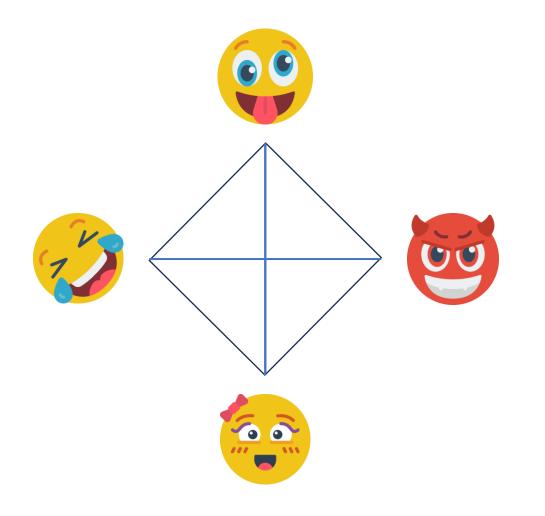
Perfectly-Secure MPC with Constant Online Communication Complexity

Yifan Song Tsinghua University & Shanghai Qi Zhi Institute Xiaxi Ye Tsinghua University

Multiparty Computation



Setting

- *n* parties
- *t* corrupted parties
- Optimal resilience: n = 3t + 1
- Synchronous network

Goal

• Perfect security

Communication Complexity

Reference	Overall Communication	Online Communication	Security	Adversary
[BH08]	$O(C \cdot n + D \cdot n^2 + n^3)$	$O(C \cdot n + D \cdot n^2 + n^3)$	Optimal	Malicious with GOD
[GLS19]	$O(C \cdot n + n^3)$	$O(C \cdot n + n^3)$	Resilience $n = 3t + 1$	

|*C*|: circuit size, *D*: circuit depth, *n*: number of parties, counted by field elements

Communication Complexity

Reference	Overall Communication	Online Communication	Security	Adversary
[BH08]	$O(C \cdot n + D \cdot n^2 + n^3)$	$O(C \cdot n + D \cdot n^2 + n^3)$	Optimal	Malicious with GOD
[GLS19]	$O(C \cdot n + n^3)$	$O(C \cdot n + n^3)$	Resilience n = 3t + 1	
[DN07]	$O(C \cdot n)$	$O(C \cdot n)$	Optimal	Semi-honest
[EGPS22]	$O(C \cdot n)$	<i>O</i> (<i>C</i>)	Resilience $n = 2t + 1$	

|*C*|: circuit size, *D*: circuit depth, *n*: number of parties, counted by field elements

Communication Complexity

Reference	Overall Communication	Online Communication	Security	Adversary
[BH08]	$O(C \cdot n + D \cdot n^2 + n^3)$	$O(C \cdot n + D \cdot n^2 + n^3)$	Optimal	Malicious with GOD
[GLS19]	$O(C \cdot n + n^3)$	$O(C \cdot n + n^3)$	Resilience n = 3t + 1	
[DN07]	$O(C \cdot n)$	$O(C \cdot n)$	Optimal	Semi-honest
[EGPS22]	$O(C \cdot n)$	<i>O</i> (<i>C</i>)	Resilience $n = 2t + 1$	

|*C*|: circuit size, *D*: circuit depth, *n*: number of parties, counted by field elements

Is it possible to construct a perfectly secure MPC protocol with GOD

such that the online communication complexity per gate is O(1)

while the overall communication remains O(n)?

Why Constant Online Communication?

• Online efficiency is important as the preprocessing phase which <u>only</u> <u>depends on the circuit size</u> can be done in the idle time.

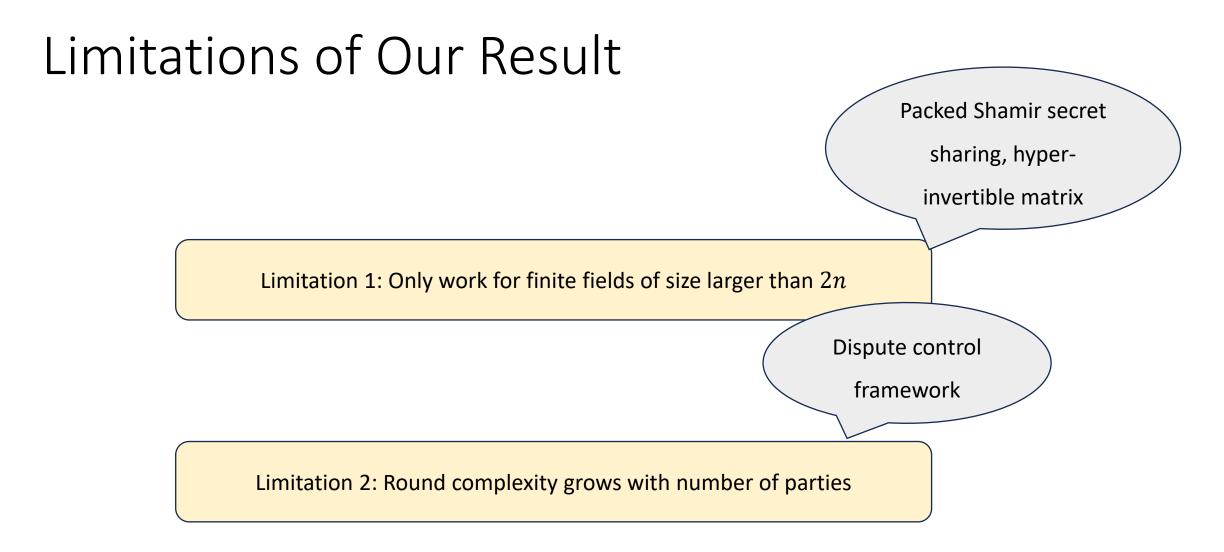
 Amortized online communication complexity per party <u>decreases</u> as the increase of the number of parties!

Our Result

Reference	Overall Communication	Online Communication	Security	Adversary
[BH08]	$O(C \cdot n + D \cdot n^2 + n^3)$	$O(C \cdot n + D \cdot n^2 + n^3)$	Optimal	Malicious with
[GLS19]	$O(C \cdot n + n^3)$	$O(C \cdot n + n^3)$	Resilience $n = 3t + 1$	GOD
Our result	$O(C \cdot n + D \cdot n^2 + n^5)$	$O(C + D \cdot n + n^5)$	$n = 3t \mp 1$	
[DN07]	$O(C \cdot n)$	$O(C \cdot n)$	Optimal	Semi-honest
[EGPS22]	$O(C \cdot n)$	<i>O</i> (<i>C</i>)	Resilience n = 2t + 1	

Theorem.

Let n = 3t + 1. For any arithmetic circuit C over \mathbb{F} of size $|\mathbb{F}| \ge 2n$ of size |C| and depth D, there is an information-theoretic MPC protocol against a fully malicious adversary controlling at most t corrupted parties with perfect security. The communication is $O(|C| + D \cdot n + n^5)$ elements for the online phase and $O(|C| \cdot n + D \cdot n^2 + n^4)$ elements for the offline phase.



A Relative Mention – Round complexity

• A line of works [ALR11, AAY22, AAPP23] focuses on optimizing

communication without O(n) overhead in the round complexity.

Reference	Overall Communication	Online Communication	Round complexity	Security
[AAPP23]	$O(C \cdot n + D \cdot n^2 + n^4)$		O(D)	n = 3t + 1
[GLS19]	$O(C \cdot n + n^3)$	$O(C \cdot n + n^3)$	O(D+n)	Malicious with
Our result	$O(C \cdot n + D \cdot n^2 + n^5 \cdot \log n)$	$O(C + D \cdot n + n^5 \cdot \log n)$	$O(D+n^2)$	GOD
If expected constant-round BA and BC in [AC24] are used.				

A Relative Mention – Round complexity

• A line of works [ALR11, AAY22, AAPP23] focuses on optimizing

communication without O(n) overhead in the round complexity.

Reference	Overall Communication	Online Communication	Round complexity	Security
[AAPP23]	$O(C \cdot n + D \cdot n^2 + n^4)$		O(D)	n = 3t + 1
[GLS19]	$O(C \cdot n + n^3)$	$O(C \cdot n + n^3)$	O(D+n)	Malicious with
Our result	$O(C \cdot n + D \cdot n^2 + n^5 \cdot \log n)$	$O(C + D \cdot n + n^5 \cdot \log n)$	$O(D+n^2)$	GOD
If expected constant-round BA and BC in [AC24] are used.				

A Relative Mention – Circuit depth overhead

• [GLS19] removes the quadratic communication overhead in the

circuit depth.

Reference	Overall Communication	Online Communication	Round complexity	Security
[AAPP23]	$O(C \cdot n + D \cdot n^2 + n^4)$		O(D)	n = 3t + 1
[GLS19]	$O(C \cdot n + n^3)$	$O(C \cdot n + n^3)$	O(D+n)	Malicious with
Our result	$O(C \cdot n + D \cdot n^2 + n^5 \cdot \log n)$	$O(C + D \cdot n + n^5 \cdot \log n)$	$O(D+n^2)$	GOD

A Relative Mention – Circuit depth overhead

• [GLS19] removes the quadratic communication overhead in the

circuit depth.

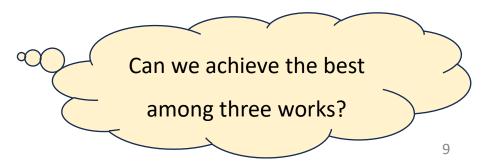
Reference	Overall Communication	Online Communication	Round complexity	Security
[AAPP23]	$O(C \cdot n + D \cdot n^2 + n^4)$		O(D)	n = 3t + 1
[GLS19]	$O(C \cdot n + n^3)$	$O(C \cdot n + n^3)$	O(D+n)	Malicious with
Our result	$O(C \cdot n + D \cdot n^2 + n^5 \cdot \log n)$	$O(C + D \cdot n + n^5 \cdot \log n)$	$O(D+n^2)$	GOD

A Relative Mention – Circuit depth overhead

• [GLS19] removes the quadratic communication overhead in the

circuit depth.

Reference	Overall Communication	Online Communication	Round complexity	Security
[AAPP23]	$O(C \cdot n + D \cdot n^2 + n^4)$		O(D)	n = 3t + 1
[GLS19]	$O(C \cdot n + n^3)$	$O(C \cdot n + n^3)$	O(D+n)	Malicious with
Our result	$O(C \cdot n + D \cdot n^2 + n^5 \cdot \log n)$	$O(C + D \cdot n + n^5 \cdot \log n)$	$O(D+n^2)$	GOD



Outline

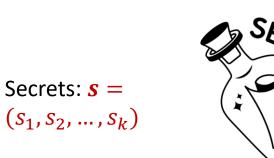
• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

verification + identifying dispute pairs

• Towards general circuits via sharing transformation

Packed Shamir Secret Sharing



Parameters:

- pack size k
- degree-(t + k 1)

Use a degree-(t + k - 1) polynomial:

- Each share is an evaluation point of this polynomial.
- Any *t* shares are independent of the secrets.
- Any t + k shares can reconstruct the secrets.

