 1

Semi-honest

[EGPS22] 𝑂(𝐶 ⋅ 𝑛) 𝑂(|𝐶|)

|𝐶|: circuit size, 𝐷: circuit depth, 𝑛: number of parties, counted by field elements

4

Communication Complexity

Is it possible to construct a perfectly secure MPC protocol with GOD

such that the online communication complexity per gate is 𝑂(1)

while the overall communication remains 𝑂(𝑛)?

Reference Overall Communication Online Communication Security Adversary

[BH08] 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) Optimal
Resilience

𝑛 = 3𝑡 + 1

Malicious with GOD

[GLS19] 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝑛3)

[DN07] 𝑂(𝐶 ⋅ 𝑛) 𝑂(𝐶 ⋅ 𝑛) Optimal
Resilience

𝑛 = 2𝑡 + 1

Semi-honest

[EGPS22] 𝑂(𝐶 ⋅ 𝑛) 𝑂(|𝐶|)

|𝐶|: circuit size, 𝐷: circuit depth, 𝑛: number of parties, counted by field elements

4

Why Constant Online Communication?

• Online efficiency is important as the preprocessing phase which only

depends on the circuit size can be done in the idle time.

• Amortized online communication complexity per party decreases as

the increase of the number of parties!

5

Our Result

Theorem.

Let 𝑛 = 3𝑡 + 1. For any arithmetic circuit 𝐶 over 𝔽 of size 𝔽 ≥ 2𝑛 of size |𝐶| and depth 𝐷, there is an

information-theoretic MPC protocol against a fully malicious adversary controlling at most 𝑡 corrupted parties

with perfect security. The communication is 𝑂(𝐶 + 𝐷 ⋅ 𝑛 + 𝑛5) elements for the online phase and 𝑂(𝐶 ⋅

𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛4) elements for the offline phase.

Reference Overall Communication Online Communication Security Adversary

[BH08] 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) Optimal
Resilience

𝑛 = 3𝑡 + 1

Malicious with
GOD[GLS19] 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝑛3)

Our result 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛5) 𝑂(𝐶 + 𝐷 ⋅ 𝑛 + 𝑛5)

[DN07] 𝑂(𝐶 ⋅ 𝑛) 𝑂(𝐶 ⋅ 𝑛) Optimal
Resilience

𝑛 = 2𝑡 + 1

Semi-honest

[EGPS22] 𝑂(𝐶 ⋅ 𝑛) 𝑂(|𝐶|)

6

Limitations of Our Result

Limitation 1: Only work for finite fields of size larger than 2𝑛

Limitation 2: Round complexity grows with number of parties

Packed Shamir secret

sharing, hyper-

invertible matrix

Dispute control

framework

7

A Relative Mention – Round complexity

• A line of works [ALR11, AAY22, AAPP23] focuses on optimizing

communication without 𝑂(𝑛) overhead in the round complexity.

Reference Overall Communication Online Communication Round
complexity

Security

[AAPP23] 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛4) 𝑂(𝐷) 𝑛 = 3𝑡 + 1
Malicious with

GOD
[GLS19] 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐷 + 𝑛)

Our result 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐶 + 𝐷 ⋅ 𝑛 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐷 + 𝑛2)

If expected constant-round BA

and BC in [AC24] are used.
8

A Relative Mention – Round complexity

• A line of works [ALR11, AAY22, AAPP23] focuses on optimizing

communication without 𝑂(𝑛) overhead in the round complexity.

Reference Overall Communication Online Communication Round
complexity

Security

[AAPP23] 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛4) 𝑂(𝐷) 𝑛 = 3𝑡 + 1
Malicious with

GOD
[GLS19] 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐷 + 𝑛)

Our result 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐶 + 𝐷 ⋅ 𝑛 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐷 + 𝑛2)

If expected constant-round BA

and BC in [AC24] are used.
8

A Relative Mention – Circuit depth overhead

• [GLS19] removes the quadratic communication overhead in the

circuit depth.

Reference Overall Communication Online Communication Round
complexity

Security

[AAPP23] 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛4) 𝑂(𝐷) 𝑛 = 3𝑡 + 1
Malicious with

GOD
[GLS19] 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐷 + 𝑛)

Our result 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐶 + 𝐷 ⋅ 𝑛 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐷 + 𝑛2)

9

A Relative Mention – Circuit depth overhead

• [GLS19] removes the quadratic communication overhead in the

circuit depth.

Reference Overall Communication Online Communication Round
complexity

Security

[AAPP23] 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛4) 𝑂(𝐷) 𝑛 = 3𝑡 + 1
Malicious with

GOD
[GLS19] 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐷 + 𝑛)

Our result 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐶 + 𝐷 ⋅ 𝑛 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐷 + 𝑛2)

9

A Relative Mention – Circuit depth overhead

• [GLS19] removes the quadratic communication overhead in the

circuit depth.

Reference Overall Communication Online Communication Round
complexity

Security

[AAPP23] 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛4) 𝑂(𝐷) 𝑛 = 3𝑡 + 1
Malicious with

GOD
[GLS19] 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐷 + 𝑛)

Our result 𝑂(𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐶 + 𝐷 ⋅ 𝑛 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐷 + 𝑛2)

Can we achieve the best

among three works?

9

Outline

10

• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

 verification + identifying dispute pairs

• Towards general circuits via sharing transformation

Packed Shamir Secret Sharing

Secrets: 𝒔 =
(𝑠1, 𝑠2, … , 𝑠𝑘)

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7

Secrets Shares

Use a degree-(𝑡 + 𝑘 − 1) polynomial:

• Each share is an evaluation point of this

polynomial.

• Any 𝑡 shares are independent of the secrets.

• Any 𝑡 + 𝑘 shares can reconstruct the secrets.

11

Parameters:

• pack size 𝑘

• degree-(𝑡 + 𝑘 − 1)

Packed Shamir Secret Sharing

Secrets: 𝒔 =
(𝑠1, 𝑠2, … , 𝑠𝑘)

Use a degree-(𝑡 + 𝑘 − 1) polynomial:

• Linearly homomorphic.

𝒙 + 𝒚 = [𝒙 + 𝒚]

• Multiplicative friendly.

𝒄 𝑘−1 ⋅ 𝒙 𝑡+𝑘−1 = 𝒄 ∗ 𝒙 𝑡+2𝑘−2

Parameters:

• pack size 𝑘

• degree-(𝑡 + 𝑘 − 1)

12

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7

Secrets Shares

Packed Shamir Secret Sharing

Secrets: 𝒔 =
(𝑠1, 𝑠2, … , 𝑠𝑘)

Use a degree-(𝑡 + 𝑘 − 1) polynomial:

• Linearly homomorphic.

𝒙 + 𝒚 = [𝒙 + 𝒚]

• Multiplicative friendly.

