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Multiparty Computation

Setting

• 𝑛 parties

• 𝑡 corrupted parties

• Optimal resilience: 𝑛 = 3𝑡 + 1

• Synchronous network

Goal
• Perfect security
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Communication Complexity

|𝐶|: circuit size, 𝐷: circuit depth, 𝑛: number of parties, counted by field elements

Reference Overall Communication Online Communication Security Adversary

[BH08] 𝑂( 𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) 𝑂( 𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) Optimal 
Resilience

𝑛 = 3𝑡 + 1

Malicious with GOD

[GLS19] 𝑂( 𝐶 ⋅ 𝑛 + 𝑛3) 𝑂( 𝐶 ⋅ 𝑛 + 𝑛3)
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Communication Complexity

Is it possible to construct a perfectly secure MPC protocol with GOD 

such that the online communication complexity per gate is 𝑂(1) 

while the overall communication remains 𝑂(𝑛)?
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Why Constant Online Communication? 

• Online efficiency is important as the preprocessing phase which only 

depends on the circuit size can be done in the idle time.

• Amortized online communication complexity per party decreases as 

the increase of the number of parties!
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Our Result

Theorem.

Let 𝑛 = 3𝑡 + 1. For any arithmetic circuit 𝐶 over 𝔽 of size 𝔽 ≥ 2𝑛 of size |𝐶| and depth 𝐷, there is an 

information-theoretic MPC protocol against a fully malicious adversary controlling at most 𝑡 corrupted parties 

with perfect security. The communication is 𝑂( 𝐶 + 𝐷 ⋅ 𝑛 + 𝑛5) elements for the online phase and 𝑂( 𝐶 ⋅

𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛4) elements for the offline phase.

Reference Overall Communication Online Communication Security Adversary

[BH08] 𝑂( 𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) 𝑂( 𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛3) Optimal 
Resilience

𝑛 = 3𝑡 + 1

Malicious with 
GOD[GLS19] 𝑂( 𝐶 ⋅ 𝑛 + 𝑛3) 𝑂( 𝐶 ⋅ 𝑛 + 𝑛3)

Our result 𝑂( 𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛5) 𝑂( 𝐶 + 𝐷 ⋅ 𝑛 + 𝑛5) 

[DN07] 𝑂( 𝐶 ⋅ 𝑛) 𝑂( 𝐶 ⋅ 𝑛) Optimal 
Resilience

𝑛 = 2𝑡 + 1

Semi-honest

[EGPS22] 𝑂( 𝐶 ⋅ 𝑛) 𝑂(|𝐶|)
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Limitations of Our Result

Limitation 1: Only work for finite fields of size larger than 2𝑛

Limitation 2: Round complexity grows with number of parties

Packed Shamir secret 

sharing, hyper-

invertible matrix

Dispute control 

framework
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A Relative Mention – Round complexity

• A line of works [ALR11, AAY22, AAPP23] focuses on optimizing 

communication without 𝑂(𝑛) overhead in the round complexity. 

Reference Overall Communication Online Communication Round 
complexity

Security

[AAPP23] 𝑂( 𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛4) 𝑂(𝐷) 𝑛 = 3𝑡 + 1
Malicious with 

GOD
[GLS19] 𝑂( 𝐶 ⋅ 𝑛 + 𝑛3) 𝑂( 𝐶 ⋅ 𝑛 + 𝑛3) 𝑂(𝐷 + 𝑛)

Our result 𝑂( 𝐶 ⋅ 𝑛 + 𝐷 ⋅ 𝑛2 + 𝑛5 ⋅ log 𝑛) 𝑂( 𝐶 + 𝐷 ⋅ 𝑛 + 𝑛5 ⋅ log 𝑛) 𝑂(𝐷 + 𝑛2)

If expected constant-round BA 

and BC in [AC24] are used.
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A Relative Mention – Circuit depth overhead

•  [GLS19] removes the quadratic communication overhead in the 

circuit depth. 
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Outline

10

• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

 verification + identifying dispute pairs

• Towards general circuits via sharing transformation



Packed Shamir Secret Sharing

Secrets: 𝒔 =
(𝑠1, 𝑠2, … , 𝑠𝑘)

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7

Secrets Shares

Use a degree-(𝑡 + 𝑘 − 1) polynomial:

• Each share is an evaluation point of this 

polynomial.