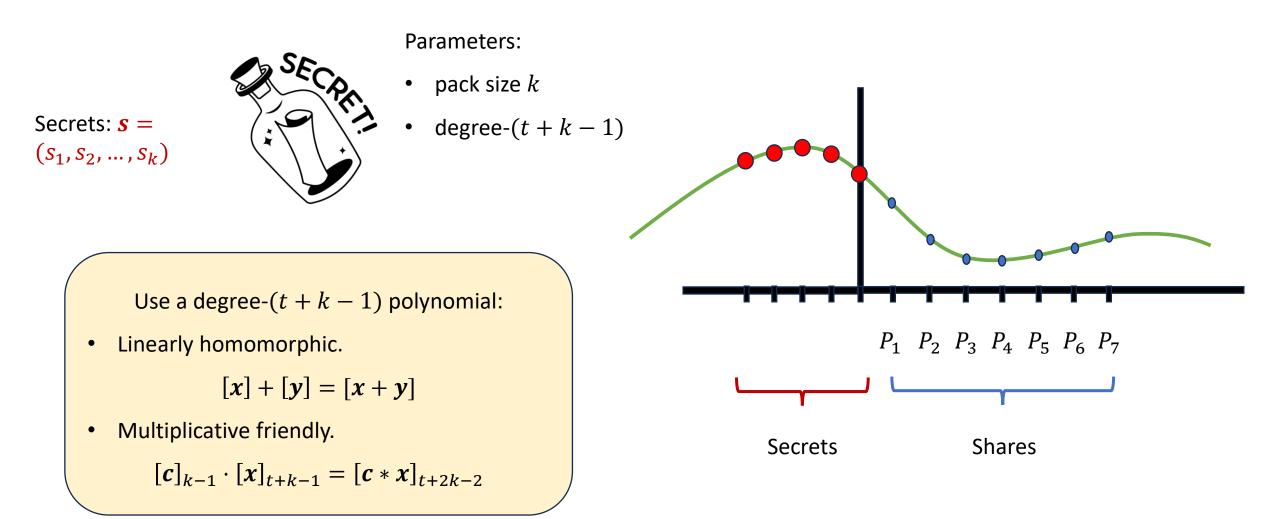
11

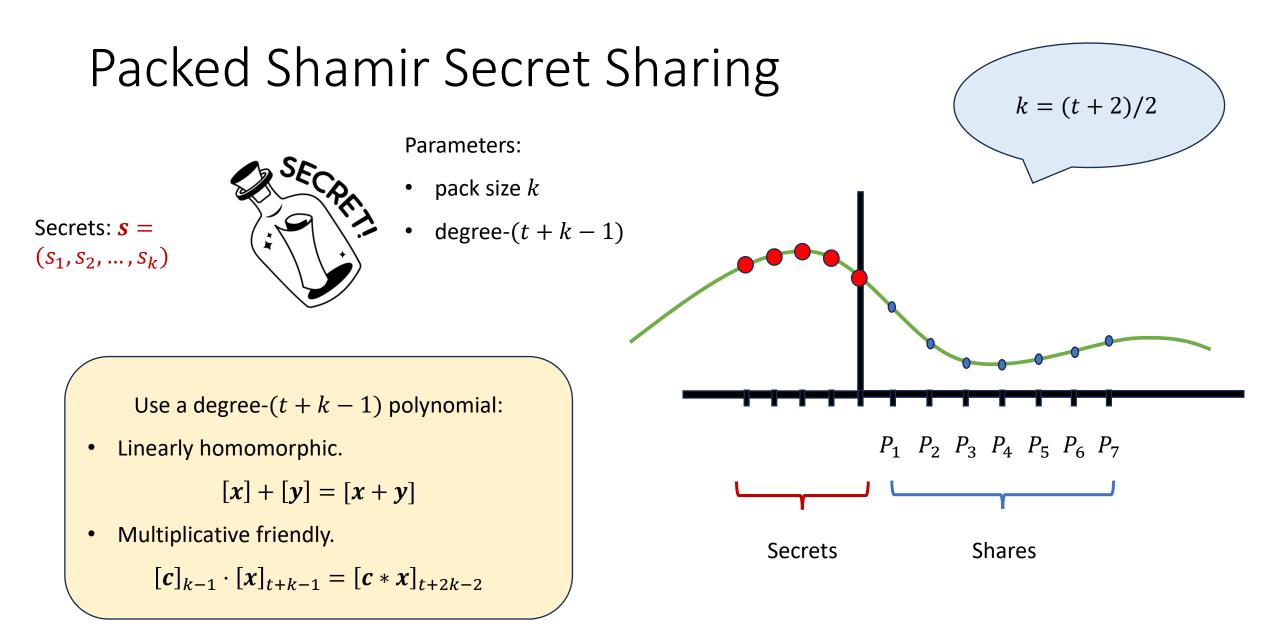
 P_1 P_2 P_3 P_4 P_5 P_6 P_7

Shares

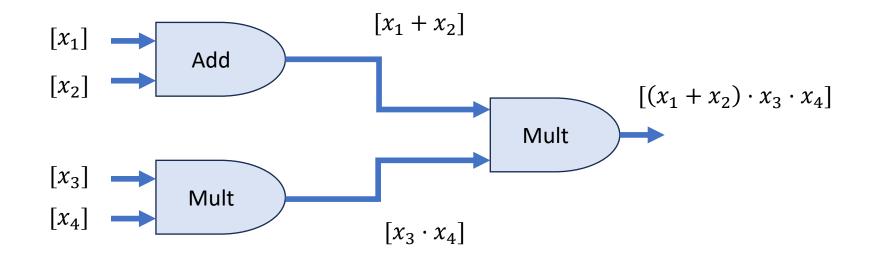
Secrets

Packed Shamir Secret Sharing

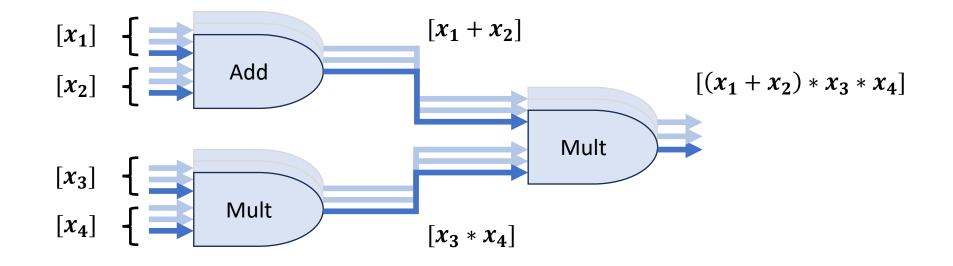




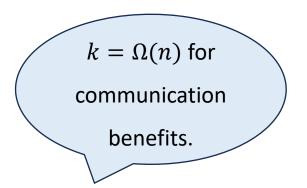
Generic Approach

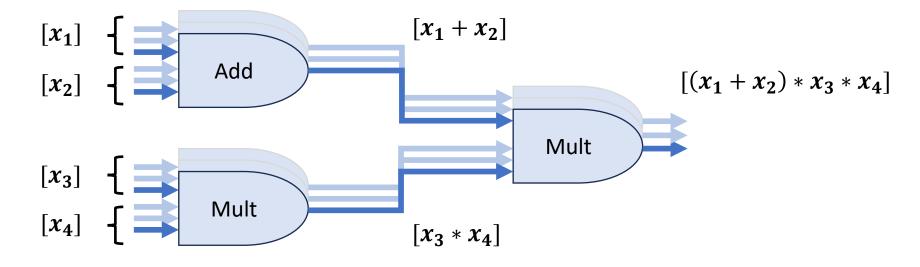


Generic Approach (SIMD Circuit)



Generic Approach (SIMD Circuit)





Multiplication

- Preprocessing: $([a]_{t+k-1}, [b]_{t+k-1}, [c]_{t+k-1})$
- Input: $[x]_{t+k-1}, [y]_{t+k-1}$.

Multiplication

- Preprocessing: $([a]_{t+k-1}, [b]_{t+k-1}, [c]_{t+k-1})$
- Input: $[x]_{t+k-1}, [y]_{t+k-1}$.

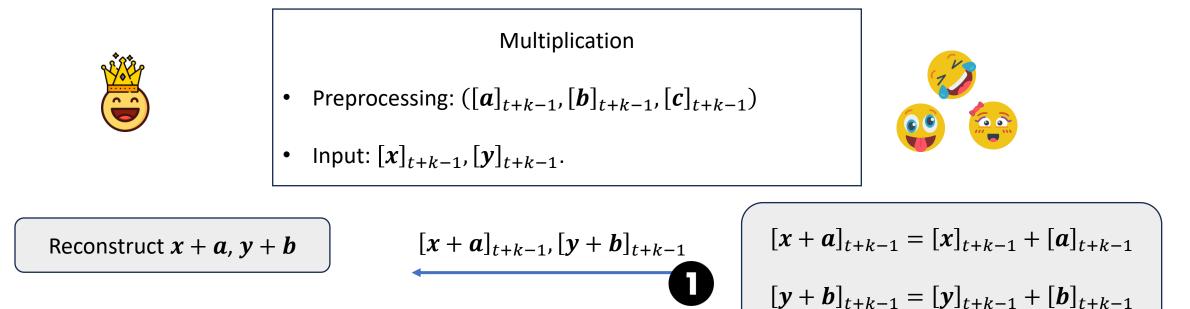
$$[x + a]_{t+k-1} = [x]_{t+k-1} + [a]_{t+k-1}$$
$$[y + b]_{t+k-1} = [y]_{t+k-1} + [b]_{t+k-1}$$

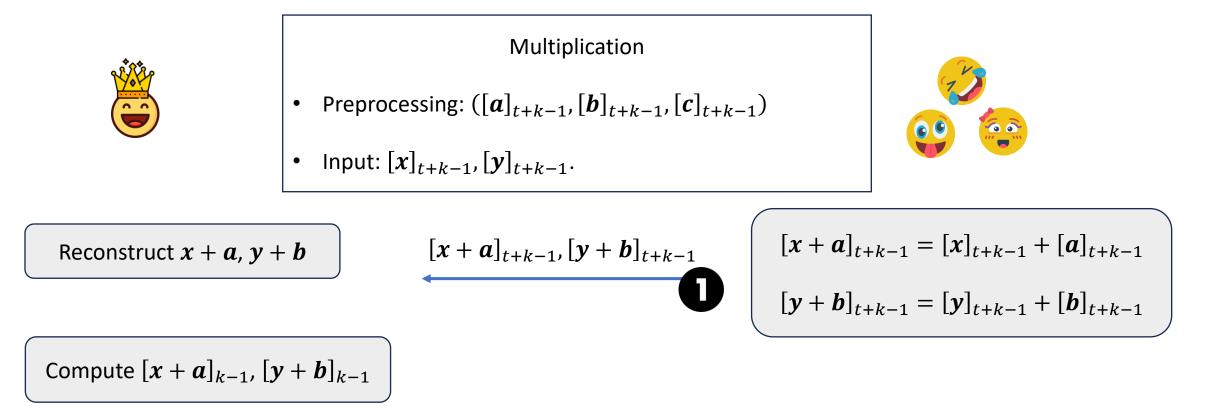
Multiplication

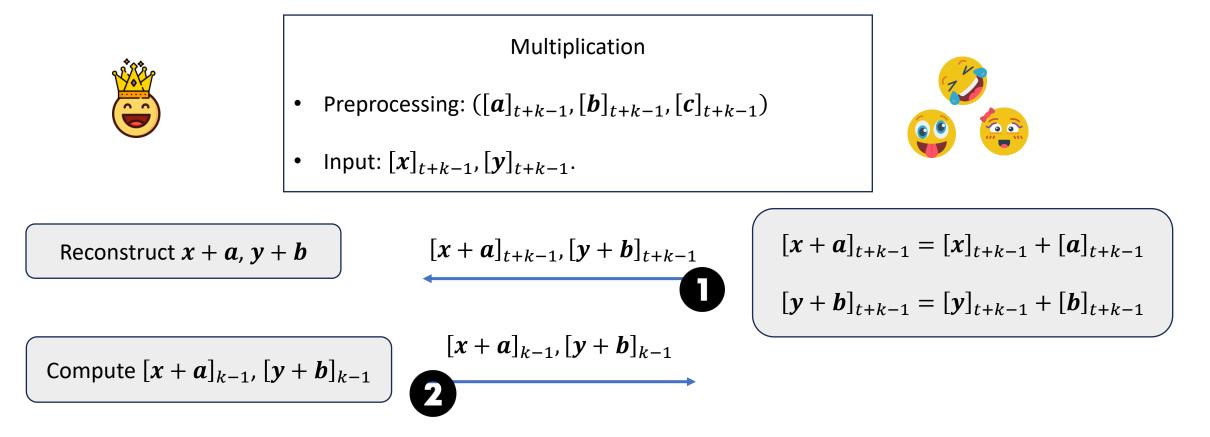
- Preprocessing: $([a]_{t+k-1}, [b]_{t+k-1}, [c]_{t+k-1})$
- Input: $[x]_{t+k-1}, [y]_{t+k-1}$.

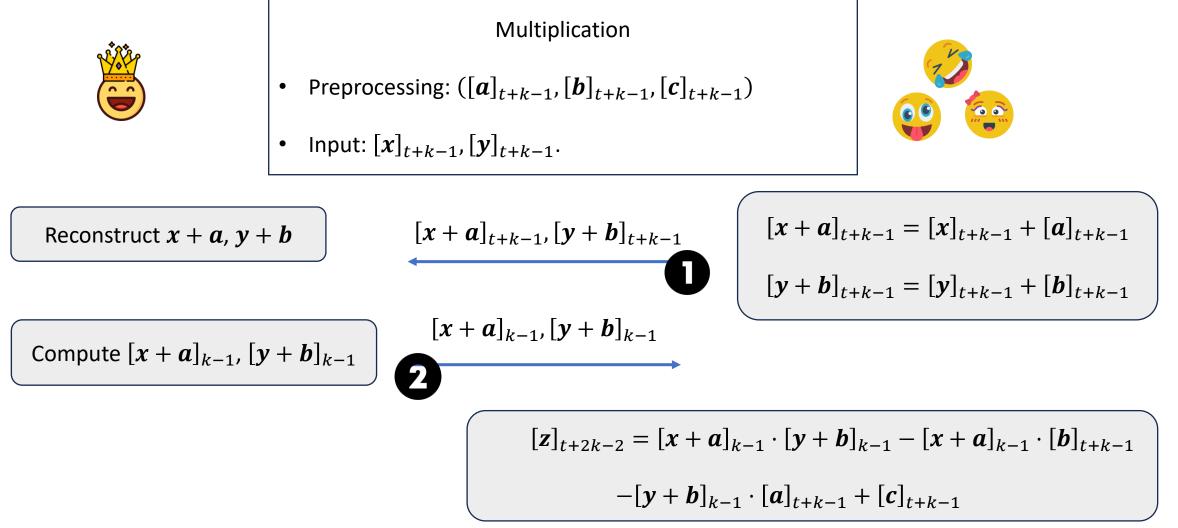
$$[x+a]_{t+k-1}, [y+b]_{t+k-1}$$

$$[x + a]_{t+k-1} = [x]_{t+k-1} + [a]_{t+k-1}$$
$$[y + b]_{t+k-1} = [y]_{t+k-1} + [b]_{t+k-1}$$









Degree Reduction

- Preprocessing: $([r]_{t+2k-2}, [r]_{t+k-1})$.
- Output: $[x * y]_{t+k-1}$

Degree Reduction

- Preprocessing: $([r]_{t+2k-2}, [r]_{t+k-1})$.
- Output: $[x * y]_{t+k-1}$

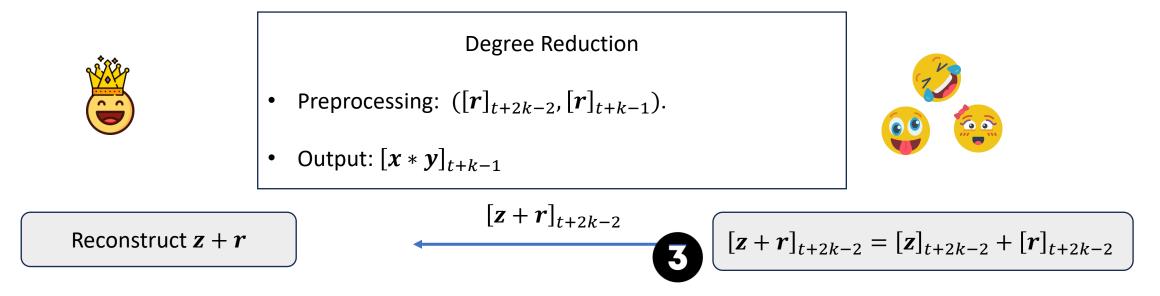
$$[\mathbf{z} + \mathbf{r}]_{t+2k-2} = [\mathbf{z}]_{t+2k-2} + [\mathbf{r}]_{t+2k-2}$$