𝒄 𝑘−1 ⋅ 𝒙 𝑡+𝑘−1 = 𝒄 ∗ 𝒙 𝑡+2𝑘−2

Parameters:

• pack size 𝑘

• degree-(𝑡 + 𝑘 − 1)

12

𝑘 = (𝑡 + 2)/2

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7

Secrets Shares

Generic Approach

Add

Mult

Mult

[𝑥1]

[𝑥2]

[𝑥3]

[𝑥4]

[𝑥1 + 𝑥2]

[𝑥3 ⋅ 𝑥4]

[𝑥1 + 𝑥2 ⋅ 𝑥3 ⋅ 𝑥4]

13

Generic Approach (SIMD Circuit)

Add

Mult

Mult

Add

Mult

Mult

Add

Mult

Mult

[𝒙𝟏]

[𝒙𝟐]

[𝒙𝟑]

[𝒙𝟒]

[𝒙𝟏 + 𝒙𝟐]

[𝒙𝟑 ∗ 𝒙𝟒]

[𝒙𝟏 + 𝒙𝟐 ∗ 𝒙𝟑 ∗ 𝒙𝟒]

14

Generic Approach (SIMD Circuit)

Add

Mult

Mult

Add

Mult

Mult

Add

Mult

Mult

[𝒙𝟏]

[𝒙𝟐]

[𝒙𝟑]

[𝒙𝟒]

[𝒙𝟏 + 𝒙𝟐]

[𝒙𝟑 ∗ 𝒙𝟒]

[𝒙𝟏 + 𝒙𝟐 ∗ 𝒙𝟑 ∗ 𝒙𝟒]

𝑘 = Ω(𝑛) for

communication

benefits.

14

Multiplication Protocol adapted from [EGPS22]
Multiplication

• Preprocessing: 𝒂 𝑡+𝑘−1, 𝒃 𝑡+𝑘−1, 𝒄 𝑡+𝑘−1

• Input: 𝒙 𝑡+𝑘−1, 𝒚 𝑡+𝑘−1.

15

Multiplication Protocol adapted from [EGPS22]

𝒙 + 𝒂 𝑡+𝑘−1 = 𝒙 𝑡+𝑘−1 + 𝒂 𝑡+𝑘−1

𝒚 + 𝒃 𝑡+𝑘−1 = 𝒚 𝑡+𝑘−1 + 𝒃 𝑡+𝑘−1

Multiplication

• Preprocessing: 𝒂 𝑡+𝑘−1, 𝒃 𝑡+𝑘−1, 𝒄 𝑡+𝑘−1

• Input: 𝒙 𝑡+𝑘−1, 𝒚 𝑡+𝑘−1.

15

Multiplication Protocol adapted from [EGPS22]

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1
𝒙 + 𝒂 𝑡+𝑘−1 = 𝒙 𝑡+𝑘−1 + 𝒂 𝑡+𝑘−1

𝒚 + 𝒃 𝑡+𝑘−1 = 𝒚 𝑡+𝑘−1 + 𝒃 𝑡+𝑘−1

Multiplication

• Preprocessing: 𝒂 𝑡+𝑘−1, 𝒃 𝑡+𝑘−1, 𝒄 𝑡+𝑘−1

• Input: 𝒙 𝑡+𝑘−1, 𝒚 𝑡+𝑘−1.

15

Multiplication Protocol adapted from [EGPS22]

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1
𝒙 + 𝒂 𝑡+𝑘−1 = 𝒙 𝑡+𝑘−1 + 𝒂 𝑡+𝑘−1

𝒚 + 𝒃 𝑡+𝑘−1 = 𝒚 𝑡+𝑘−1 + 𝒃 𝑡+𝑘−1

Reconstruct 𝒙 + 𝒂, 𝒚 + 𝒃

Multiplication

• Preprocessing: 𝒂 𝑡+𝑘−1, 𝒃 𝑡+𝑘−1, 𝒄 𝑡+𝑘−1

• Input: 𝒙 𝑡+𝑘−1, 𝒚 𝑡+𝑘−1.

15

Multiplication Protocol adapted from [EGPS22]

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1
𝒙 + 𝒂 𝑡+𝑘−1 = 𝒙 𝑡+𝑘−1 + 𝒂 𝑡+𝑘−1

𝒚 + 𝒃 𝑡+𝑘−1 = 𝒚 𝑡+𝑘−1 + 𝒃 𝑡+𝑘−1

Reconstruct 𝒙 + 𝒂, 𝒚 + 𝒃

Compute 𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

Multiplication

• Preprocessing: 𝒂 𝑡+𝑘−1, 𝒃 𝑡+𝑘−1, 𝒄 𝑡+𝑘−1

• Input: 𝒙 𝑡+𝑘−1, 𝒚 𝑡+𝑘−1.

15

Multiplication Protocol adapted from [EGPS22]

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

𝒙 + 𝒂 𝑡+𝑘−1 = 𝒙 𝑡+𝑘−1 + 𝒂 𝑡+𝑘−1

𝒚 + 𝒃 𝑡+𝑘−1 = 𝒚 𝑡+𝑘−1 + 𝒃 𝑡+𝑘−1

Reconstruct 𝒙 + 𝒂, 𝒚 + 𝒃

Compute 𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

Multiplication

• Preprocessing: 𝒂 𝑡+𝑘−1, 𝒃 𝑡+𝑘−1, 𝒄 𝑡+𝑘−1

• Input: 𝒙 𝑡+𝑘−1, 𝒚 𝑡+𝑘−1.

15

Multiplication Protocol adapted from [EGPS22]

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

𝒙 + 𝒂 𝑡+𝑘−1 = 𝒙 𝑡+𝑘−1 + 𝒂 𝑡+𝑘−1

𝒚 + 𝒃 𝑡+𝑘−1 = 𝒚 𝑡+𝑘−1 + 𝒃 𝑡+𝑘−1

Reconstruct 𝒙 + 𝒂, 𝒚 + 𝒃

𝒛 𝑡+2𝑘−2 = 𝒙 + 𝒂 𝑘−1 ⋅ 𝒚 + 𝒃 𝑘−1 − 𝒙 + 𝒂 𝑘−1 ⋅ 𝒃 𝑡+𝑘−1

− 𝒚 + 𝒃 𝑘−1 ⋅ 𝒂 𝑡+𝑘−1 + 𝒄 𝑡+𝑘−1

Compute 𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

Multiplication

• Preprocessing: 𝒂 𝑡+𝑘−1, 𝒃 𝑡+𝑘−1, 𝒄 𝑡+𝑘−1

• Input: 𝒙 𝑡+𝑘−1, 𝒚 𝑡+𝑘−1.

15

Multiplication Protocol adapted from [EGPS22]
Degree Reduction

• Preprocessing: (𝒓 𝑡+2𝑘−2, 𝒓 𝑡+𝑘−1).