• Any 𝑡 shares are independent of the secrets.

• Any 𝑡 + 𝑘 shares can reconstruct the secrets.
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Parameters:

• pack size 𝑘

• degree-(𝑡 + 𝑘 − 1)



Packed Shamir Secret Sharing

Secrets: 𝒔 =
(𝑠1, 𝑠2, … , 𝑠𝑘)

Use a degree-(𝑡 + 𝑘 − 1) polynomial:

• Linearly homomorphic.

𝒙 + 𝒚 = [𝒙 + 𝒚]

• Multiplicative friendly.

𝒄 𝑘−1 ⋅ 𝒙 𝑡+𝑘−1 = 𝒄 ∗ 𝒙 𝑡+2𝑘−2

Parameters:

• pack size 𝑘

• degree-(𝑡 + 𝑘 − 1)
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𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7

Secrets Shares



Packed Shamir Secret Sharing

Secrets: 𝒔 =
(𝑠1, 𝑠2, … , 𝑠𝑘)

Use a degree-(𝑡 + 𝑘 − 1) polynomial:

• Linearly homomorphic.

𝒙 + 𝒚 = [𝒙 + 𝒚]

• Multiplicative friendly.
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𝑘 = (𝑡 + 2)/2

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7

Secrets Shares



Generic Approach

Add

Mult

Mult

[𝑥1]

[𝑥2]

[𝑥3]

[𝑥4]

[𝑥1 + 𝑥2]

[𝑥3 ⋅ 𝑥4]

[ 𝑥1 + 𝑥2 ⋅ 𝑥3 ⋅ 𝑥4]
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Generic Approach (SIMD Circuit)

Add

Mult

Mult

Add

Mult

Mult

Add

Mult

Mult

[𝒙𝟏]

[𝒙𝟐]

[𝒙𝟑]

[𝒙𝟒]

[𝒙𝟏 + 𝒙𝟐]

[𝒙𝟑 ∗ 𝒙𝟒]

[ 𝒙𝟏 + 𝒙𝟐 ∗ 𝒙𝟑 ∗ 𝒙𝟒]
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Generic Approach (SIMD Circuit)

Add

Mult

Mult

Add

Mult

Mult

Add

Mult

Mult

[𝒙𝟏]

[𝒙𝟐]

[𝒙𝟑]

[𝒙𝟒]

[𝒙𝟏 + 𝒙𝟐]

[𝒙𝟑 ∗ 𝒙𝟒]

[ 𝒙𝟏 + 𝒙𝟐 ∗ 𝒙𝟑 ∗ 𝒙𝟒]

𝑘 = Ω(𝑛) for 

communication 

benefits.
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Multiplication Protocol adapted from [EGPS22]
Multiplication

• Preprocessing: 𝒂 𝑡+𝑘−1, 𝒃 𝑡+𝑘−1, 𝒄 𝑡+𝑘−1

• Input: 𝒙 𝑡+𝑘−1, 𝒚 𝑡+𝑘−1. 
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Multiplication Protocol adapted from [EGPS22]
Degree Reduction

• Preprocessing: ( 𝒓 𝑡+2𝑘−2, 𝒓 𝑡+𝑘−1).

• Output: 𝒙 ∗ 𝒚 𝑡+𝑘−1
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𝒛 + 𝒓 𝑘−1

Adversary may distribute sharings NOT of degree 𝑘 − 1 

or with incorrect secrets.
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• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

 verification + identifying dispute pairs

• Towards general circuits via sharing transformation
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• Initialize an empty set to record dispute pairs.
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• Uniformly divide the circuit into 𝑛2 segments.

• Evaluate the segments sequentially.
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Identify a dispute pair.  

Corrupted parties will be 

eliminated. Find a relay 

for each dispute pair 

[BFO12].

Always find 

a new 

dispute pair.

Re-evaluation 

occurs at most 

𝑂(𝑛2) times.

Communication 

at most 
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Two disputed 

parties will 

never talk to 

each other.

