Perfectly-Secure MPC with
Constant Online Communication
Complexity

Yifan Song
Tsinghua University & Shanghai Qi Zhi Institute
Xiaxi Ye
Tsinghua University



Multiparty Computation

Setting
v * n parties
e t corrupted parties

e Optimal resilience:n =3t + 1

‘7 , @ * Synchronous network

Goal
* Perfect security




Communication Complexity
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Is it possible to construct a perfectly secure MPC protocol with GOD
such that the online communication complexity per gate is O (1)

while the overall communication remains O(n)?



Why Constant Online Communication?

* Online efficiency is important as the preprocessing phase which only

depends on the circuit size can be done in the idle time.

* Amortized online communication complexity per party decreases as

the increase of the number of parties!



Our Result

Reference Overall Communication Online Communication Security Adversary

[BHOS] 0(|C| -n+ D - n? + n3) O(|C| -n+ D - n? + n3) Optimal Malicious with
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Theorem.

Let n = 3t + 1. For any arithmetic circuit C over FF of size |[F| = 2n of size |C| and depth D, there is an
information-theoretic MPC protocol against a fully malicious adversary controlling at most ¢ corrupted parties

with perfect security. The communication is O(|C| + D - n + n°) elements for the online phase and O(|C]| -

n+ D -n? + n*) elements for the offline phase.



Limitations of Our Result

Packed Shamir secret
sharing, hyper-

invertible matrix

{ Limitation 1: Only work for finite fields of size larger than 2n

Dispute control

framework

{ Limitation 2: Round complexity grows with number of parties }




A Relative Mention — Round complexity

* A line of works [ALR11, AAY22, AAPP23] focuses on optimizing

communication without O(n) overhead in the round complexity.
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If expected constant-round BA

and BC in [AC24] are used.
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A Relative Mention — Circuit depth overhead

* [GLS19] removes the quadratic communication overhead in the

circuit depth.
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Can we achieve the best

among three works?



Outline

 Review: semi-honest protocol in [EGPS22]

* Towards full security via dispute control:

verification + identifying dispute pairs

* Towards general circuits via sharing transformation



Packed Shamir Secret Sharing

Parameters:
* packsize k

(Sl, S92,y ey Sk)

Use a degree-(t + k — 1) polynomial:

Py P, P; Py Ps Pg Py

* Each share is an evaluation point of this

polynomial. \ ' J | y J

* Any t shares are independent of the secrets.
Secrets Shares

K. Any t + k shares can reconstruct the secret5/
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Packed Shamir Secret Sharing

S Parameters:
. ECp * packsize k
O
Secrets: s =
(Sl, S92,y ey Sk)

~ * degree-(t+k—1)

\

e Linearly homomorphic. P, P, P3 P, Ps Pg P;

[x] + [y] = [x +y] — ' ’
* Multiplicative friendly.

K lcli—1 - [X]t4k—1 = [€ * X]t 42k /

Use a degree-(t + k — 1) polynomial:

Secrets Shares
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Generic Approach

[x1 + x2]

$

[(x1 + x2) - x3 - x4]

$

Mult )—I
[X3 - x4]
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Generic Approach (SIMD Circuit)

[x1] '[ =3 N [x1 + %3]
A

sl { )
[%4] '[ g Ml [x3 * X4]

[(x1 + x2) * X3 * X4]

D
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k = Q(n) for

Generic Approach (SIMD Circuit)

communication

benefits.

[x1] '[ =3 N [x1 + %3]
A

sl { )
[%4] '[ g Ml [x3 * X4]

[(x1 + x2) * X3 * X4]

D
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Multiplication Protocol adapted from [EGPS22]

Multiplication

* Preprocessing: ([a@];yx—1, [Blrsr—1, [€ltsr—1)

* Input: [X]rsk—1, [Y]e4K-1-

\\\\\\
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Multiplication Protocol adapted from [EGPS22]

Degree Reduction

» Preprocessing: ([r]iy2k—2, [Tli4k-1)-

* Output: [x * y]yx_1

\\\\\\
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Multiplication Protocol adapted from [EGPS22]

¢ Degree Reduction
VAY .
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Multiplication Protocol adapted from [EGPS22]

Degree Reduction

.‘. ‘V}
é .

Preprocessing: ([1]¢42k-2, [T]t4k—1)-

\\\\\\
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Multiplication Protocol adapted from [EGPS22]

Degree Reduction

é * Preprocessing: ([T]ts2k-2, [T]t4r-1)- -

* Output: [x * y]t1x—1

|

[z + T]i12k—2

Reconstructz + r ]

o [ [z + 7]ii2k-2 = [Z]e2k—2 + [T]e42k—2 J

|

[z +7]k_q

> [ 2]t 1k—1 = [2+ 7)1 — [T]ik-1 J

Compute [z + 1] J e

-

-

Ifk =Qm), 0(1) eIementsW

per gate.
v }



Multiplication Protocol adapted from [EGPS22]

Degree Reduction

é * Preprocessing: ([T]ts2k-2, [T]t4r-1)- -

* Output: [x * y]yx_1
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[ Reconstructz + r ]
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[ Compute [z + r];,_4 J e

s
If k = Q(n), 0(1) elements

per gate.
\_ J

Switch to malicious

setting?