• Output: 𝒙 ∗ 𝒚 𝑡+𝑘−1

16

Multiplication Protocol adapted from [EGPS22]

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2

Degree Reduction

• Preprocessing: (𝒓 𝑡+2𝑘−2, 𝒓 𝑡+𝑘−1).

• Output: 𝒙 ∗ 𝒚 𝑡+𝑘−1

16

Multiplication Protocol adapted from [EGPS22]

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2

Degree Reduction

• Preprocessing: (𝒓 𝑡+2𝑘−2, 𝒓 𝑡+𝑘−1).

• Output: 𝒙 ∗ 𝒚 𝑡+𝑘−1

16

Multiplication Protocol adapted from [EGPS22]

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2Reconstruct 𝒛 + 𝒓

Degree Reduction

• Preprocessing: (𝒓 𝑡+2𝑘−2, 𝒓 𝑡+𝑘−1).

• Output: 𝒙 ∗ 𝒚 𝑡+𝑘−1

16

Multiplication Protocol adapted from [EGPS22]

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2Reconstruct 𝒛 + 𝒓

Compute 𝒛 + 𝒓 𝑘−1

Degree Reduction

• Preprocessing: (𝒓 𝑡+2𝑘−2, 𝒓 𝑡+𝑘−1).

• Output: 𝒙 ∗ 𝒚 𝑡+𝑘−1

16

Multiplication Protocol adapted from [EGPS22]

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2Reconstruct 𝒛 + 𝒓

Compute 𝒛 + 𝒓 𝑘−1

Degree Reduction

• Preprocessing: (𝒓 𝑡+2𝑘−2, 𝒓 𝑡+𝑘−1).

• Output: 𝒙 ∗ 𝒚 𝑡+𝑘−1

16

Multiplication Protocol adapted from [EGPS22]

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2Reconstruct 𝒛 + 𝒓

Compute 𝒛 + 𝒓 𝑘−1 𝒛 𝑡+𝑘−1 = 𝒛 + 𝒓 𝑘−1 − 𝒓 𝑡+𝑘−1

Degree Reduction

• Preprocessing: (𝒓 𝑡+2𝑘−2, 𝒓 𝑡+𝑘−1).

• Output: 𝒙 ∗ 𝒚 𝑡+𝑘−1

16

Multiplication Protocol adapted from [EGPS22]

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑘−1

If k = Ω(𝑛), 𝑂(1) elements

per gate.

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2Reconstruct 𝒛 + 𝒓

Compute 𝒛 + 𝒓 𝑘−1 𝒛 𝑡+𝑘−1 = 𝒛 + 𝒓 𝑘−1 − 𝒓 𝑡+𝑘−1

Degree Reduction

• Preprocessing: (𝒓 𝑡+2𝑘−2, 𝒓 𝑡+𝑘−1).

• Output: 𝒙 ∗ 𝒚 𝑡+𝑘−1

16

Multiplication Protocol adapted from [EGPS22]

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑘−1

Switch to malicious

setting?

If k = Ω(𝑛), 𝑂(1) elements

per gate.

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2Reconstruct 𝒛 + 𝒓

Compute 𝒛 + 𝒓 𝑘−1 𝒛 𝑡+𝑘−1 = 𝒛 + 𝒓 𝑘−1 − 𝒓 𝑡+𝑘−1

Degree Reduction

• Preprocessing: (𝒓 𝑡+2𝑘−2, 𝒓 𝑡+𝑘−1).

• Output: 𝒙 ∗ 𝒚 𝑡+𝑘−1

16

Multiplication Protocol adapted from [EGPS22]

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

17

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑘−1

Multiplication Protocol adapted from [EGPS22]

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

Adversary may send incorrect shares to 𝑃𝑘𝑖𝑛𝑔.

17

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑘−1

Multiplication Protocol adapted from [EGPS22]

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

18

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑘−1

Multiplication Protocol adapted from [EGPS22]

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

18

𝒛 + 𝒓 𝑡+2𝑘−2

𝒛 + 𝒓 𝑘−1

Adversary may distribute sharings NOT of degree 𝑘 − 1

or with incorrect secrets.

Outline

19

• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

 verification + identifying dispute pairs

• Towards general circuits via sharing transformation

Towards GOD: Dispute Control Framework [BH06]

Add

Mult

Mult

Add

Mult

Mult

Add

Mult

Mult Add

Mult

Mult

Add

Mult

Mult

Add

Mult

Mult

Add

Mult

Mult

Add

Mult

Mult

Add

Mult

Mult

• Initialize an empty set to record dispute pairs.

20

• Uniformly divide the circuit into 𝑛2 segments.

• Evaluate the segments sequentially.

For each segment,

• Evaluate the segment.

• Verify the computation.

Towards GOD: Dispute Control Framework [BH06]

21

For each segment,

• Evaluate the segment.

• Verify the computation.

Towards GOD: Dispute Control Framework [BH06]

21

For each segment,

• Evaluate the segment.

• Verify the computation.

Evaluate the next segment.

Towards GOD: Dispute Control Framework [BH06]

21

For each segment,

• Evaluate the segment.

• Verify the computation.

Evaluate the next segment.

Towards GOD: Dispute Control Framework [BH06]

21

For each segment,

• Evaluate the segment.

• Verify the computation.

Evaluate the next segment.

Identify a dispute pair.

Towards GOD: Dispute Control Framework [BH06]

21

For each segment,

• Evaluate the segment.

• Verify the computation.

Evaluate the next segment.

Identify a dispute pair.

Towards GOD: Dispute Control Framework [BH06]

21

For each segment,

• Evaluate the segment.

• Verify the computation.

Evaluate the next segment.

Identify a dispute pair.

Corrupted parties will be

eliminated. Find a relay

for each dispute pair

[BFO12].

Towards GOD: Dispute Control Framework [BH06]

21

For each segment,

• Evaluate the segment.

• Verify the computation.

Evaluate the next segment.

Identify a dispute pair.

Corrupted parties will be

eliminated. Find a relay

for each dispute pair

[BFO12].

Two disputed

parties will

never talk to

each other.

Towards GOD: Dispute Control Framework [BH06]

21

For each segment,

• Evaluate the segment.

• Verify the computation.

Evaluate the next segment.

Identify a dispute pair.

Corrupted parties will be

eliminated. Find a relay

for each dispute pair

[BFO12].

Always find

a new

dispute pair.

Two disputed

parties will

never talk to

each other.

Towards GOD: Dispute Control Framework [BH06]

21

For each segment,

• Evaluate the segment.

• Verify the computation.

Evaluate the next segment.

Identify a dispute pair.

Corrupted parties will be

eliminated. Find a relay

for each dispute pair

[BFO12].

Always find

a new

dispute pair.

Re-evaluation

occurs at most

𝑂(𝑛2) times.

Two disputed

parties will

never talk to

each other.

Towards GOD: Dispute Control Framework [BH06]

21

For each segment,

• Evaluate the segment.