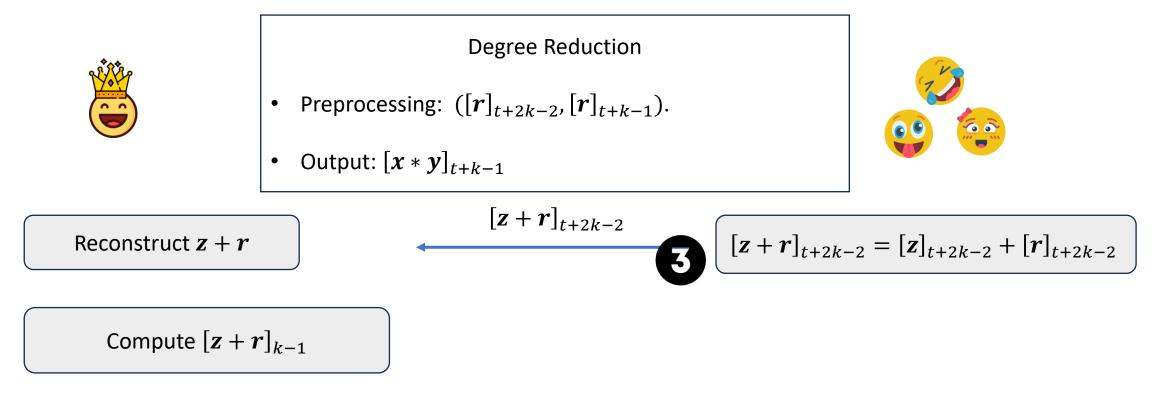
Degree Reduction

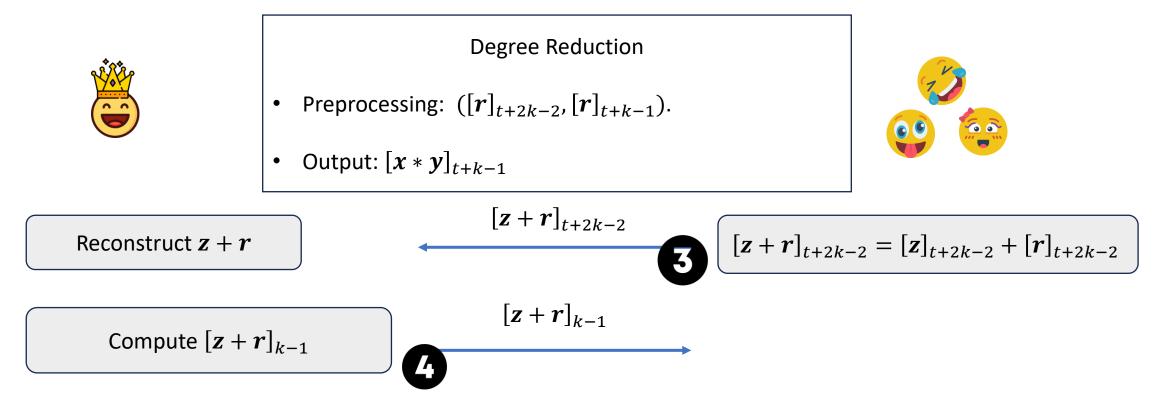
- Preprocessing: $([r]_{t+2k-2}, [r]_{t+k-1})$.
- Output: $[x * y]_{t+k-1}$

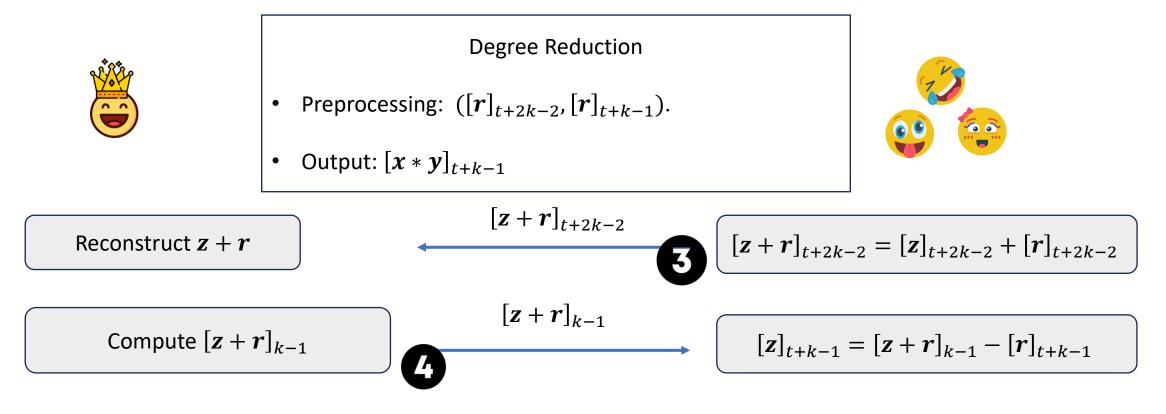
$$[z+r]_{t+2k-2}$$

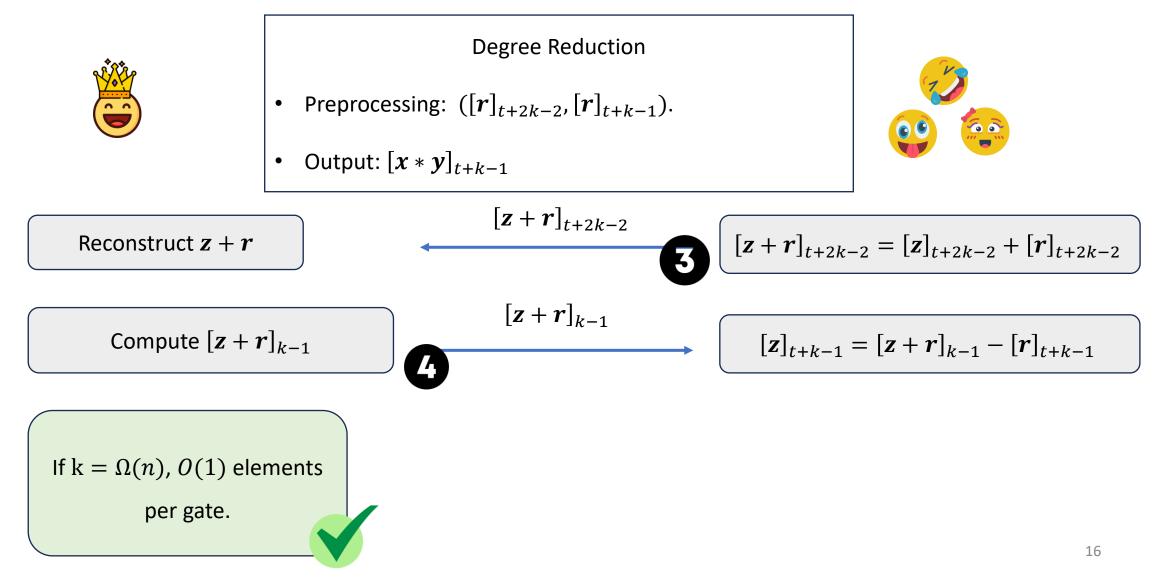
$$[z+r]_{t+2k-2} = [z]_{t+2k-2} + [r]_{t+2k-2}$$