Multiplication Protocol adapted from [EGPS22]

-‘- [x + alisk—1, [V + Blesr—1

& | 1
2,

[x + alp_1, [y + blr—1

[z + T]i12k—2

3

[z +7]}-1

O
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Multiplication Protocol adapted from [EGPS22]
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& | 1
2,

[x + alp_1, [y + blr—1

[z + T]i12k—2

3

[z +7]}-1

O

[ Adversary may send incorrect shares to Py, 4. o,
L ] @
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Multiplication Protocol adapted from [EGPS22]

iy
UC)
\_/

[x + aleip—1, [y + Blesr-1

[x + ali_1, [y + blx_1

2,

[z + T]ii2k—2

[z + 7],y

3

O

\\\\\\
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Multiplication Protocol adapted from [EGPS22]

-- A[x + aleig—1, [y + bleir-1 (&
LV o D &
\_/ [x +ali_1, [y + blix-1

2,

[z + T]ii2k—2

3

[z + 7],y

O

Adversary may distribute sharings NOT of degree k — 1
LY
Y 1 ¢ or with incorrect secrets.
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Outline

* Review: semi-honest protocol in [EGPS22]

* Towards full security via dispute control:

verification + identifying dispute pairs

* Towards general circuits via sharing transformation



Towards GOD: Dispute Control Framework gos

[- Initialize an empty set to record dispute pairs. J

[ * Uniformly divide the circuit into n? segments. J

—

[ » Evaluate the segments sequentially. J
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Towards GOD: Dispute Control Framework sos)

-

For each segment,
* Evaluate the segment. ()

\_ e Verify the computation. '
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* Evaluate the segment.

e Verify the computation.

v
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.

AN

Evaluate the next segment. J
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Towards GOD: Dispute Control Framework s

P
4 J Evaluate the next segment. J

For each segment, < 3

* Evaluate the segment. 0 p
o ¥ > . . )
\_ * Verify the computation. Identify a dispute pair.
‘ , \ [
a [
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Towards GOD: Dispute Control Framework s

P
4 J Evaluate the next segment.
For each segment, N\ A
* Evaluate the segment. 0 p
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Outline

* Review: semi-honest protocol in [EGPS22]

* Towards full security via dispute control:

verification + identifying dispute pairs

* Towards general circuits via sharing transformation



Towards GOD: Verification - 1 @

% (‘)
®

4 )
X+ aliik—1, [y + bliyi—1 [x + a]tik—1 = [x]t4k-1 + [@]thi—1

&

L [y + bliik-1 = [V]esk—1 + [Dlesr-1 y

Vs

o [z + T]t+2k—2 = [Z]t+2k—2 + [T]t+2k—2

-

J
{ Adversary may send incorrect shares to Py 4. “ﬁ"

[z + 7] 2k—2

23



Towards GOD: Verification - 1

% (G}
®

4 )
X+ aliik—1, [y + bliyi—1 [x + a]tik—1 = [x]t4k-1 + [@]thi—1

&

L [y + bliik-1 = [V]esk—1 + [Dlesr-1 y

( )

o [z + T]t+2k—2 = [Z]t+2k—2 + [T]t+2k—2

-

J
{ Adversary may send incorrect shares to Py 4. .‘ﬁt,

[z + 7] 2k—2

\

The whole sharing is

determined by shares

of honest parties. ) 53




Towards GOD: Verification - 1

% (6)
®

4 I
X+ aliik—1, [y + bliyi—1 [x + a]tik—1 = [x]t4k-1 + [@]thi—1

&

a

L [y + bliik-1 = [V]esk—1 + [Dlesr-1 y

( )

o [z + T]t+2k—2 = [Z]t+2k—2 + [T]t+2k—2

-

Set (t+2k—2)+1<n-—t. [z + 7]es2k-2

A

In particular, k = (t + 2)/2.

J
@ { Adversary may send incorrect shares to Py 4. .‘ﬁt,

\

The whole sharing is

determined by shares

of honest parties. ) 53




Towards GOD: Verification - 1

&

Set(t+2k—2)+1<n-—t.
In particular, k = (t + 2)/2.

@ )

The whole sharing is

determined by shares :>

of honest parties. )

A

®

&

p
[x +aleip—1, [y + bBlesr-1

a

[x + a]t+k—1 = [x]t+k—1 + [a]t+k—1

N [y + blirr—1 = [¥]tsk-1 + [Dlrsr—1 )

~

Vs

[z + 7] 2k—2

A

-

o [z + T]t+2k—2 = [Z]t+2k—2 + [T]t+2k—2

N

J

{ Adversary may send incorrect shares to Py 4.

/

"

Pying can detect the errors by checking whether the received

shares form a valid sharing of correct degree.