• Verify the computation.

Evaluate the next segment.

Identify a dispute pair.

Corrupted parties will be

eliminated. Find a relay

for each dispute pair

[BFO12].

Always find

a new

dispute pair.

Re-evaluation

occurs at most

𝑂(𝑛2) times.

Communication

at most

doubles.

Two disputed

parties will

never talk to

each other.

Towards GOD: Dispute Control Framework [BH06]

21

Outline

22

• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

 verification + identifying dispute pairs

• Towards general circuits via sharing transformation

Towards GOD: Verification - 1

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

Adversary may send incorrect shares to 𝑃𝑘𝑖𝑛𝑔.

𝒛 + 𝒓 𝑡+2𝑘−2

𝒙 + 𝒂 𝑡+𝑘−1 = 𝒙 𝑡+𝑘−1 + 𝒂 𝑡+𝑘−1

𝒚 + 𝒃 𝑡+𝑘−1 = 𝒚 𝑡+𝑘−1 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2

23

Towards GOD: Verification - 1

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

Adversary may send incorrect shares to 𝑃𝑘𝑖𝑛𝑔.

𝒛 + 𝒓 𝑡+2𝑘−2

The whole sharing is

determined by shares

of honest parties.

𝒙 + 𝒂 𝑡+𝑘−1 = 𝒙 𝑡+𝑘−1 + 𝒂 𝑡+𝑘−1

𝒚 + 𝒃 𝑡+𝑘−1 = 𝒚 𝑡+𝑘−1 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2

23

Towards GOD: Verification - 1

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

Adversary may send incorrect shares to 𝑃𝑘𝑖𝑛𝑔.

𝒛 + 𝒓 𝑡+2𝑘−2Set 𝑡 + 2𝑘 − 2 + 1 ≤ 𝑛 − 𝑡.

In particular, 𝑘 = (𝑡 + 2)/2.

The whole sharing is

determined by shares

of honest parties.

𝒙 + 𝒂 𝑡+𝑘−1 = 𝒙 𝑡+𝑘−1 + 𝒂 𝑡+𝑘−1

𝒚 + 𝒃 𝑡+𝑘−1 = 𝒚 𝑡+𝑘−1 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2

23

Towards GOD: Verification - 1

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

Adversary may send incorrect shares to 𝑃𝑘𝑖𝑛𝑔.

𝒛 + 𝒓 𝑡+2𝑘−2

𝑃𝑘𝑖𝑛𝑔 can detect the errors by checking whether the received

shares form a valid sharing of correct degree.

Set 𝑡 + 2𝑘 − 2 + 1 ≤ 𝑛 − 𝑡.

In particular, 𝑘 = (𝑡 + 2)/2.

The whole sharing is

determined by shares

of honest parties.

𝒙 + 𝒂 𝑡+𝑘−1 = 𝒙 𝑡+𝑘−1 + 𝒂 𝑡+𝑘−1

𝒚 + 𝒃 𝑡+𝑘−1 = 𝒚 𝑡+𝑘−1 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2 = 𝒛 𝑡+2𝑘−2 + 𝒓 𝑡+2𝑘−2

23

Towards GOD: Verification - 2

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

Adversary may distribute sharings of NOT

degree 𝑘 − 1 or with incorrect secrets. 𝒛 + 𝒓 𝑘−1

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

24

Towards GOD: Verification - 2

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

Adversary may distribute sharings of NOT

degree 𝑘 − 1 or with incorrect secrets. 𝒛 + 𝒓 𝑘−1

All parties check their shares of (𝒖 𝑡+2𝑘−2, 𝒖 𝑘−1).

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

24

Towards GOD: Verification - 2

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1

Adversary may distribute sharings of NOT

degree 𝑘 − 1 or with incorrect secrets. 𝒛 + 𝒓 𝑘−1

All parties check their shares of (𝒖 𝑡+2𝑘−2, 𝒖 𝑘−1).

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

24

Determined by shares
of honest parties

Towards GOD: Verification – 2 [BH08]

25

All parties check their shares of (𝒖 𝑡+2𝑘−2, 𝒖 𝑘−1).

Towards GOD: Verification – 2 [BH08]

𝒖1 𝑡+2𝑘−2, 𝒖1 𝑘−1

𝒖2 𝑡+2𝑘−2, 𝒖2 𝑘−1

𝒖3 𝑡+2𝑘−2, 𝒖3 𝑘−1

(𝑛 − 𝑡)

pairs to be

checked

25

All parties check their shares of (𝒖 𝑡+2𝑘−2, 𝒖 𝑘−1).

Towards GOD: Verification – 2 [BH08]

𝑴

𝒖1 𝑡+2𝑘−2, 𝒖1 𝑘−1

𝒖2 𝑡+2𝑘−2, 𝒖2 𝑘−1

𝒖3 𝑡+2𝑘−2, 𝒖3 𝑘−1

=

𝒗1 𝑡+2𝑘−2, 𝒗1 𝑘−1

𝒗2 𝑡+2𝑘−2, 𝒗2 𝑘−1

𝒗3 𝑡+2𝑘−2, 𝒗3 𝑘−1

𝒗4 𝑡+2𝑘−2, 𝒗4 𝑘−1

(𝑛 − 𝑡)

pairs to be

checked

25

All parties check their shares of (𝒖 𝑡+2𝑘−2, 𝒖 𝑘−1).

Towards GOD: Verification – 2 [BH08]

𝑴

𝒖1 𝑡+2𝑘−2, 𝒖1 𝑘−1

𝒖2 𝑡+2𝑘−2, 𝒖2 𝑘−1

𝒖3 𝑡+2𝑘−2, 𝒖3 𝑘−1

=

𝒗1 𝑡+2𝑘−2, 𝒗1 𝑘−1

𝒗2 𝑡+2𝑘−2, 𝒗2 𝑘−1

𝒗3 𝑡+2𝑘−2, 𝒗3 𝑘−1

𝒗4 𝑡+2𝑘−2, 𝒗4 𝑘−1

(𝑛 − 𝑡) pairs

are checked

by honest

parties

(𝑛 − 𝑡)

pairs to be

checked

25

All parties check their shares of (𝒖 𝑡+2𝑘−2, 𝒖 𝑘−1).

Towards GOD: Verification – 2 [BH08]

𝑴

𝒖1 𝑡+2𝑘−2, 𝒖1 𝑘−1

𝒖2 𝑡+2𝑘−2, 𝒖2 𝑘−1

𝒖3 𝑡+2𝑘−2, 𝒖3 𝑘−1

=

𝒗1 𝑡+2𝑘−2, 𝒗1 𝑘−1

𝒗2 𝑡+2𝑘−2, 𝒗2 𝑘−1

𝒗3 𝑡+2𝑘−2, 𝒗3 𝑘−1

𝒗4 𝑡+2𝑘−2, 𝒗4 𝑘−1

(𝑛 − 𝑡) pairs

are checked

by honest

parties

(𝑛 − 𝑡)

pairs to be

checked

All (𝑛 − 𝑡) honest

parties are happy. 25

All parties check their shares of (𝒖 𝑡+2𝑘−2, 𝒖 𝑘−1).