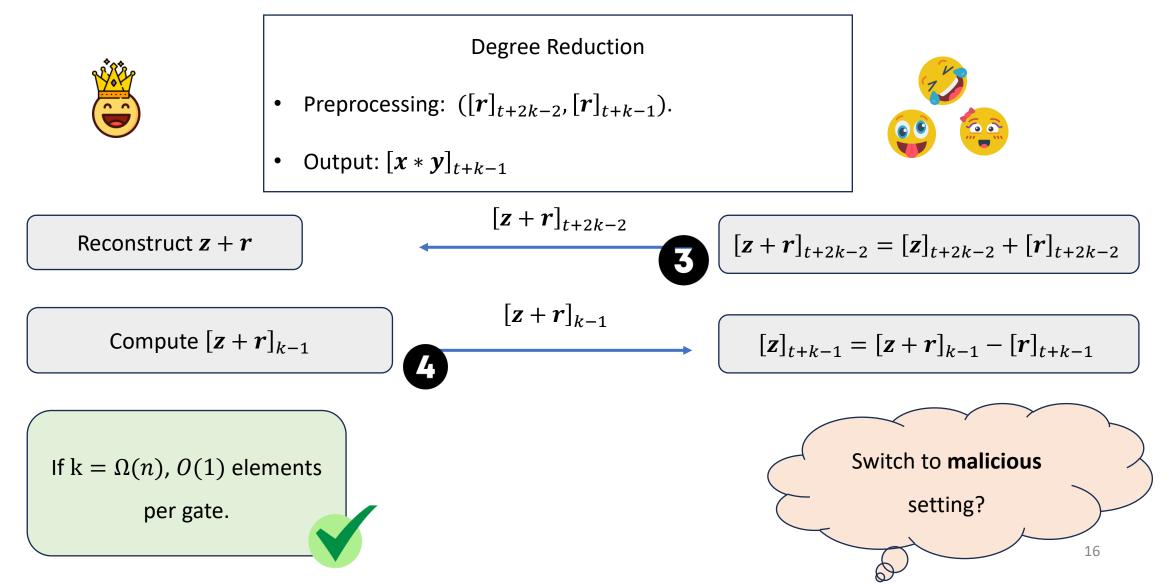


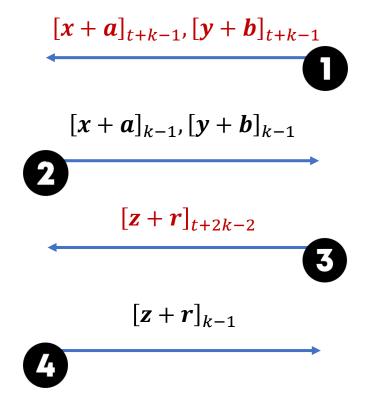


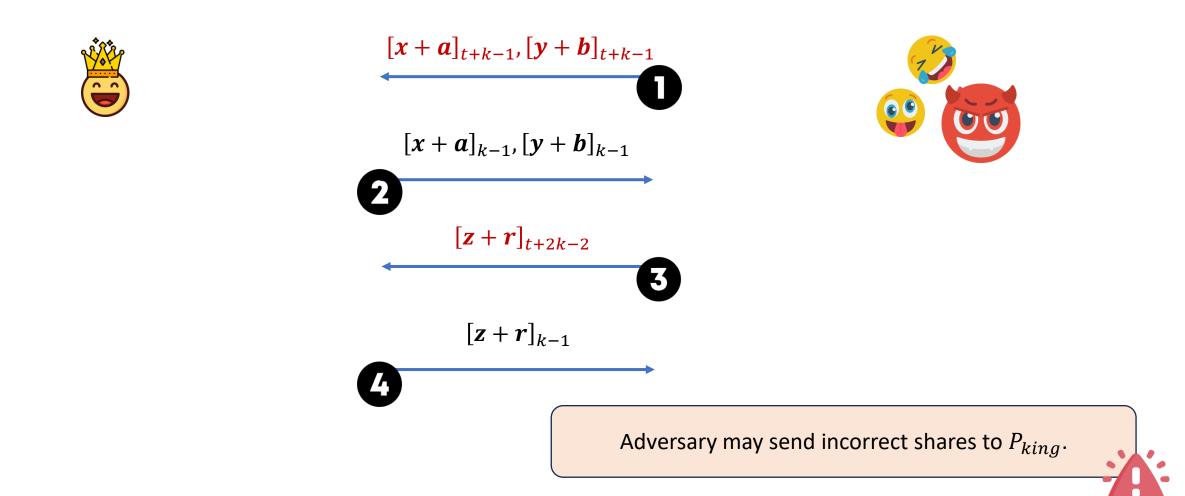


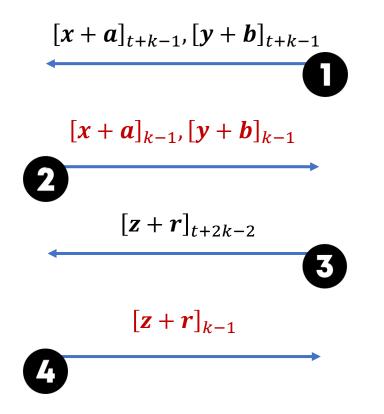


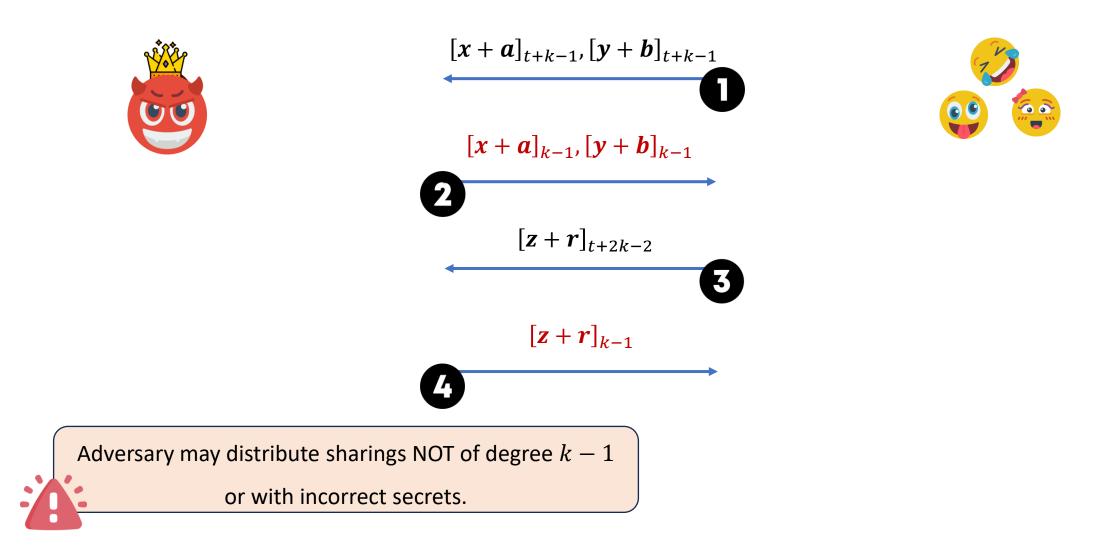












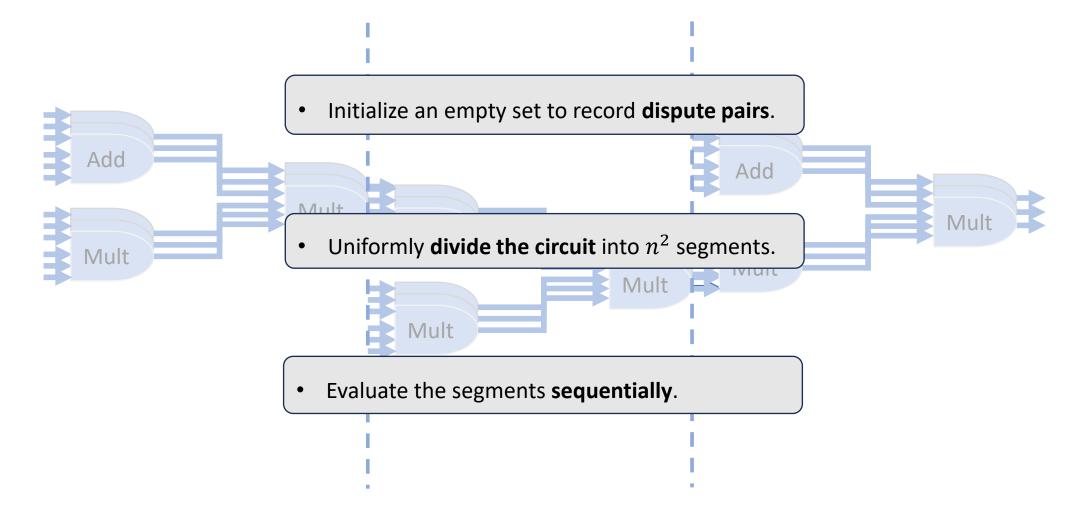
Outline

• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

verification + identifying dispute pairs

• Towards general circuits via sharing transformation

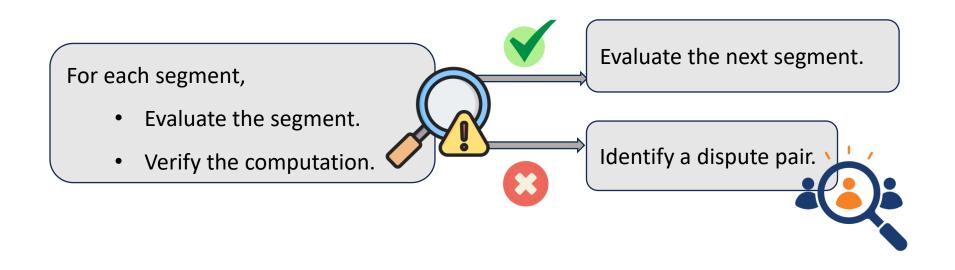


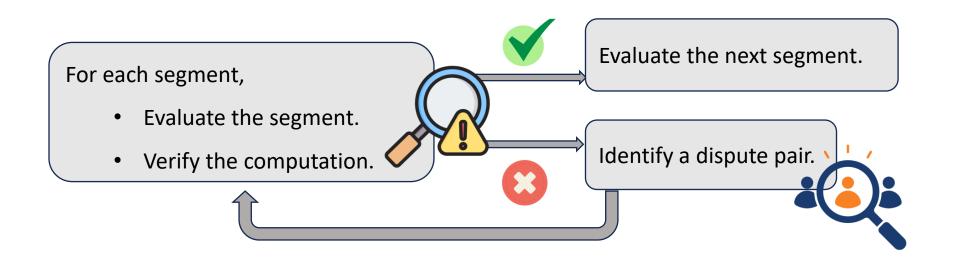
For each segment,

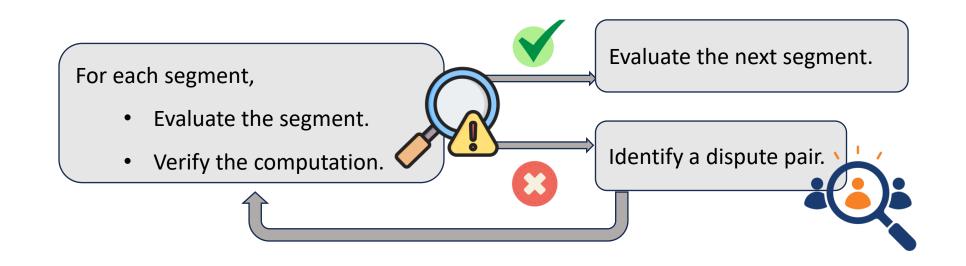
- Evaluate the segment.
- Verify the computation.

For each segment,

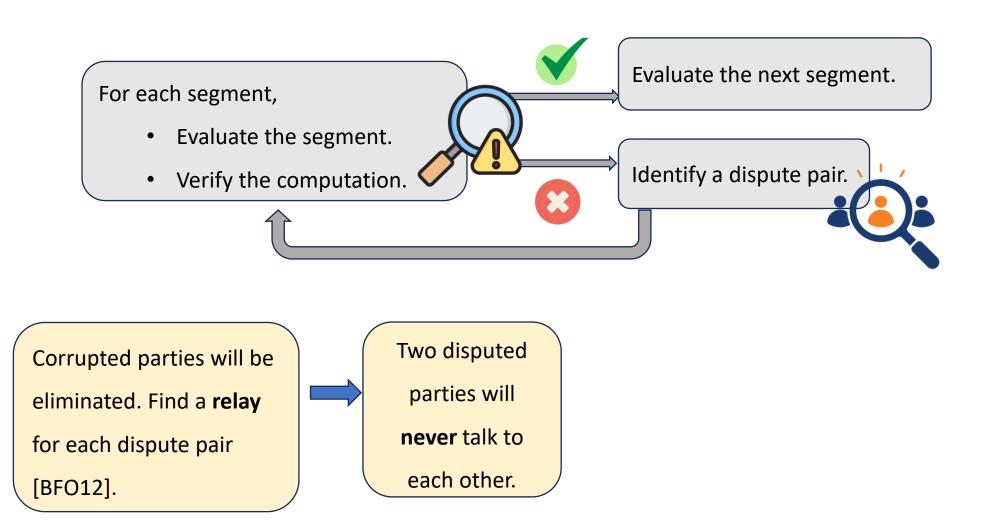
- Evaluate the segment.
- Verify the computation.

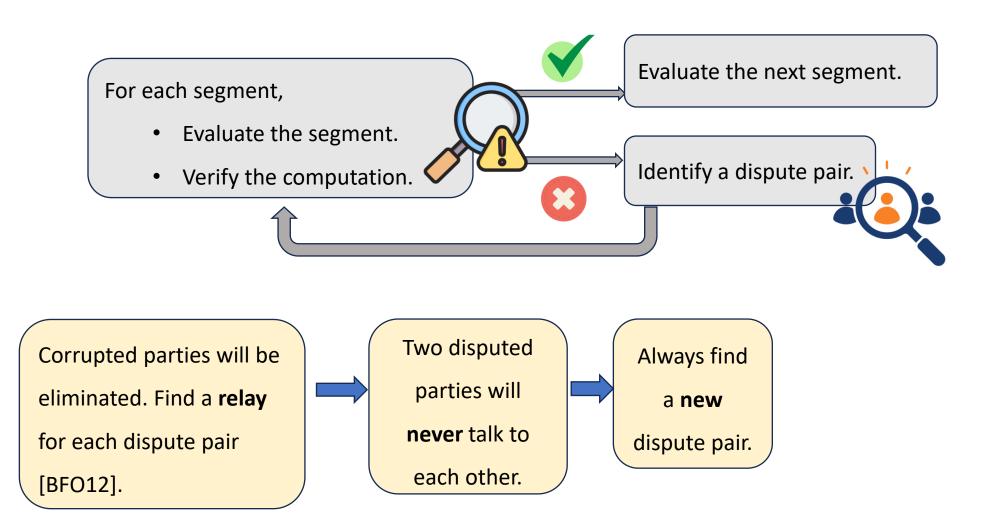


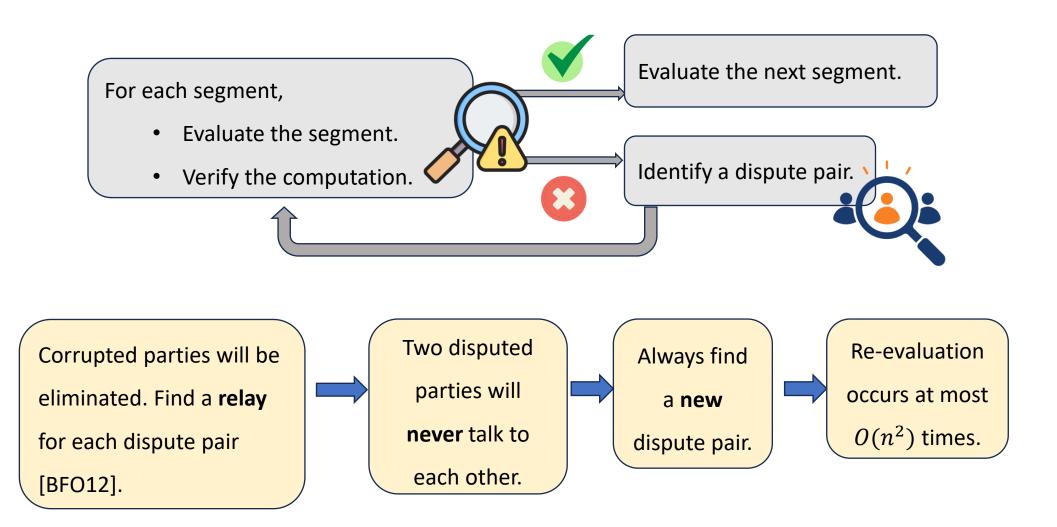


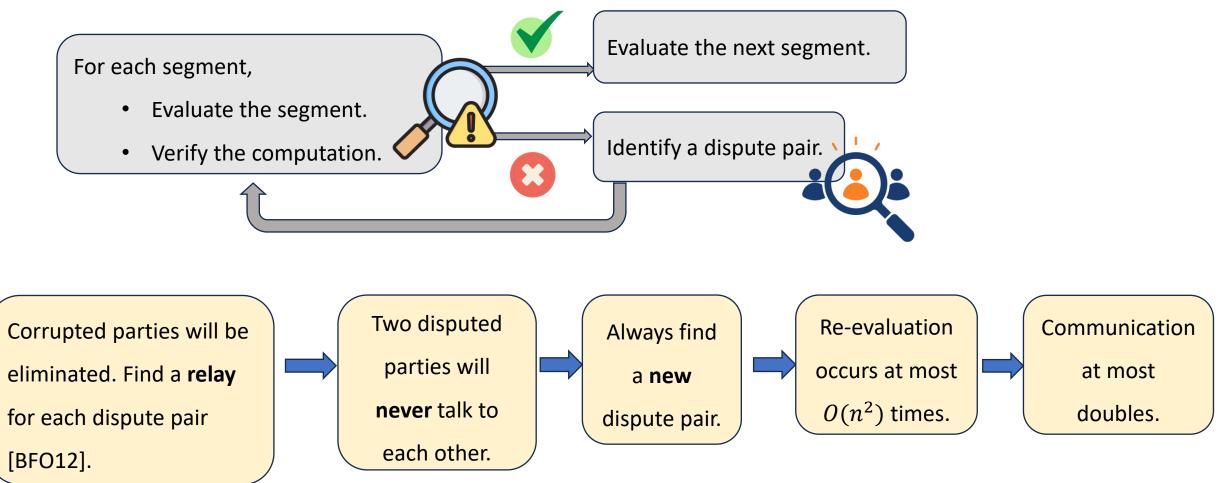


Corrupted parties will be eliminated. Find a **relay** for each dispute pair [BFO12].









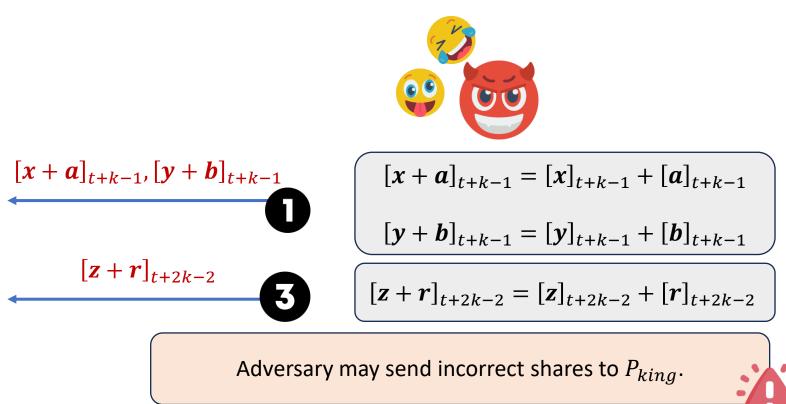
Outline

• Review: semi-honest protocol in [EGPS22]

• Towards full security via dispute control:

verification + identifying dispute pairs

• Towards general circuits via sharing transformation

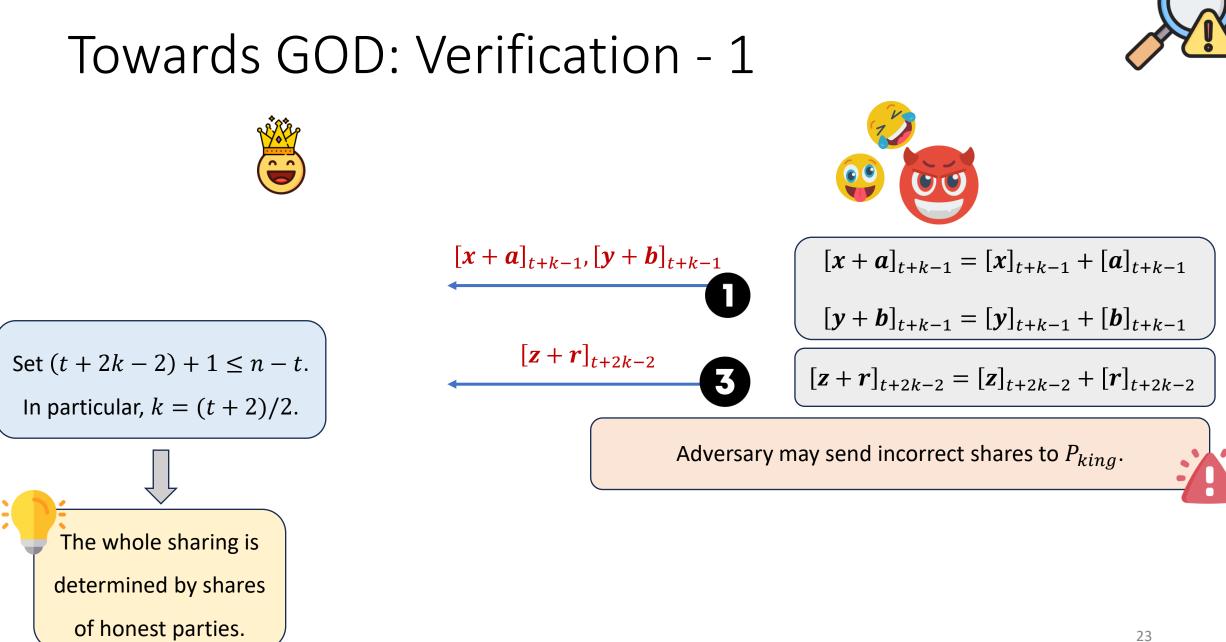


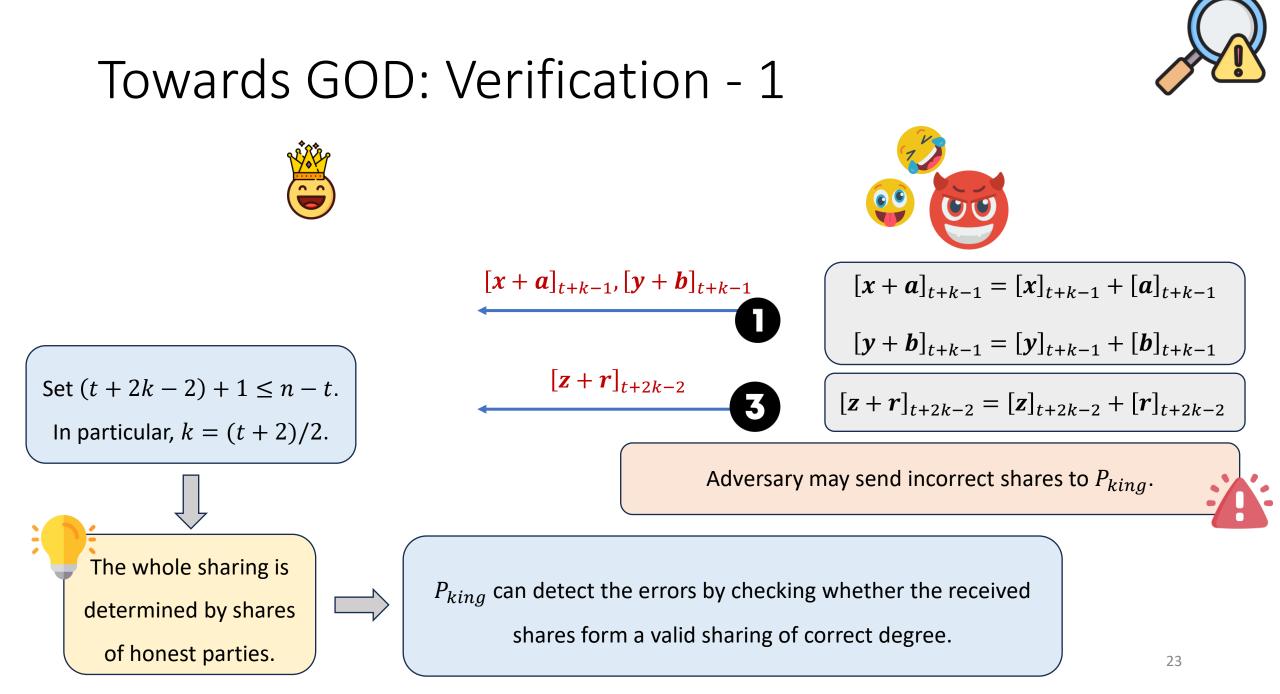
 $[x + a]_{t+k-1}, [y + b]_{t+k-1}$ $[x + a]_{t+k-1}, [y + b]_{t+k-1}$ $[x + a]_{t+k-1} = [x]_{t+k-1} + [a]_{t+k-1}$ $[y + b]_{t+k-1} = [y]_{t+k-1} + [b]_{t+k-1}$ $[x + a]_{t+k-1} = [y]_{t+k-1} + [b]_{t+k-1}$ $[x + a]_{t+k-1} = [x]_{t+k-1} + [a]_{t+k-1}$ $[x + a]_{t+k-1} = [x]_{t+k-1} + [a]_{t+k-1}$

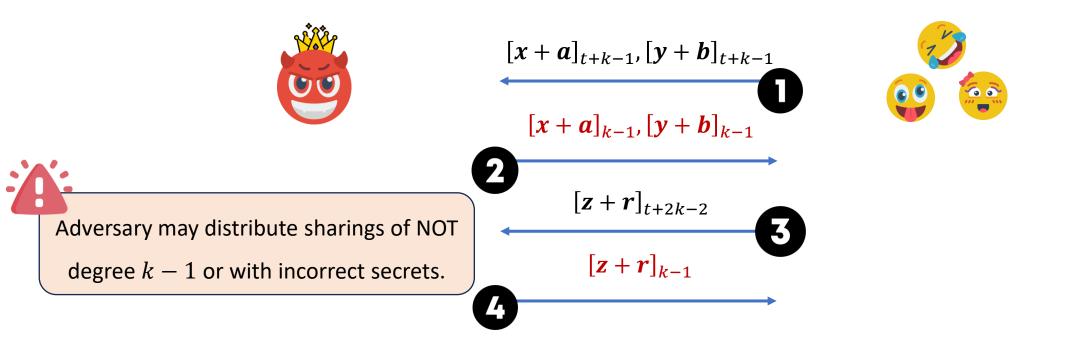
Adversary may send incorrect shares to P_{king} .

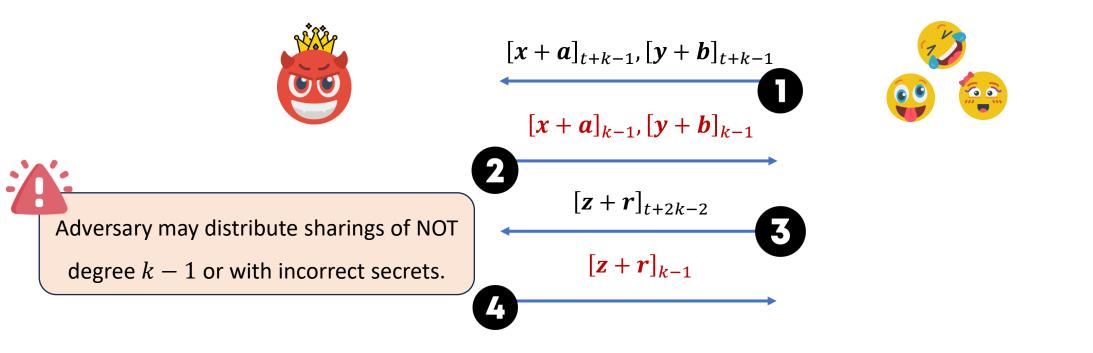
The whole sharing is determined by shares of honest parties.

23

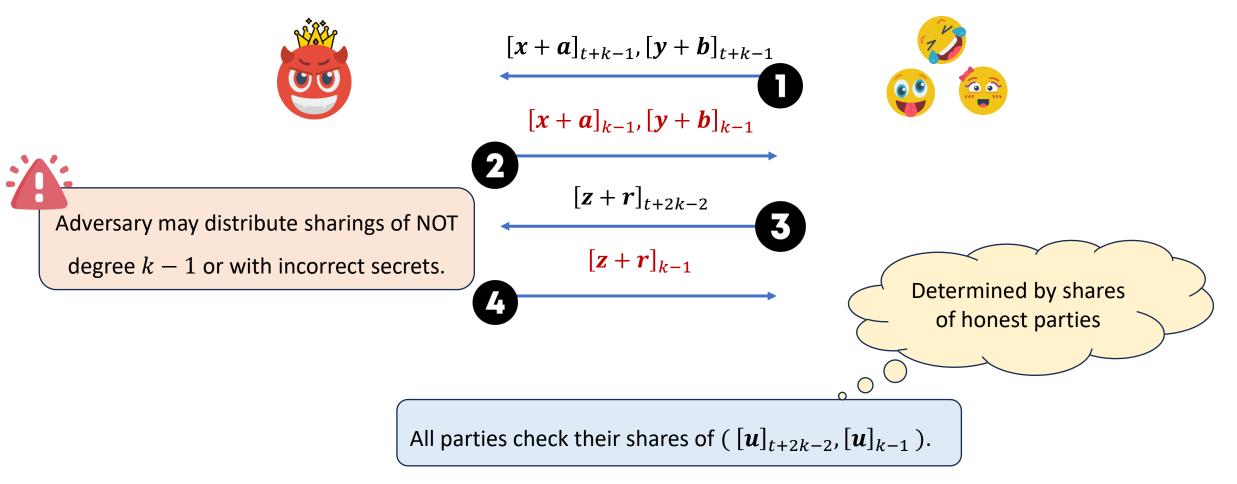








All parties check their shares of ($[\boldsymbol{u}]_{t+2k-2}, [\boldsymbol{u}]_{k-1}$).

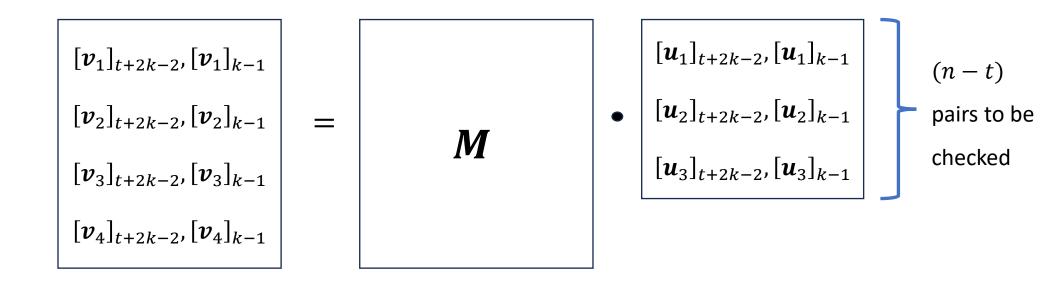


All parties check their shares of ($[u]_{t+2k-2}, [u]_{k-1}$).

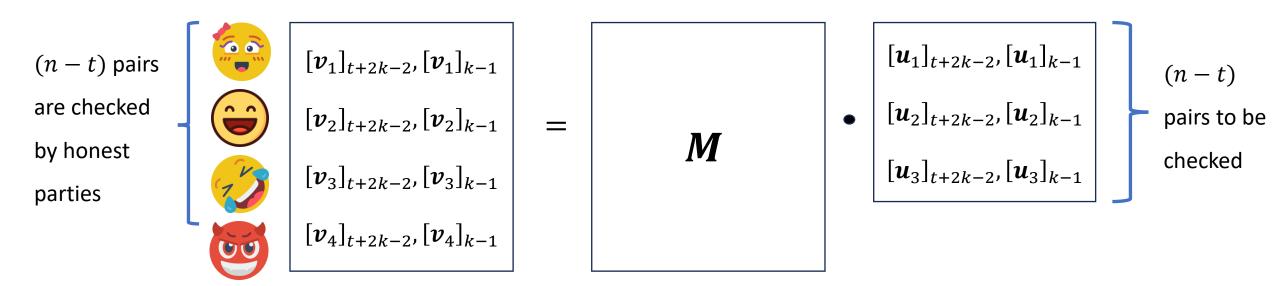
All parties check their shares of ($[u]_{t+2k-2}, [u]_{k-1}$).

$$\begin{bmatrix} [u_1]_{t+2k-2}, [u_1]_{k-1} \\ [u_2]_{t+2k-2}, [u_2]_{k-1} \\ [u_3]_{t+2k-2}, [u_3]_{k-1} \end{bmatrix}$$
 (n-t)
pairs to be checked

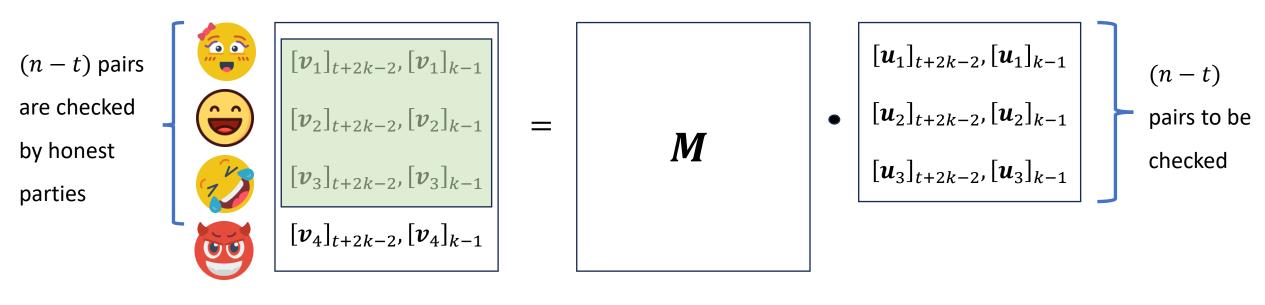
All parties check their shares of ($[\mathbf{u}]_{t+2k-2}, [\mathbf{u}]_{k-1}$).



All parties check their shares of ($[\boldsymbol{u}]_{t+2k-2}, [\boldsymbol{u}]_{k-1}$).

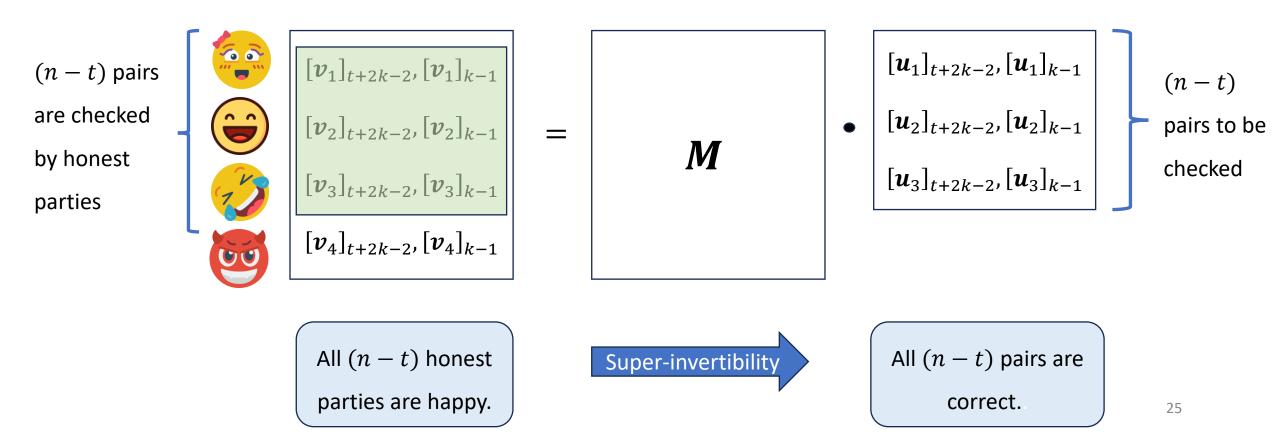


All parties check their shares of ($[\boldsymbol{u}]_{t+2k-2}, [\boldsymbol{u}]_{k-1}$).