Towards GOD: Dispute Control Framework [BH06]
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• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

 verification + identifying dispute pairs

• Towards general circuits via sharing transformation
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Towards GOD: Verification – 2 [BH08]
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Ask 𝑃𝑘𝑖𝑛𝑔 to provide a correct 

version.
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incorrect.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

𝒗1 𝑡+2𝑘−2, 𝒗1 𝑘−1

𝒗2 𝑡+2𝑘−2, 𝒗2 𝑘−1

𝒗3 𝑡+2𝑘−2, 𝒗3 𝑘−1

𝒗4 𝑡+2𝑘−2, 𝒗4 𝑘−1

28

Ask 𝑃𝑘𝑖𝑛𝑔 to provide a correct 

version.
A dispute pair



Towards GOD: Identifying Dispute Pairs - 1

Verification – 1 fails 𝑃𝑘𝑖𝑛𝑔 complains the received 

sharings are inconsistent.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

29



Towards GOD: Identifying Dispute Pairs - 1

Verification – 1 fails 𝑃𝑘𝑖𝑛𝑔 complains the received 

sharings are inconsistent.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

𝑃𝑘𝑖𝑛𝑔 cannot identify 

incorrect shares
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Towards GOD: Identifying Dispute Pairs - 1

Verification – 1 fails 𝑃𝑘𝑖𝑛𝑔 complains the received 

sharings are inconsistent.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

𝑃𝑘𝑖𝑛𝑔 cannot identify 

incorrect shares

Resort to deg-𝑡 

sharings

29



Towards GOD: Identifying Dispute Pairs - 1

Verification – 1 fails 𝑃𝑘𝑖𝑛𝑔 complains the received 

sharings are inconsistent.

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒛 + 𝒓 𝑡+2𝑘−2

𝑃𝑘𝑖𝑛𝑔 cannot identify 

incorrect shares

Resort to deg-𝑡 

sharings
Need to compute deg-𝑡 sharings 

with 𝑂(1) elements per gate.

29
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Towards GOD: Identifying Dispute Pairs - 1

𝑧1 1 𝑡 𝑧2 2 𝑡 𝑧3 3 𝑡𝑧1 𝑧2 𝑧3 𝑡+𝑘−1



30

Towards GOD: Identifying Dispute Pairs - 1

𝑧1 1 𝑡 𝑧2 2 𝑡 𝑧3 3 𝑡𝑧1 𝑧2 𝑧3 𝑡+𝑘−1

Locally transform 𝑘 degree-𝑡 

sharings to packed sharings.
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Towards GOD: Identifying Dispute Pairs - 1

𝑧1 1 𝑡 𝑧2 2 𝑡 𝑧3 3 𝑡𝒆1 𝑘−1 ⋅ 𝒆2 𝑘−1 ⋅ 𝒆3 𝑘−1 ⋅+ +𝑧1 𝑧2 𝑧3 𝑡+𝑘−1 =

Locally transform 𝑘 degree-𝑡 

sharings to packed sharings.
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Towards GOD: Identifying Dispute Pairs - 1

𝑧1 1 𝑡 𝑧2 2 𝑡 𝑧3 3 𝑡𝒆1 𝑘−1 ⋅ 𝒆2 𝑘−1 ⋅ 𝒆3 𝑘−1 ⋅+ +𝑧1 𝑧2 𝑧3 𝑡+𝑘−1 =

Locally transform 𝑘 degree-𝑡 

sharings to packed sharings.
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Towards GOD: Identifying Dispute Pairs - 1

𝑧1 1 𝑡 𝑧2 2 𝑡 𝑧3 3 𝑡𝒆1 𝑘−1 ⋅ 𝒆2 𝑘−1 ⋅ 𝒆3 𝑘−1 ⋅+ +𝑧1 𝑧2 𝑧3 𝑡+𝑘−1 =

Locally transform 𝑘 degree-𝑡 

sharings to packed sharings.

Error correction

A dispute pair



𝒛 + 𝒓 𝑡+2𝑘−2

𝑡 corrupted 2𝑘 − 1 honest 2𝑘 − 1 honest

𝒙 + 𝒂 𝑡+𝑘−1, 𝒚 + 𝒃 𝑡+𝑘−1

𝒙 + 𝒂 𝑘−1, 𝒚 + 𝒃 𝑘−1𝒆′ 𝑘−1, 𝒚 + 𝒃 𝑘−1

𝒛′ + 𝒓 𝑡+2𝑘−2

𝒛′ + 𝒓 − 𝒛 + 𝒓 = 𝒆′ − 𝒙 + 𝒂 ∗ 𝒚

Towards GOD: Double-dipping Issue [GLS19]