Towards GOD: Verification – 2 [BH08]

𝑴

𝒖1 𝑡+2𝑘−2, 𝒖1 𝑘−1

𝒖2 𝑡+2𝑘−2, 𝒖2 𝑘−1

𝒖3 𝑡+2𝑘−2, 𝒖3 𝑘−1

=

𝒗1 𝑡+2𝑘−2, 𝒗1 𝑘−1

𝒗2 𝑡+2𝑘−2, 𝒗2 𝑘−1

𝒗3 𝑡+2𝑘−2, 𝒗3 𝑘−1

𝒗4 𝑡+2𝑘−2, 𝒗4 𝑘−1

(𝑛 − 𝑡) pairs

are checked

by honest

parties

(𝑛 − 𝑡)

pairs to be

checked

All (𝑛 − 𝑡) honest

parties are happy.

Super-invertibility All (𝑛 − 𝑡) pairs are

correct.. 25

All parties check their shares of (𝒖 𝑡+2𝑘−2, 𝒖 𝑘−1).

Towards GOD: Verification – 2 [BH08]

𝑴

𝒖1 𝑡+2𝑘−2, 𝒖1 𝑘−1

𝒖2 𝑡+2𝑘−2, 𝒖2 𝑘−1

𝒖3 𝑡+2𝑘−2, 𝒖3 𝑘−1

=

𝒗1 𝑡+2𝑘−2, 𝒗1 𝑘−1

𝒗2 𝑡+2𝑘−2, 𝒗2 𝑘−1

𝒗3 𝑡+2𝑘−2, 𝒗3 𝑘−1

𝒗4 𝑡+2𝑘−2, 𝒗4 𝑘−1

Batch-wise verification: 𝑂(𝑛) elements per pair.

26

(𝑛 − 𝑡) pairs

are checked

by honest

parties

(𝑛 − 𝑡)

pairs to be

checked

All parties check their shares of (𝒖 𝑡+2𝑘−2, 𝒖 𝑘−1).

Outline

• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

 verification + identifying dispute pairs

• Towards general circuits via sharing transformation

27

Towards GOD: Identifying Dispute Pairs

Verification fails

28

Towards GOD: Identifying Dispute Pairs

Verification – 1 fails

Verification fails

𝑃𝑘𝑖𝑛𝑔 complains the received

sharings are incorrect.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

28

Towards GOD: Identifying Dispute Pairs

Verification – 1 fails

Verification fails

𝑃𝑘𝑖𝑛𝑔 complains the received

sharings are incorrect.

Verification – 2 fails
𝑃𝑖 complains the received

(𝒗𝑖 𝑡+2𝑘−2, 𝒗𝑖 𝑘−1) is

incorrect.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

𝒗1 𝑡+2𝑘−2, 𝒗1 𝑘−1

𝒗2 𝑡+2𝑘−2, 𝒗2 𝑘−1

𝒗3 𝑡+2𝑘−2, 𝒗3 𝑘−1

𝒗4 𝑡+2𝑘−2, 𝒗4 𝑘−1

28

Towards GOD: Identifying Dispute Pairs

Verification – 1 fails

Verification fails

𝑃𝑘𝑖𝑛𝑔 complains the received

sharings are incorrect.

Verification – 2 fails
𝑃𝑖 complains the received

(𝒗𝑖 𝑡+2𝑘−2, 𝒗𝑖 𝑘−1) is

incorrect.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

𝒗1 𝑡+2𝑘−2, 𝒗1 𝑘−1

𝒗2 𝑡+2𝑘−2, 𝒗2 𝑘−1

𝒗3 𝑡+2𝑘−2, 𝒗3 𝑘−1

𝒗4 𝑡+2𝑘−2, 𝒗4 𝑘−1

28

Ask 𝑃𝑘𝑖𝑛𝑔 to provide a correct

version.

Towards GOD: Identifying Dispute Pairs

Verification – 1 fails

Verification fails

𝑃𝑘𝑖𝑛𝑔 complains the received

sharings are incorrect.

Verification – 2 fails
𝑃𝑖 complains the received

(𝒗𝑖 𝑡+2𝑘−2, 𝒗𝑖 𝑘−1) is

incorrect.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

𝒗1 𝑡+2𝑘−2, 𝒗1 𝑘−1

𝒗2 𝑡+2𝑘−2, 𝒗2 𝑘−1

𝒗3 𝑡+2𝑘−2, 𝒗3 𝑘−1

𝒗4 𝑡+2𝑘−2, 𝒗4 𝑘−1

28

Ask 𝑃𝑘𝑖𝑛𝑔 to provide a correct

version.
A dispute pair

Towards GOD: Identifying Dispute Pairs - 1

Verification – 1 fails 𝑃𝑘𝑖𝑛𝑔 complains the received

sharings are inconsistent.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

29

Towards GOD: Identifying Dispute Pairs - 1

Verification – 1 fails 𝑃𝑘𝑖𝑛𝑔 complains the received

sharings are inconsistent.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

𝑃𝑘𝑖𝑛𝑔 cannot identify

incorrect shares

29

Towards GOD: Identifying Dispute Pairs - 1

Verification – 1 fails 𝑃𝑘𝑖𝑛𝑔 complains the received

sharings are inconsistent.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

𝑃𝑘𝑖𝑛𝑔 cannot identify

incorrect shares

Resort to deg-𝑡

sharings

29

Towards GOD: Identifying Dispute Pairs - 1

Verification – 1 fails 𝑃𝑘𝑖𝑛𝑔 complains the received

sharings are inconsistent.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

𝑃𝑘𝑖𝑛𝑔 cannot identify

incorrect shares

Resort to deg-𝑡

sharings
Need to compute deg-𝑡 sharings

with 𝑂(1) elements per gate.

29

30

Towards GOD: Identifying Dispute Pairs - 1

𝑧1 1 𝑡 𝑧2 2 𝑡 𝑧3 3 𝑡𝑧1 𝑧2 𝑧3 𝑡+𝑘−1

30

Towards GOD: Identifying Dispute Pairs - 1

𝑧1 1 𝑡 𝑧2 2 𝑡 𝑧3 3 𝑡𝑧1 𝑧2 𝑧3 𝑡+𝑘−1

Locally transform 𝑘 degree-𝑡

sharings to packed sharings.

30

Towards GOD: Identifying Dispute Pairs - 1

𝑧1 1 𝑡 𝑧2 2 𝑡 𝑧3 3 𝑡𝒆1 𝑘−1 ⋅ 𝒆2 𝑘−1 ⋅ 𝒆3 𝑘−1 ⋅+ +𝑧1 𝑧2 𝑧3 𝑡+𝑘−1 =

Locally transform 𝑘 degree-𝑡

sharings to packed sharings.