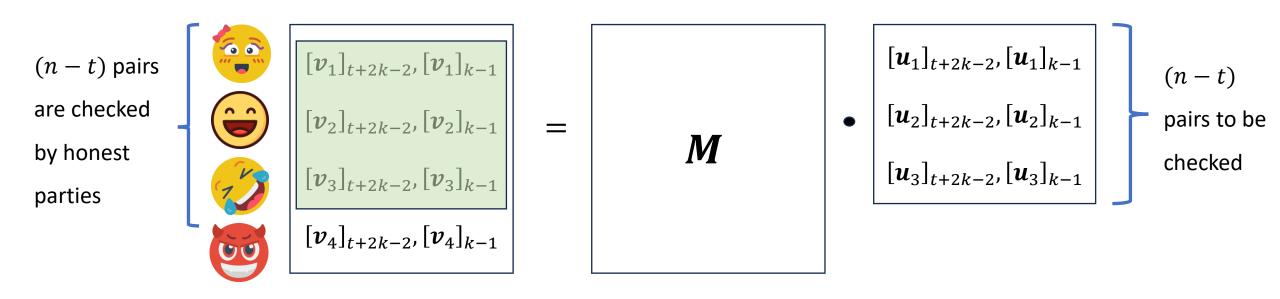


 $\left(\begin{array}{c} All \ (n-t) \ honest \\ parties are \ happy. \end{array}\right)$

All parties check their shares of ($[\boldsymbol{u}]_{t+2k-2}, [\boldsymbol{u}]_{k-1}$).



All parties check their shares of ($[\boldsymbol{u}]_{t+2k-2}, [\boldsymbol{u}]_{k-1}$).



Batch-wise verification: O(n) elements per pair.

Outline

• Review: semi-honest protocol in [EGPS22]

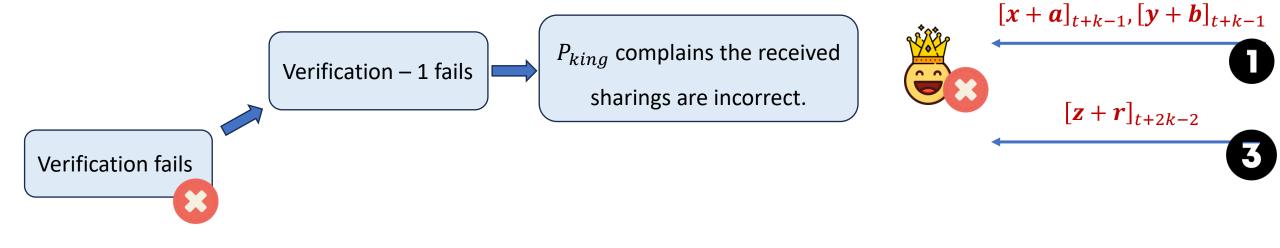
• Towards full security via dispute control:

verification + **identifying dispute pairs**

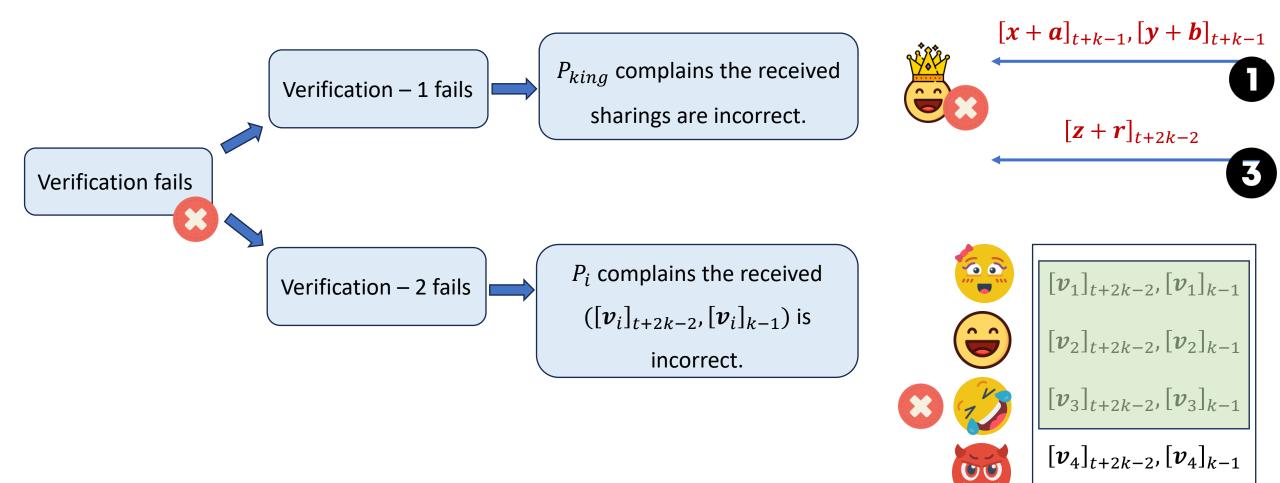
• Towards general circuits via sharing transformation

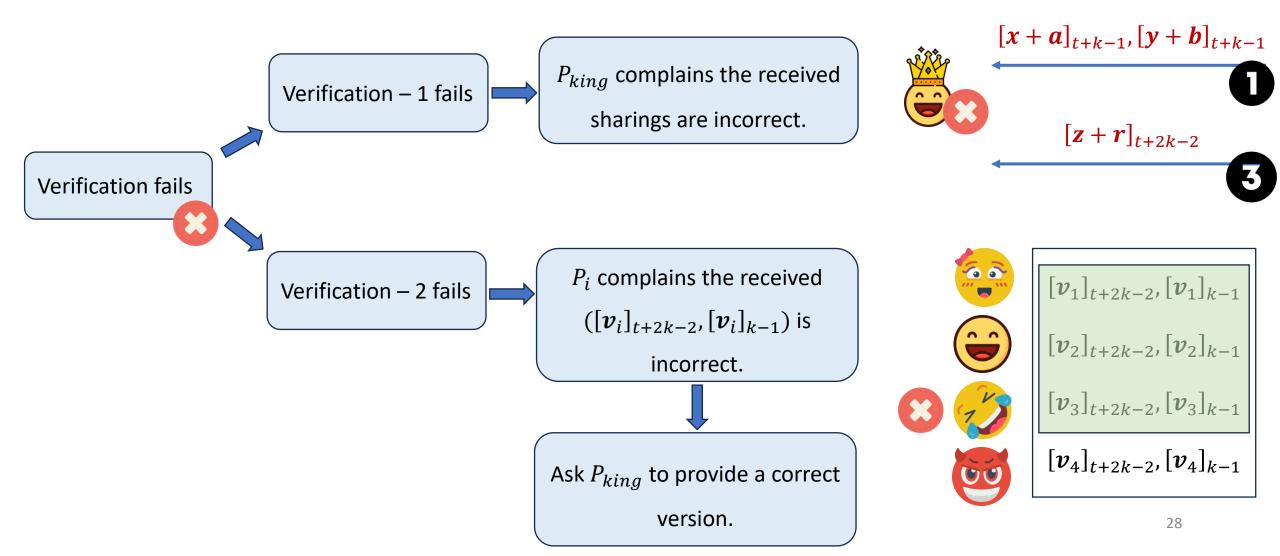
Towards GOD: Identifying Dispute Pairs

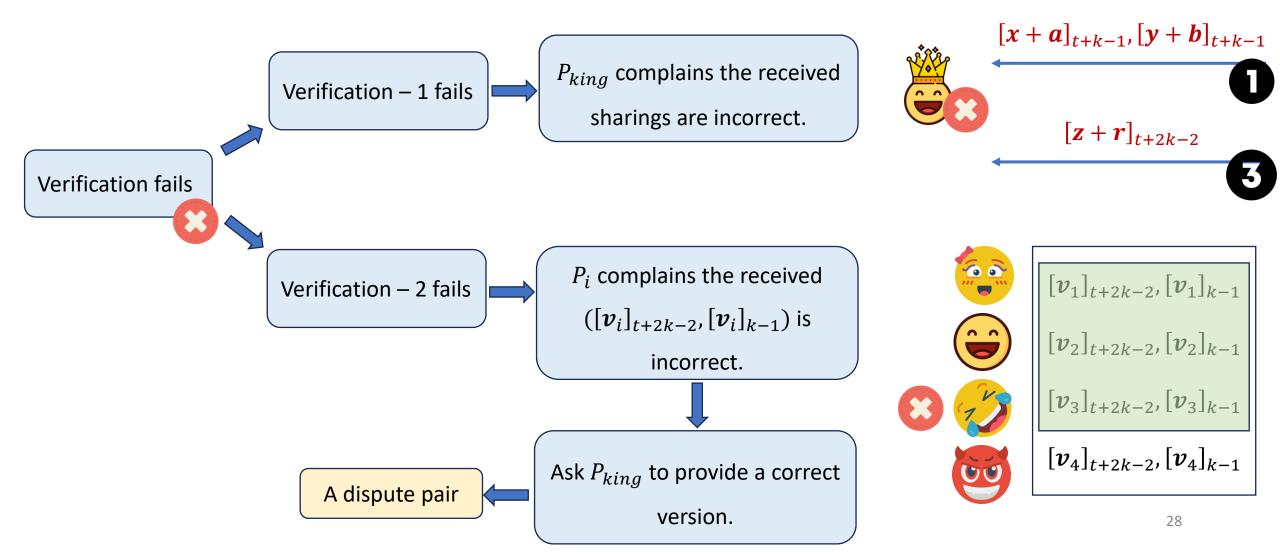
Towards GOD: Identifying Dispute Pairs



Towards GOD: Identifying Dispute Pairs

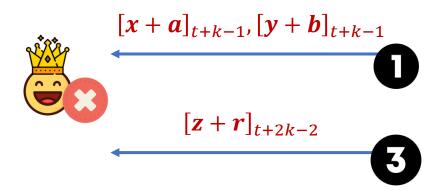


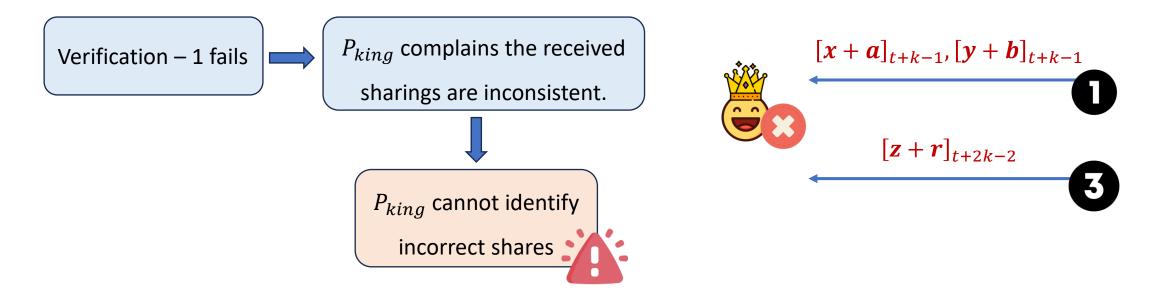


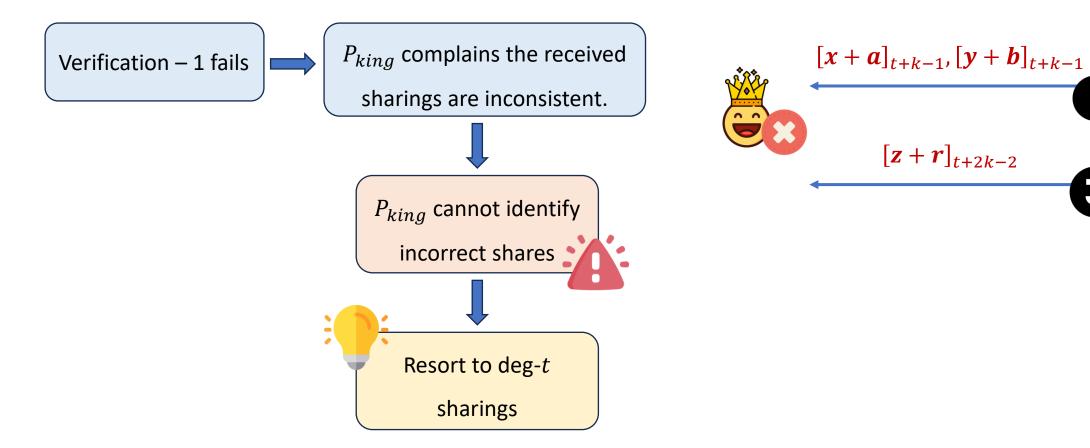


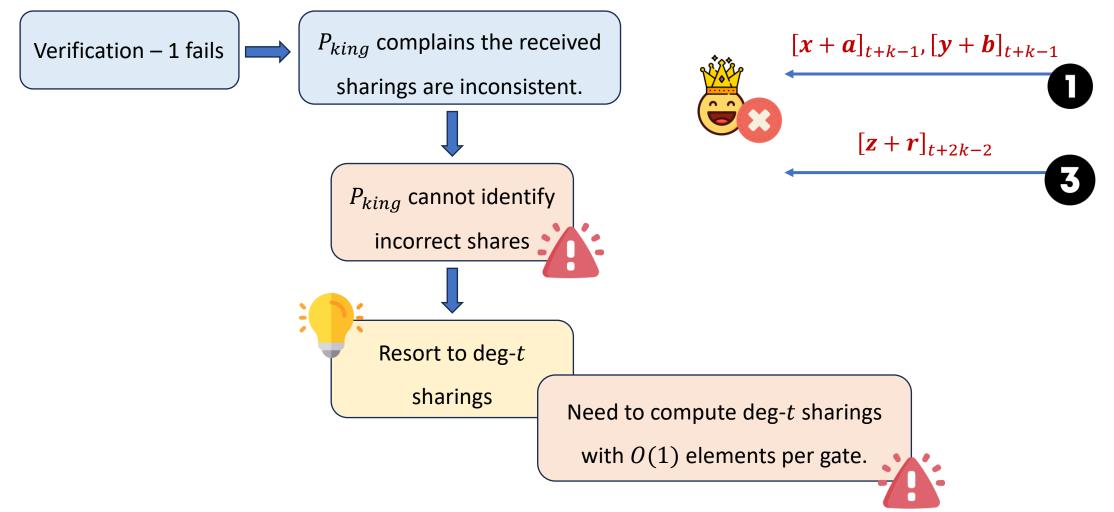
P_{king} complains the received sharings are inconsistent.