31

Recall 

4𝑘 − 2 = 2𝑡 + 2

Simpler method



Outline

32

• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

 verification + identifying dispute pairs

• Towards general circuits via sharing transformation



Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult
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Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult
Collect secrets 

from different 

packed sharings
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Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult

Re-order 

secrets

Collect secrets 

from different 

packed sharings
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Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult

Re-order 

secrets

Collect secrets 

from different 

packed sharings

Network routing
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Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult

Re-order 

secrets

Collect secrets 

from different 

packed sharings

[GPS21, GPS22]

Network routing

Fan-out gates 

and permutation 

are linear

33

mask-open-unmask [DIK10]



Towards general circuits: Network Routing [GPS21]

Add

Mult

Mult

Add

Mult

Re-order 

secrets

Collect secrets 

from different 

packed sharings

[GPS21, GPS22]

Network routing

Prepare linear masks

[𝒓] → [𝑳(𝒓)]

Fan-out gates 

and permutation 

are linear

33

mask-open-unmask [DIK10]



Towards general circuits: Random linear mask

Goal: Prepare 𝒓 𝑡+𝑘−1, 𝑳 𝒓 𝑡+𝑘−1 Different linear transformations 𝑳+

34



Towards general circuits: Random linear mask

𝑟1 𝑟2 𝑟3 [𝒓]𝑡+𝑘−1 𝐿1(𝒓) 𝐿2(𝒓) 𝐿3(𝒓) 𝑳(𝒓) 𝑡+𝑘−1

𝑳 = (𝐿1, 𝐿2, 𝐿3)

Goal: Prepare 𝒓 𝑡+𝑘−1, 𝑳 𝒓 𝑡+𝑘−1 Different linear transformations 𝑳+

34



Towards general circuits: Random linear mask

𝑟1 𝑟2 𝑟3 [𝒓]𝑡+𝑘−1

1st 
position

2nd  
position

3rd  
position

𝐿1(𝒓) 𝐿2(𝒓) 𝐿3(𝒓) 𝑳(𝒓) 𝑡+𝑘−1

1st 
position

2nd  
position

3rd  
position

𝑳 = (𝐿1, 𝐿2, 𝐿3)

Goal: Prepare 𝒓 𝑡+𝑘−1, 𝑳 𝒓 𝑡+𝑘−1 Different linear transformations 𝑳+

34



Towards general circuits: Random linear mask

𝑟2 1 𝑡

𝑟1 1 𝑡

𝑟3 1 𝑡

1st 
position

[𝐿1 𝒓 1 𝑡 

[𝐿2 𝒓 1 𝑡 

[𝐿3 𝒓 1 𝑡 

𝑟1

𝑟2

𝑟3

𝐿1(𝒓)

𝐿2(𝒓)

𝐿3(𝒓) 

𝑳 = (𝐿1, 𝐿2, 𝐿3)

1st 
position
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Towards general circuits: Random linear mask

𝑟2 1 𝑡

𝑟1 1 𝑡

𝑟3 1 𝑡

1st 
position

[𝐿1 𝒓 1 𝑡 

[𝐿2 𝒓 1 𝑡 

[𝐿3 𝒓 1 𝑡 

𝑟1

𝑟2

𝑟3

𝐿1(𝒓)

𝐿2(𝒓)

𝐿3(𝒓) 

𝑳 = (𝐿1, 𝐿2, 𝐿3)

1st 
position

𝐿1 𝒓 = 𝑐1 ⋅ 𝑟1 + 𝑐2 ⋅ 𝑟2 + 𝑐3 ⋅ 𝑟3

[𝐿1 𝒓 1 𝑡 = 𝑐1 ⋅ 𝑟1 1 𝑡 + 𝑐2 ⋅ 𝑟2 2 𝑡 + 𝑐3 ⋅ [𝑟3 3 𝑡

35



Towards general circuits: Random linear mask

𝑟2 1 𝑡

𝑟1 1 𝑡

𝑟3 1 𝑡

1st 
position

[𝐿1 𝒓 1 𝑡 

[𝐿2 𝒓 1 𝑡 

[𝐿3 𝒓 1 𝑡 

𝑟1

𝑟2

𝑟3

𝐿1(𝒓)

𝐿2(𝒓)

𝐿3(𝒓) 

𝑳 = (𝐿1, 𝐿2, 𝐿3)