30

Towards GOD: Identifying Dispute Pairs - 1

𝑧1 1 𝑡 𝑧2 2 𝑡 𝑧3 3 𝑡𝒆1 𝑘−1 ⋅ 𝒆2 𝑘−1 ⋅ 𝒆3 𝑘−1 ⋅+ +𝑧1 𝑧2 𝑧3 𝑡+𝑘−1 =

Locally transform 𝑘 degree-𝑡

sharings to packed sharings.

30

Towards GOD: Identifying Dispute Pairs - 1

𝑧1 1 𝑡 𝑧2 2 𝑡 𝑧3 3 𝑡𝒆1 𝑘−1 ⋅ 𝒆2 𝑘−1 ⋅ 𝒆3 𝑘−1 ⋅+ +𝑧1 𝑧2 𝑧3 𝑡+𝑘−1 =

Locally transform 𝑘 degree-𝑡

sharings to packed sharings.

Error correction

A dispute pair

𝒛 + 𝒓 𝑡+2𝑘−2

𝑡 corrupted 2𝑘 − 1 honest 2𝑘 − 1 honest

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1𝒆′ 𝑘−1, 𝒚 + 𝒃 𝑘−1

𝒛′ + 𝒓 𝑡+2𝑘−2

𝒛′ + 𝒓 − 𝒛 + 𝒓 = 𝒆′ − 𝒙 + 𝒂 ∗ 𝒚

Towards GOD: Double-dipping Issue [GLS19]

31

Recall

4𝑘 − 2 = 2𝑡 + 2

Simpler method

Outline

32

• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

 verification + identifying dispute pairs

• Towards general circuits via sharing transformation

Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult

33

Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult
Collect secrets

from different

packed sharings

33

Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult

Re-order

secrets

Collect secrets

from different

packed sharings

33

Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult

Re-order

secrets

Collect secrets

from different

packed sharings

Network routing

33

Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult

Re-order

secrets

Collect secrets

from different

packed sharings

[GPS21, GPS22]

Network routing

Fan-out gates

and permutation

are linear

33

mask-open-unmask [DIK10]

Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult

Re-order

secrets

Collect secrets

from different

packed sharings

[GPS21, GPS22]

Network routing

Prepare linear masks

[𝒓] → [𝑳(𝒓)]

Fan-out gates

and permutation

are linear

33

mask-open-unmask [DIK10]

Towards general circuits: Random linear mask

Goal: Prepare 𝒓 𝑡+𝑘−1, 𝑳 𝒓 𝑡+𝑘−1 Different linear transformations 𝑳+

34

Towards general circuits: Random linear mask

𝑟1 𝑟2 𝑟3 [𝒓]𝑡+𝑘−1 𝐿1(𝒓) 𝐿2(𝒓) 𝐿3(𝒓) 𝑳(𝒓) 𝑡+𝑘−1

𝑳 = (𝐿1, 𝐿2, 𝐿3)

Goal: Prepare 𝒓 𝑡+𝑘−1, 𝑳 𝒓 𝑡+𝑘−1 Different linear transformations 𝑳+

34

Towards general circuits: Random linear mask

𝑟1 𝑟2 𝑟3 [𝒓]𝑡+𝑘−1

1st
position

2nd
position

3rd
position

𝐿1(𝒓) 𝐿2(𝒓) 𝐿3(𝒓) 𝑳(𝒓) 𝑡+𝑘−1

1st
position

2nd
position

3rd
position

𝑳 = (𝐿1, 𝐿2, 𝐿3)

Goal: Prepare 𝒓 𝑡+𝑘−1, 𝑳 𝒓 𝑡+𝑘−1 Different linear transformations 𝑳+

34

Towards general circuits: Random linear mask

𝑟2 1 𝑡

𝑟1 1 𝑡

𝑟3 1 𝑡

1st
position

[𝐿1 𝒓 1 𝑡

[𝐿2 𝒓 1 𝑡

[𝐿3 𝒓 1 𝑡

𝑟1

𝑟2

𝑟3

𝐿1(𝒓)

𝐿2(𝒓)

𝐿3(𝒓)

𝑳 = (𝐿1, 𝐿2, 𝐿3)

1st
position

35

Towards general circuits: Random linear mask

𝑟2 1 𝑡

𝑟1 1 𝑡

𝑟3 1 𝑡

1st
position

[𝐿1 𝒓 1 𝑡

[𝐿2 𝒓 1 𝑡

[𝐿3 𝒓 1 𝑡

𝑟1

𝑟2

𝑟3

𝐿1(𝒓)

𝐿2(𝒓)

𝐿3(𝒓)

𝑳 = (𝐿1, 𝐿2, 𝐿3)

1st
position

𝐿1 𝒓 = 𝑐1 ⋅ 𝑟1 + 𝑐2 ⋅ 𝑟2 + 𝑐3 ⋅ 𝑟3

[𝐿1 𝒓 1 𝑡 = 𝑐1 ⋅ 𝑟1 1 𝑡 + 𝑐2 ⋅ 𝑟2 2 𝑡 + 𝑐3 ⋅ [𝑟3 3 𝑡

35

Towards general circuits: Random linear mask

𝑟2 1 𝑡

𝑟1 1 𝑡

𝑟3 1 𝑡

1st
position

[𝐿1 𝒓 1 𝑡

[𝐿2 𝒓 1 𝑡

[𝐿3 𝒓 1 𝑡

𝑟1

𝑟2

𝑟3

𝐿1(𝒓)

𝐿2(𝒓)

𝐿3(𝒓)

𝑳 = (𝐿1, 𝐿2, 𝐿3)

1st
position

𝐿1 𝒓 = 𝑐1 ⋅ 𝑟1 + 𝑐2 ⋅ 𝑟2 + 𝑐3 ⋅ 𝑟3

[𝐿1 𝒓 1 𝑡 = 𝑐1 ⋅ 𝑟1 1 𝑡 + 𝑐2 ⋅ 𝑟2 2 𝑡 + 𝑐3 ⋅ [𝑟3 3 𝑡

Observation: linear transformation can be

done locally if the secrets are stored at the

same position.