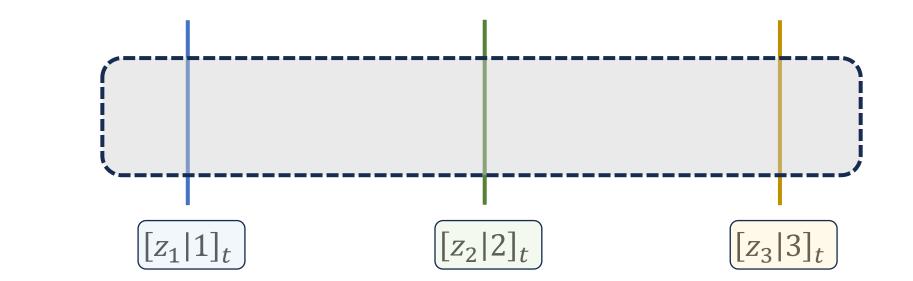
Verification – 1 fails



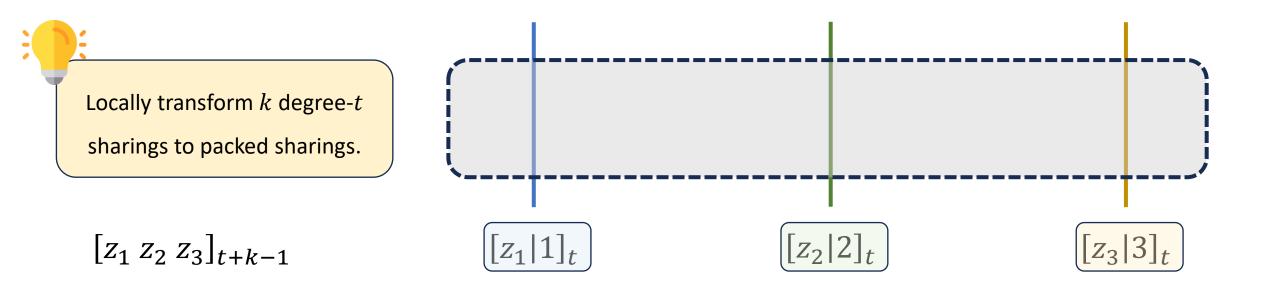


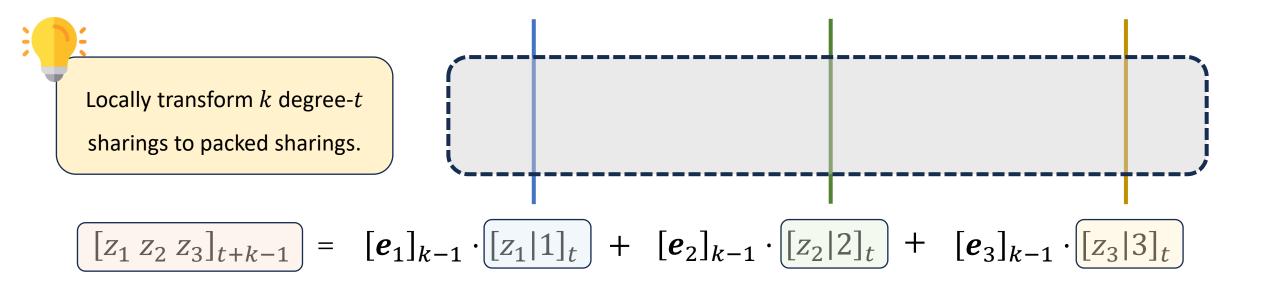


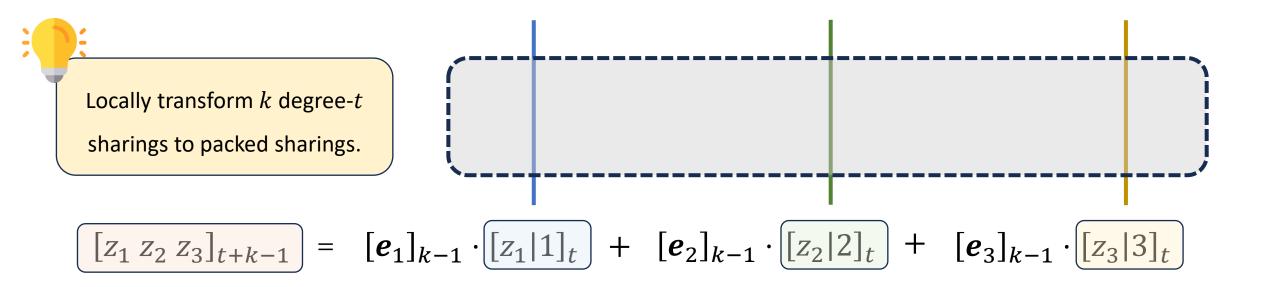


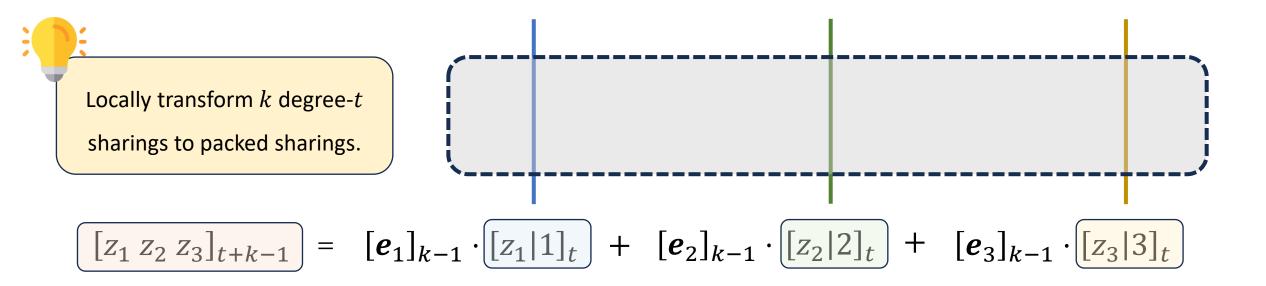


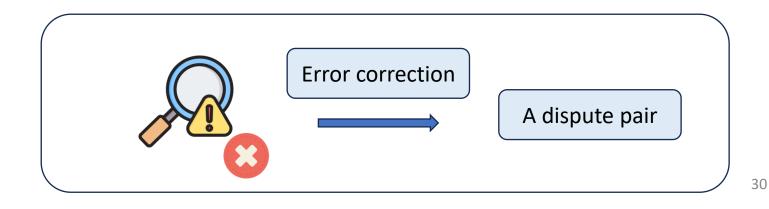
 $[z_1 \ z_2 \ z_3]_{t+k-1}$

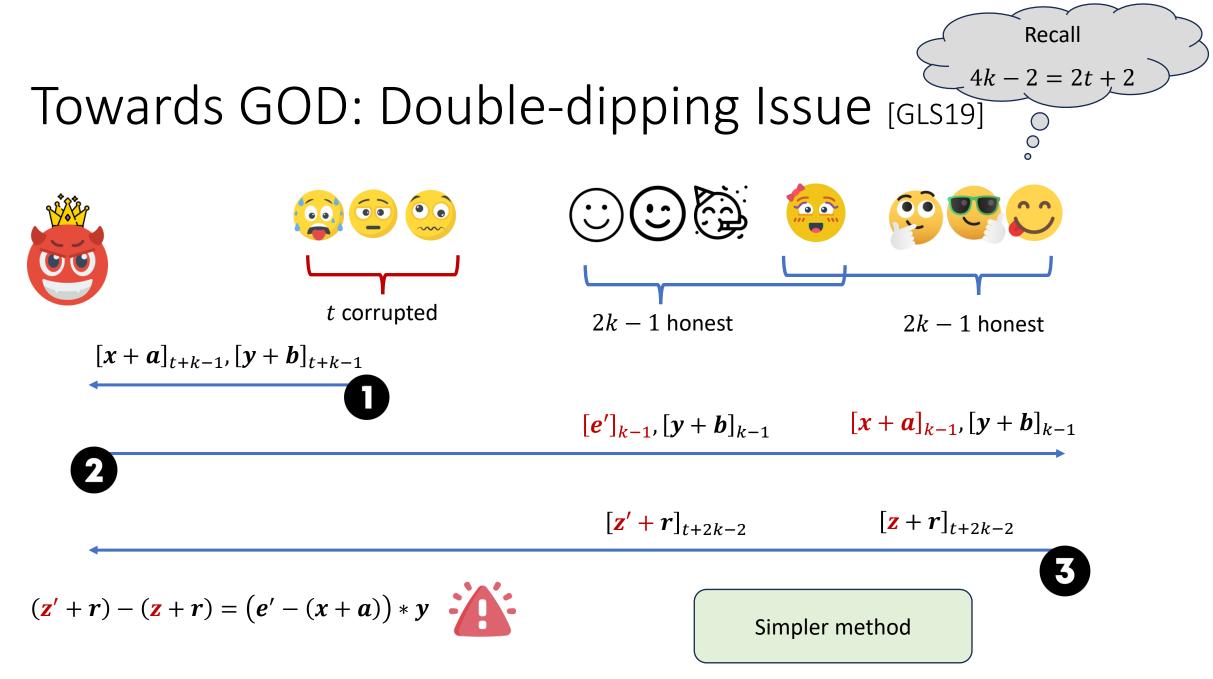












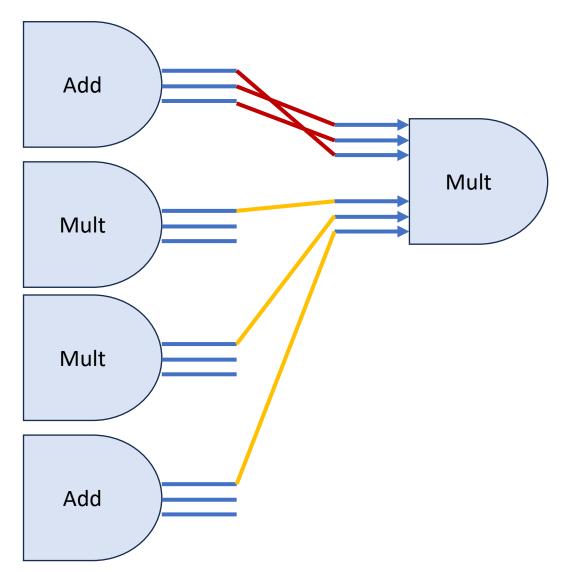
Outline

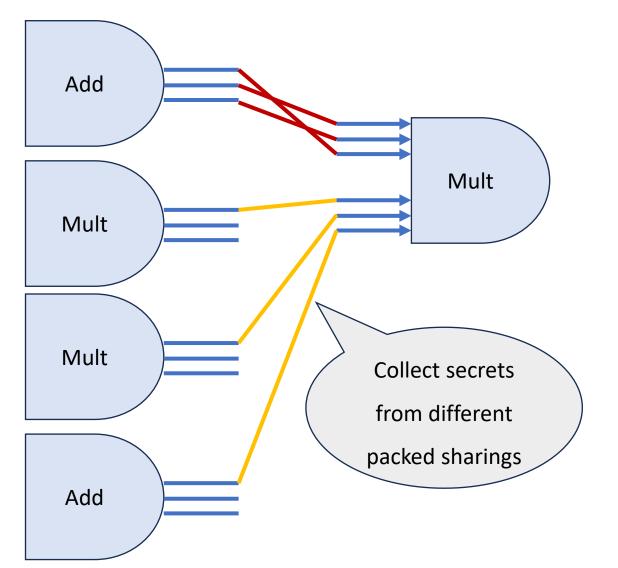
• Review: semi-honest protocol in [EGPS22]

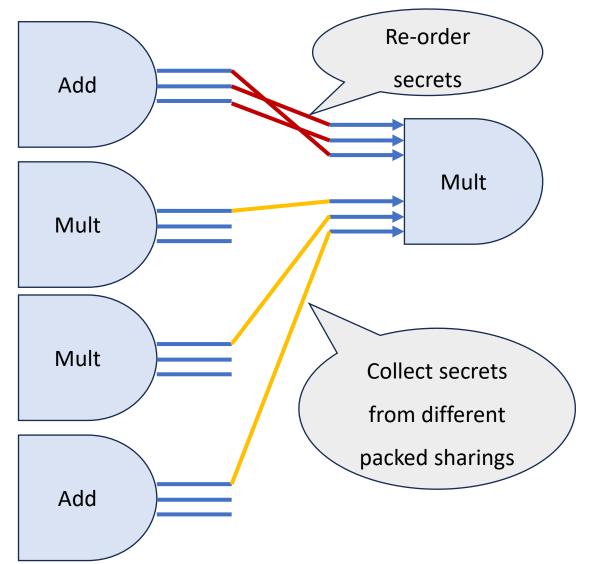
• Towards full security via dispute control:

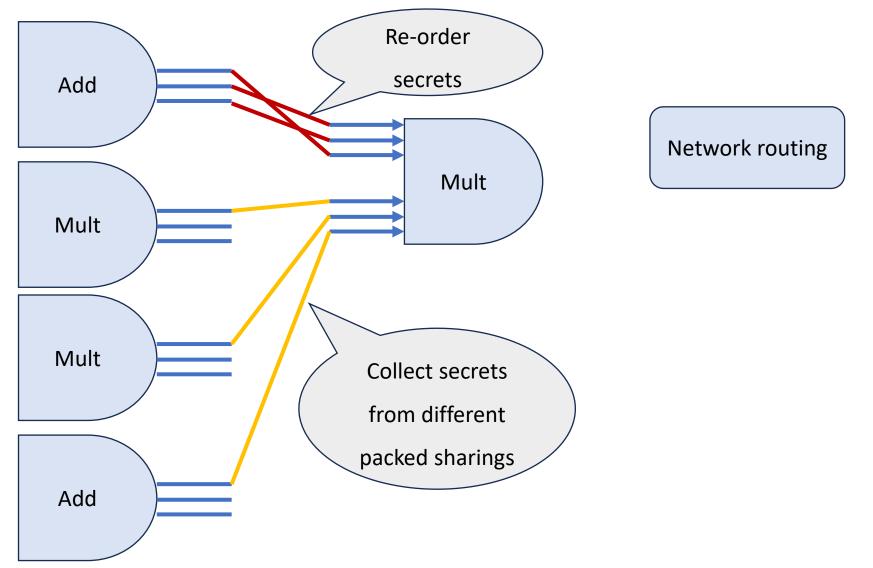
verification + identifying dispute pairs