1st 
position

𝐿1 𝒓 = 𝑐1 ⋅ 𝑟1 + 𝑐2 ⋅ 𝑟2 + 𝑐3 ⋅ 𝑟3

[𝐿1 𝒓 1 𝑡 = 𝑐1 ⋅ 𝑟1 1 𝑡 + 𝑐2 ⋅ 𝑟2 2 𝑡 + 𝑐3 ⋅ [𝑟3 3 𝑡

Observation: linear transformation can be 

done locally if the secrets are stored at the 

same position.
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Towards general circuits: Random linear mask

𝒓𝟏 𝑡+𝑘−1, 𝑳 𝒓𝟏 𝑡+𝑘−1

𝒓𝟐 𝑡+𝑘−1, 𝝅 𝒓𝟐 𝑡+𝑘−1

𝒓𝟑 𝑡+𝑘−1, 𝑷 𝒓𝟑 𝑡+𝑘−1

𝑘 transformations

36



Towards general circuits: Random linear mask

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13 

𝑟21 𝑟22 𝑟23 

𝑟31 𝑟32 𝑟33 

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1) 

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2) 

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3) 

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

𝑘 

𝒓𝟏 𝑡+𝑘−1, 𝑳 𝒓𝟏 𝑡+𝑘−1

𝒓𝟐 𝑡+𝑘−1, 𝝅 𝒓𝟐 𝑡+𝑘−1

𝒓𝟑 𝑡+𝑘−1, 𝑷 𝒓𝟑 𝑡+𝑘−1

𝑘 transformations

36



Towards general circuits: Random linear mask

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13 

𝑟21 𝑟22 𝑟23 

𝑟31 𝑟32 𝑟33 

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1) 

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2) 

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3) 

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1
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Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31 

𝑟12 𝑟22 𝑟32 

𝑟13 𝑟23 𝑟33 

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13 

𝑟21 𝑟22 𝑟23 

𝑟31 𝑟32 𝑟33 

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1) 

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2) 

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3) 

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

Transpose
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Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31 

𝑟12 𝑟22 𝑟32 

𝑟13 𝑟23 𝑟33 

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13 

𝑟21 𝑟22 𝑟23 

𝑟31 𝑟32 𝑟33 

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1) 

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2) 

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3) 

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

Transpose

Observation: linear transformation can 

be done locally if the secrets are 

stored at the same position.
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Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31 

𝑟12 𝑟22 𝑟32 

𝑟13 𝑟23 𝑟33 

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13 

𝑟21 𝑟22 𝑟23 

𝑟31 𝑟32 𝑟33 

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1) 

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2) 

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3) 

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

Transpose

𝐿1(𝒓1) 𝜋1(𝒓2) 𝑃1(𝒓3)

𝐿2(𝒓1) 𝜋2(𝒓2) 𝑃2(𝒓3)

𝐿3(𝒓1) 𝜋3(𝒓2) 𝑃3(𝒓3) 

Observation: linear transformation can 

be done locally if the secrets are 

stored at the same position.
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Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31 

𝑟12 𝑟22 𝑟32 

𝑟13 𝑟23 𝑟33 

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13 

𝑟21 𝑟22 𝑟23 

𝑟31 𝑟32 𝑟33 

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1) 

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2) 

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3) 

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1

Transpose

𝐿1(𝒓1) 𝜋1(𝒓2) 𝑃1(𝒓3)

𝐿2(𝒓1) 𝜋2(𝒓2) 𝑃2(𝒓3)

𝐿3(𝒓1) 𝜋3(𝒓2) 𝑃3(𝒓3) 

𝐿1(𝑟11, 𝑟12, 𝑟13)

Observation: linear transformation can 

be done locally if the secrets are 

stored at the same position.
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Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31 

𝑟12 𝑟22 𝑟32 

𝑟13 𝑟23 𝑟33 

Transpose

𝐿1(𝒓1) 𝜋1(𝒓2) 𝑃1(𝒓3)

𝐿2(𝒓1) 𝜋2(𝒓2) 𝑃2(𝒓3)

𝐿3(𝒓1) 𝜋3(𝒓2) 𝑃3(𝒓3) 

Local comp

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13 

𝑟21 𝑟22 𝑟23 

𝑟31 𝑟32 𝑟33 

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1) 

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2) 

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3) 