35

Towards general circuits: Random linear mask

𝒓𝟏 𝑡+𝑘−1, 𝑳 𝒓𝟏 𝑡+𝑘−1

𝒓𝟐 𝑡+𝑘−1, 𝝅 𝒓𝟐 𝑡+𝑘−1

𝒓𝟑 𝑡+𝑘−1, 𝑷 𝒓𝟑 𝑡+𝑘−1

𝑘 transformations

36

Towards general circuits: Random linear mask

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1)

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2)

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3)

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

𝑘

𝒓𝟏 𝑡+𝑘−1, 𝑳 𝒓𝟏 𝑡+𝑘−1

𝒓𝟐 𝑡+𝑘−1, 𝝅 𝒓𝟐 𝑡+𝑘−1

𝒓𝟑 𝑡+𝑘−1, 𝑷 𝒓𝟑 𝑡+𝑘−1

𝑘 transformations

36

Towards general circuits: Random linear mask

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1)

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2)

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3)

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

37

Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31

𝑟12 𝑟22 𝑟32

𝑟13 𝑟23 𝑟33

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1)

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2)

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3)

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

Transpose

37

Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31

𝑟12 𝑟22 𝑟32

𝑟13 𝑟23 𝑟33

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1)

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2)

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3)

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

Transpose

Observation: linear transformation can

be done locally if the secrets are

stored at the same position.

37

Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31

𝑟12 𝑟22 𝑟32

𝑟13 𝑟23 𝑟33

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1)

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2)

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3)

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

Transpose

𝐿1(𝒓1) 𝜋1(𝒓2) 𝑃1(𝒓3)

𝐿2(𝒓1) 𝜋2(𝒓2) 𝑃2(𝒓3)

𝐿3(𝒓1) 𝜋3(𝒓2) 𝑃3(𝒓3)

Observation: linear transformation can

be done locally if the secrets are

stored at the same position.

37

Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31

𝑟12 𝑟22 𝑟32

𝑟13 𝑟23 𝑟33

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1)

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2)

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3)

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

Transpose

𝐿1(𝒓1) 𝜋1(𝒓2) 𝑃1(𝒓3)

𝐿2(𝒓1) 𝜋2(𝒓2) 𝑃2(𝒓3)

𝐿3(𝒓1) 𝜋3(𝒓2) 𝑃3(𝒓3)

𝐿1(𝑟11, 𝑟12, 𝑟13)

Observation: linear transformation can

be done locally if the secrets are

stored at the same position.

37

Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31

𝑟12 𝑟22 𝑟32

𝑟13 𝑟23 𝑟33

Transpose

𝐿1(𝒓1) 𝜋1(𝒓2) 𝑃1(𝒓3)

𝐿2(𝒓1) 𝜋2(𝒓2) 𝑃2(𝒓3)

𝐿3(𝒓1) 𝜋3(𝒓2) 𝑃3(𝒓3)

Local comp

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1)

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2)

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3)

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

38

Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31

𝑟12 𝑟22 𝑟32

𝑟13 𝑟23 𝑟33

Transpose

𝐿1(𝒓1) 𝜋1(𝒓2) 𝑃1(𝒓3)

𝐿2(𝒓1) 𝜋2(𝒓2) 𝑃2(𝒓3)

𝐿3(𝒓1) 𝜋3(𝒓2) 𝑃3(𝒓3)

Transpose

Local comp

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1)

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2)

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3)

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

38

Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31

𝑟12 𝑟22 𝑟32

𝑟13 𝑟23 𝑟33

Transpose

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

Prepare 𝒓 𝑡+𝑘−1, 𝑳 𝒓 𝑡+𝑘−1

Perform ‘transpose’ operation

39

Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31

𝑟12 𝑟22 𝑟32

𝑟13 𝑟23 𝑟33

Transpose

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

Prepare 𝒓 𝑡+𝑘−1, 𝑳 𝒓 𝑡+𝑘−1

Perform ‘transpose’ operation

39

Transpose is a special

linear transformation

Towards general circuits: Random linear mask

Perform ‘transpose’ operation

𝑟𝑖𝑗 𝑗
𝑡
, 𝑟𝑖𝑗 𝑖

𝑡 𝑖,𝑗

40

Towards general circuits: Random linear mask

Perform ‘transpose’ operation

𝑟𝑖𝑗 𝑗
𝑡
, 𝑟𝑖𝑗 𝑖

𝑡 𝑖,𝑗

mask-open-unmask

Prepare random linear masks for ‘transpose’

𝑢𝑖𝑗 𝑗
𝑡
, 𝑢𝑖𝑗 𝑖

𝑡 𝑖,𝑗
 in the preprocessing phase.

40

Towards general circuits: Random linear mask

Perform ‘transpose’ operation

𝑟𝑖𝑗 𝑗
𝑡
, 𝑟𝑖𝑗 𝑖

𝑡 𝑖,𝑗

mask-open-unmask

Known extraction technique
40

Prepare random linear masks for ‘transpose’

𝑢𝑖𝑗 𝑗
𝑡
, 𝑢𝑖𝑗 𝑖

𝑡 𝑖,𝑗
 in the preprocessing phase.

Towards general circuits: Random linear mask

Perform ‘transpose’ operation

𝑟𝑖𝑗 𝑗
𝑡
, 𝑟𝑖𝑗 𝑖

𝑡 𝑖,𝑗

mask-open-unmask

Online communication remains 𝑂(𝑛) per

linear transformation.

40

Prepare random linear masks for ‘transpose’

𝑢𝑖𝑗 𝑗
𝑡
, 𝑢𝑖𝑗 𝑖

𝑡 𝑖,𝑗
 in the preprocessing phase.

Known extraction technique

Summary

Semi-honest protocol

from [EGPS22]

41

Summary

Semi-honest protocol

from [EGPS22]

Cross-layer

multiplication

Add deg-(𝑛′ − 1)

sharings and open to

prevent double-dipping

41

Summary

Semi-honest protocol
from [EGPS22] Reduce different

linear

transformations to

‘transpose’

42

Semi-honest protocol

from [EGPS22]

Cross-layer

multiplication

Efficient sharing

transformation

Efficient sharing

transformation

Dispute control

Summary

Efficient verification

Identify dispute

pairs

43

Semi-honest protocol

from [EGPS22]

Cross-layer

multiplication

Efficient sharing

transformation

Dispute control

Summary

Efficient verification

Identify dispute

pairs

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7 43

Semi-honest protocol

from [EGPS22]

Cross-layer

multiplication

Efficient sharing

transformation

Dispute control

Summary

Efficient verification

Identify dispute

pairs

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7

Higher-degree

Shamir sharings

make things difficult.
43

Semi-honest protocol

from [EGPS22]

Cross-layer

multiplication

Efficient sharing

transformation

Dispute control

Summary

+

Efficient verification

Identify dispute

pairs

=

Perfectly-secure MPC

Online: 𝑂(1) per gate

Offline: 𝑂(𝑛) per gate

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7

Higher-degree

Shamir sharings

make things difficult.
43

Semi-honest protocol

from [EGPS22]

Cross-layer

multiplication

Thank you!