\

)
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Towards GOD: Verification - 2

v
[x + altik—1, [y + Blesi—1 (G}
) LR
DO 2°
wv =

[x + alx_1, [y + blx_1

Sal
® @
e

[z + T]i2k—2
Adversary may distribute sharings of NOT

degree k — 1 or with incorrect secrets. [z + 7]y

0 :




®
[ ]

)

Towards GOD: Verification - 2

[x + alx_1, [y + blx_1

o
®

[z + T]i2k—2
Adversary may distribute sharings of NOT

degree k — 1 or with incorrect secrets. [z + 7]y

0 :

[AII parties check their shares of ( [u];y2k—2, [U]r—1). J

v
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\\\\\\
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[x + alx_1, [y + blx_1

Sal
® @
e

[z + 7]k

Adversary may distribute sharings of NOT

degree k — 1 or with incorrect secrets. [z + 7]y

0 :

Determined by shares
of honest parties

[AII parties check their shares of ( [u];y2k—2, [U]r—1). J
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Towards GOD: Verification — 2 sros

[AII parties check their shares of ([u];y2k—2, [U]x—1)- J
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Towards GOD: Verification — 2 sros %

[AII parties check their shares of ([u];y2k—2, [U]x—1)- J

[wy ] esok—2, [U1]k—1 (n—1t)

(2] 1 2-2 [U2]i-1 ™ pairs to be

[u3]t+2k—2; [u3]k—1 checked
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Towards GOD: Verification — 2 sros %
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Towards GOD: Verification — 2 sros
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IIIIII

[AII parties check their shares of ([u];y2k—2, [U]x—1)- J

[vl]t+2k—2; [”1]k—1
[vz]t+2k—2; [vz]k—1

[v3]t+2k—2; [v3]k—1

[v4]t+2k—2; [174]k—1

All (n — t) honest

parties are happy.

[wq 4262, [U1]k—1
o | [Ualtiok—2 [Ua]lk-1

[uslsok—2, [U3lk-1

S

Super-invertibility

correct.

All (n — t) pairs are
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pairs to be

checked
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verification + identifying dispute pairs

* Towards general circuits via sharing transformation
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[x + alisrk—1, ¥+ bleir-1

P
<

Towards GOD: |dentifying Dispute Pairs - 1

{Verification -1 failsJ‘ { Pring complains the received }

sharings are inconsistent.

!

Pying cannot identify

N .
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3
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Towards GOD: Double-dipping Issue (s -4k_2=2t+2

LS19] o

o
209 QOB B Bes
L) - Annn : ' - & o u
| J \ \ : J

| Y / |
t corrupted 2k — 1 honest 2k — 1 honest
[x + aliip—1, [y + Bleig—1
n le']_1, [y + bli_1 [x + alg—1, [y + blx-1
[Zz' + 7] 2k—2 [z +7]i42k—2

©

(Z’ + T‘) — (Z + T‘) = (e’ — (x + a)) *y "A: { Simpler method }
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Towards general circuits: Random linear mask

Goal: Prepare [T+ k-1, [L() ]t 4x-1 } -|— {Different linear transformations L }
L= (L, Ly L3)
[7]t+r-1 &1 2 T3 ——> Ly(r) L,(r) Lz (1) L)) t4k-1
1st 2nd 3rd 1st 2nd 3rd
position position position position position position
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L= (L1; L, L3)

—
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[r111]; &1
[r211]; )
[r51]; T3

.

position

L = (L, Ly L3)
—

-

Ll(r)=C1'r1+C2'T2+C3'T'3

[Li(M)1]; = ¢1 - [ + ¢z - [12]2]; + c3 - [13]3];

)

L,(1) [L,(r)|1];
L, (1) [Lo(r)]1];
L3(r) [L3(r)[1];
]
lst
position



Towards general circuits: Random linear mask

L= (L1; L, L3)

—
[r111]; m Ve ~ L@ [L,(r)|1];
Ll(r) =C1'T'1+C2 'T'2+C3 ' I3
[5]1]; T [Li(M)1]; = ¢1 - [ + ¢z - [12]2]; + c3 - [13]3]; L,(1) [L,(1)|1];
o )
\
Observation: linear transformation can be
[73]1]¢ 13 L3 (1) [L3()]1],
done locally if the secrets are stored at the
ﬁ same position. y ﬁ
1st 15t

position position
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[71]etk-1

k= [raliik-1

[73]¢tk-1

71 e4k—1, [L(re) e k-1

[72]lt4k—1 [T(Tr2)] 4 k-1
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[ Transpose ]@
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713 23
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=
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m1(73)
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- Random linear mask
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[rl]t+k—1 "1 T2 13 1 21 31
[ Transpose ]
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[75]esr—1 721 T22 23 —> 12 22 32
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73]tk 31 32 33 13 23 33
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{ Perform ‘transpose’ operation
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linear transformation
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Towards general circuits: Random linear mask

4 )

Perform ‘transpose’ operation

{[Tij il [rislil, }

i,j

/
I[ mask-open-unmask ]

-

L {[uij |j]t, [uij|i]t} _in the preprocessing phase.

Prepare random linear masks for ‘transpose’

l,j

~

—

)

I

{ Known extraction technique }

Online communication remains O(n) per

linear transformation.

v
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Thank you!

Credit:
Icons: https://www.flaticon.com/
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