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1
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Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31 

𝑟12 𝑟22 𝑟32 

𝑟13 𝑟23 𝑟33 

Transpose

𝐿1(𝒓1) 𝜋1(𝒓2) 𝑃1(𝒓3)

𝐿2(𝒓1) 𝜋2(𝒓2) 𝑃2(𝒓3)

𝐿3(𝒓1) 𝜋3(𝒓2) 𝑃3(𝒓3) 

Transpose

Local comp

𝑹𝑻

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13 

𝑟21 𝑟22 𝑟23 

𝑟31 𝑟32 𝑟33 

𝐿1(𝒓1) 𝐿2(𝒓1) 𝐿3(𝒓1) 

𝜋1(𝒓2) 𝜋2(𝒓2) 𝜋3(𝒓2) 

𝑃1(𝒓3) 𝑃2(𝒓3) 𝑃3(𝒓3) 

𝑳

𝝅

𝑷

𝑳(𝒓1) 𝑡+𝑘−1

𝝅(𝒓2) 𝑡+𝑘−1

𝑷(𝒓3) 𝑡+𝑘−1
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Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31 

𝑟12 𝑟22 𝑟32 

𝑟13 𝑟23 𝑟33 

Transpose

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13 

𝑟21 𝑟22 𝑟23 

𝑟31 𝑟32 𝑟33 

Prepare 𝒓 𝑡+𝑘−1, 𝑳 𝒓 𝑡+𝑘−1

Perform ‘transpose’ operation

39



Towards general circuits: Random linear mask

𝑟11 𝑟21 𝑟31 

𝑟12 𝑟22 𝑟32 

𝑟13 𝑟23 𝑟33 

Transpose

𝒓1 𝑡+𝑘−1

𝒓2 𝑡+𝑘−1

𝒓3 𝑡+𝑘−1

𝑟11 𝑟12 𝑟13 

𝑟21 𝑟22 𝑟23 

𝑟31 𝑟32 𝑟33 

Prepare 𝒓 𝑡+𝑘−1, 𝑳 𝒓 𝑡+𝑘−1

Perform ‘transpose’ operation

39

Transpose is a special 

linear transformation



Towards general circuits: Random linear mask

Perform ‘transpose’ operation 

𝑟𝑖𝑗 𝑗
𝑡
, 𝑟𝑖𝑗 𝑖

𝑡 𝑖,𝑗
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Perform ‘transpose’ operation 

𝑟𝑖𝑗 𝑗
𝑡
, 𝑟𝑖𝑗 𝑖

𝑡 𝑖,𝑗

mask-open-unmask

Prepare random linear masks for ‘transpose’ 

𝑢𝑖𝑗 𝑗
𝑡
, 𝑢𝑖𝑗 𝑖

𝑡 𝑖,𝑗
 in the preprocessing phase.
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Towards general circuits: Random linear mask

Perform ‘transpose’ operation 

𝑟𝑖𝑗 𝑗
𝑡
, 𝑟𝑖𝑗 𝑖

𝑡 𝑖,𝑗

mask-open-unmask

Online communication remains 𝑂(𝑛) per 

linear transformation.

40

Prepare random linear masks for ‘transpose’ 

𝑢𝑖𝑗 𝑗
𝑡
, 𝑢𝑖𝑗 𝑖

𝑡 𝑖,𝑗
 in the preprocessing phase.

Known extraction technique



Summary

Semi-honest protocol 

from [EGPS22]
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Summary

Semi-honest protocol 

from [EGPS22]

Cross-layer 

multiplication

Add deg-(𝑛′ − 1) 

sharings and open to 

prevent double-dipping
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Summary

Semi-honest protocol 
from [EGPS22] Reduce different 

linear 

transformations to 

‘transpose’
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Efficient verification

Identify dispute 

pairs
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Higher-degree 

Shamir sharings 

make things difficult.
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Efficient sharing 

transformation

Dispute control 

Summary

+

Efficient verification

Identify dispute 

pairs

=

Perfectly-secure MPC

Online: 𝑂(1) per gate

Offline: 𝑂(𝑛) per gate

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7

Higher-degree 

Shamir sharings 

make things difficult.
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Semi-honest protocol 

from [EGPS22]

Cross-layer 

multiplication



Thank you!

Credit:
Icons: https://www.flaticon.com/ 
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