Credit:
Icons: https://www.flaticon.com/

44

https://www.flaticon.com/

	Slide 1: Perfectly-Secure MPC with Constant Online Communication Complexity
	Slide 2: Multiparty Computation
	Slide 3: Communication Complexity
	Slide 4: Communication Complexity
	Slide 5: Communication Complexity
	Slide 6: Why Constant Online Communication?
	Slide 7: Our Result
	Slide 8: Limitations of Our Result
	Slide 9: A Relative Mention – Round complexity
	Slide 10: A Relative Mention – Round complexity
	Slide 11: A Relative Mention – Circuit depth overhead
	Slide 12: A Relative Mention – Circuit depth overhead
	Slide 13: A Relative Mention – Circuit depth overhead
	Slide 14: Outline
	Slide 15: Packed Shamir Secret Sharing
	Slide 16: Packed Shamir Secret Sharing
	Slide 17: Packed Shamir Secret Sharing
	Slide 18: Generic Approach
	Slide 19: Generic Approach (SIMD Circuit)
	Slide 20: Generic Approach (SIMD Circuit)
	Slide 21: Multiplication Protocol adapted from [EGPS22]
	Slide 22: Multiplication Protocol adapted from [EGPS22]
	Slide 23: Multiplication Protocol adapted from [EGPS22]
	Slide 24: Multiplication Protocol adapted from [EGPS22]
	Slide 25: Multiplication Protocol adapted from [EGPS22]
	Slide 26: Multiplication Protocol adapted from [EGPS22]
	Slide 27: Multiplication Protocol adapted from [EGPS22]
	Slide 28: Multiplication Protocol adapted from [EGPS22]
	Slide 29: Multiplication Protocol adapted from [EGPS22]
	Slide 30: Multiplication Protocol adapted from [EGPS22]
	Slide 31: Multiplication Protocol adapted from [EGPS22]
	Slide 32: Multiplication Protocol adapted from [EGPS22]
	Slide 33: Multiplication Protocol adapted from [EGPS22]
	Slide 34: Multiplication Protocol adapted from [EGPS22]
	Slide 35: Multiplication Protocol adapted from [EGPS22]
	Slide 36: Multiplication Protocol adapted from [EGPS22]
	Slide 37: Multiplication Protocol adapted from [EGPS22]
	Slide 38: Multiplication Protocol adapted from [EGPS22]
	Slide 39: Multiplication Protocol adapted from [EGPS22]
	Slide 40: Multiplication Protocol adapted from [EGPS22]
	Slide 41: Outline
	Slide 42: Towards GOD: Dispute Control Framework [BH06]
	Slide 43: Towards GOD: Dispute Control Framework [BH06]
	Slide 44: Towards GOD: Dispute Control Framework [BH06]
	Slide 45: Towards GOD: Dispute Control Framework [BH06]
	Slide 46: Towards GOD: Dispute Control Framework [BH06]
	Slide 47: Towards GOD: Dispute Control Framework [BH06]
	Slide 48: Towards GOD: Dispute Control Framework [BH06]
	Slide 49: Towards GOD: Dispute Control Framework [BH06]
	Slide 50: Towards GOD: Dispute Control Framework [BH06]
	Slide 51: Towards GOD: Dispute Control Framework [BH06]
	Slide 52: Towards GOD: Dispute Control Framework [BH06]
	Slide 53: Towards GOD: Dispute Control Framework [BH06]
	Slide 54: Outline
	Slide 55: Towards GOD: Verification - 1
	Slide 56: Towards GOD: Verification - 1
	Slide 57: Towards GOD: Verification - 1
	Slide 58: Towards GOD: Verification - 1
	Slide 59: Towards GOD: Verification - 2
	Slide 60: Towards GOD: Verification - 2
	Slide 61: Towards GOD: Verification - 2
	Slide 62: Towards GOD: Verification – 2 [BH08]
	Slide 63: Towards GOD: Verification – 2 [BH08]
	Slide 64: Towards GOD: Verification – 2 [BH08]
	Slide 65: Towards GOD: Verification – 2 [BH08]
	Slide 66: Towards GOD: Verification – 2 [BH08]
	Slide 67: Towards GOD: Verification – 2 [BH08]
	Slide 68: Towards GOD: Verification – 2 [BH08]
	Slide 69: Outline
	Slide 70: Towards GOD: Identifying Dispute Pairs
	Slide 71: Towards GOD: Identifying Dispute Pairs
	Slide 72: Towards GOD: Identifying Dispute Pairs
	Slide 73: Towards GOD: Identifying Dispute Pairs
	Slide 74: Towards GOD: Identifying Dispute Pairs
	Slide 75: Towards GOD: Identifying Dispute Pairs - 1
	Slide 76: Towards GOD: Identifying Dispute Pairs - 1
	Slide 77: Towards GOD: Identifying Dispute Pairs - 1
	Slide 78: Towards GOD: Identifying Dispute Pairs - 1
	Slide 79: Towards GOD: Identifying Dispute Pairs - 1
	Slide 80: Towards GOD: Identifying Dispute Pairs - 1
	Slide 81: Towards GOD: Identifying Dispute Pairs - 1
	Slide 82: Towards GOD: Identifying Dispute Pairs - 1
	Slide 83: Towards GOD: Identifying Dispute Pairs - 1
	Slide 84: Towards GOD: Double-dipping Issue [GLS19]
	Slide 85: Outline
	Slide 86: Towards general circuits: Network Routing [GPS21]
	Slide 87: Towards general circuits: Network Routing [GPS21]
	Slide 88: Towards general circuits: Network Routing [GPS21]
	Slide 89: Towards general circuits: Network Routing [GPS21]
	Slide 90: Towards general circuits: Network Routing [GPS21]
	Slide 91: Towards general circuits: Network Routing [GPS21]
	Slide 92: Towards general circuits: Random linear mask
	Slide 93: Towards general circuits: Random linear mask
	Slide 94: Towards general circuits: Random linear mask
	Slide 95: Towards general circuits: Random linear mask
	Slide 96: Towards general circuits: Random linear mask
	Slide 97: Towards general circuits: Random linear mask
	Slide 98: Towards general circuits: Random linear mask
	Slide 99: Towards general circuits: Random linear mask
	Slide 100: Towards general circuits: Random linear mask
	Slide 101: Towards general circuits: Random linear mask
	Slide 102: Towards general circuits: Random linear mask
	Slide 103: Towards general circuits: Random linear mask
	Slide 104: Towards general circuits: Random linear mask
	Slide 105: Towards general circuits: Random linear mask
	Slide 106: Towards general circuits: Random linear mask
	Slide 107: Towards general circuits: Random linear mask
	Slide 108: Towards general circuits: Random linear mask
	Slide 109: Towards general circuits: Random linear mask
	Slide 110: Towards general circuits: Random linear mask
	Slide 111: Towards general circuits: Random linear mask
	Slide 112: Towards general circuits: Random linear mask
	Slide 113: Summary
	Slide 114: Summary
	Slide 115: Summary
	Slide 116: Summary
	Slide 117: Summary
	Slide 118: Summary
	Slide 119: Summary
	Slide 120