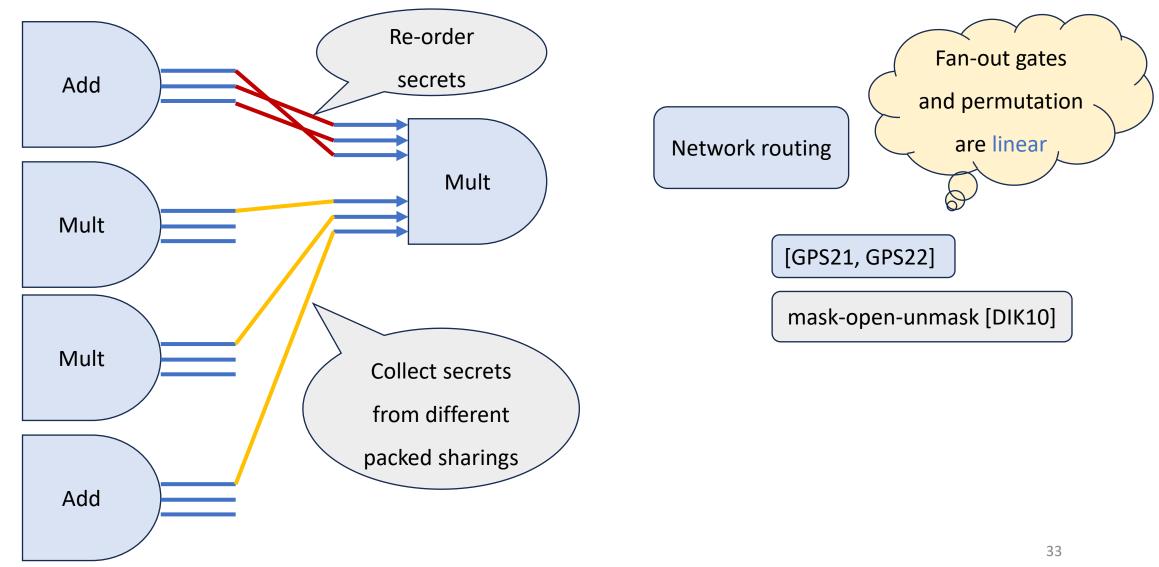
• Towards general circuits via sharing transformation

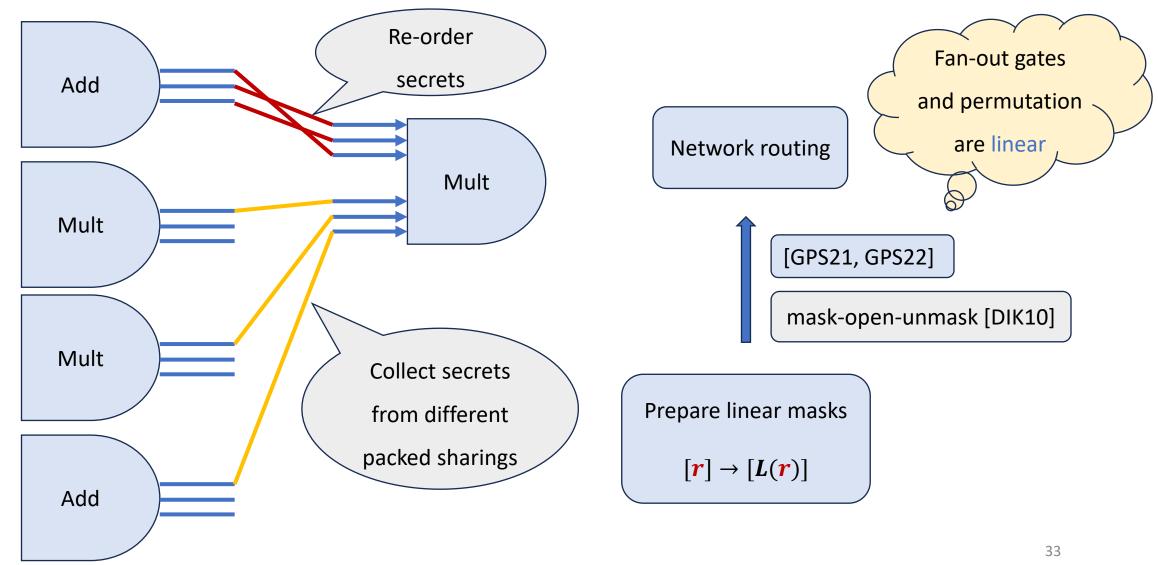












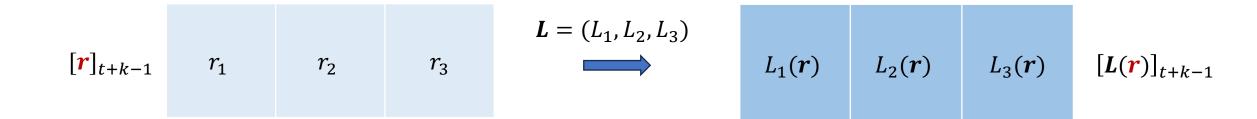
╋

Goal: Prepare $[\mathbf{r}]_{t+k-1}$, $[\mathbf{L}(\mathbf{r})]_{t+k-1}$

Different linear transformations *L*

Goal: Prepare $[\mathbf{r}]_{t+k-1}$, $[\mathbf{L}(\mathbf{r})]_{t+k-1}$

Different linear transformations *L*

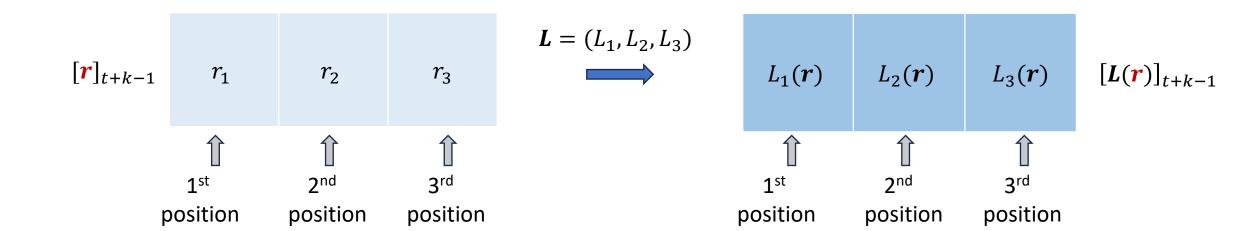


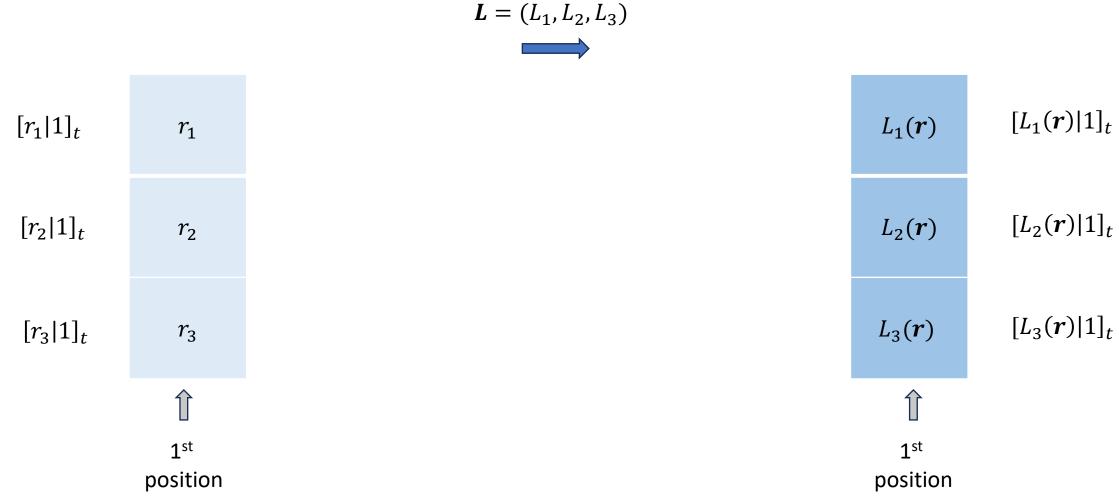
+

+

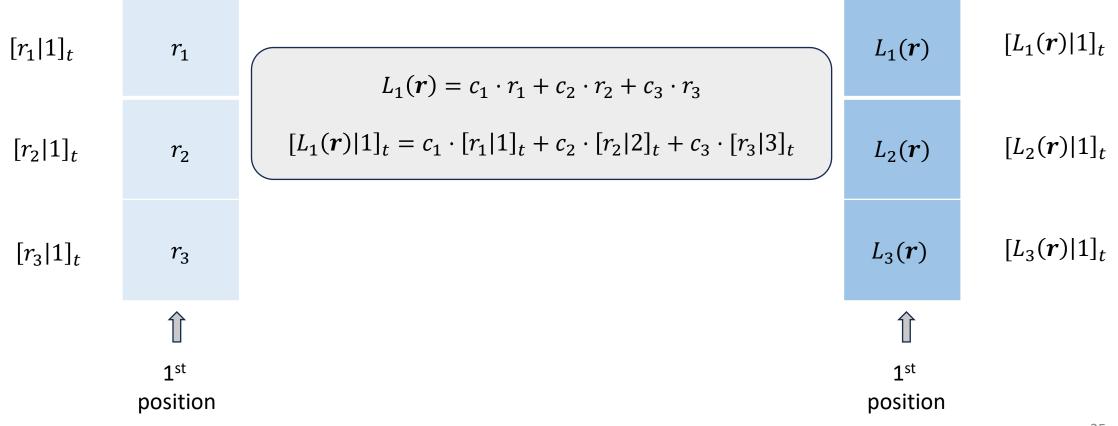
Goal: Prepare $[\mathbf{r}]_{t+k-1}$, $[\mathbf{L}(\mathbf{r})]_{t+k-1}$

Different linear transformations *L*

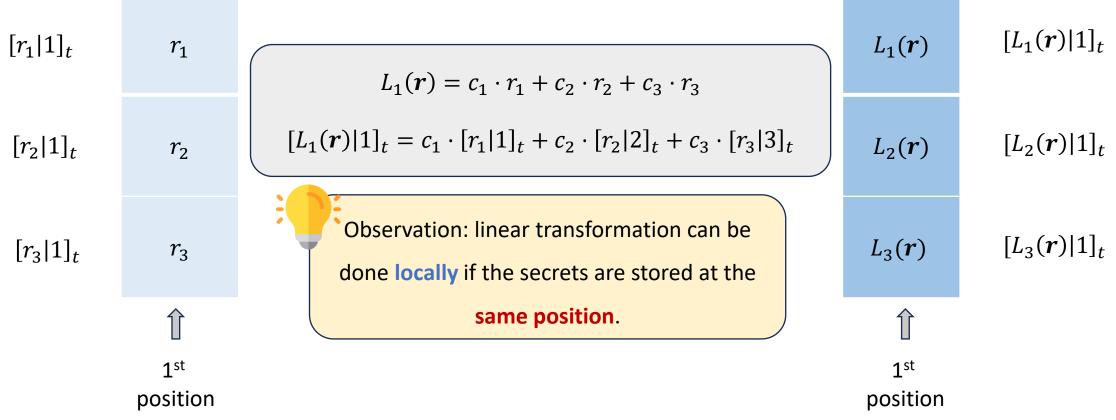




 $\boldsymbol{L} = (L_1, L_2, L_3)$



 $\boldsymbol{L} = (L_1, L_2, L_3)$



$$[r_{1}]_{t+k-1}, [L(r_{1})]_{t+k-1}$$

$$[r_{2}]_{t+k-1}, [\pi(r_{2})]_{t+k-1}$$

$$k \text{ transformations}$$

$$[r_{3}]_{t+k-1}, [P(r_{3})]_{t+k-1}$$

$$[r_{1}]_{t+k-1}, [L(r_{1})]_{t+k-1}$$

$$[r_{2}]_{t+k-1}, [\pi(r_{2})]_{t+k-1}$$

$$k \text{ transformations}$$

$$[r_{3}]_{t+k-1}, [P(r_{3})]_{t+k-1}$$

$$k \begin{bmatrix} [r_1]_{t+k-1} & r_{11} & r_{12} & r_{13} & \vdots & L_1(r_1) & L_2(r_1) & L_3(r_1) & [L(r_1)]_{t+k-1} \\ [r_2]_{t+k-1} & r_{21} & r_{22} & r_{23} & \vdots & n_1(r_2) & n_2(r_2) & n_3(r_2) & [\pi(r_2)]_{t+k-1} \\ [r_3]_{t+k-1} & r_{31} & r_{32} & r_{33} & P & P_1(r_3) & P_2(r_3) & P_3(r_3) & [P(r_3)]_{t+k-1} \end{bmatrix}$$

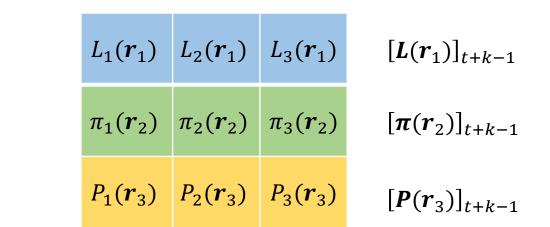
$[r_1]_{t+k-1}$	r_{11}	<i>r</i> ₁₂	<i>r</i> ₁₃		$L_1(\boldsymbol{r}_1)$	$L_2(r_1)$	$L_3(\boldsymbol{r}_1)$	$[\boldsymbol{L}(\boldsymbol{r}_1)]_{t+k-1}$
$[r_2]_{t+k-1}$	<i>r</i> ₂₁	<i>r</i> ₂₂	<i>r</i> ₂₃	π	$\pi_1(\boldsymbol{r}_2)$	$\pi_2(r_2)$	$\pi_3(\boldsymbol{r}_2)$	$[\boldsymbol{\pi}(\boldsymbol{r}_2)]_{t+k-1}$
$[r_3]_{t+k-1}$	r ₃₁	r ₃₂	r ₃₃		$P_{1}(r_{3})$	$P_2(r_3)$	$P_{3}(r_{3})$	$[P(r_3)]_{t+k-1}$

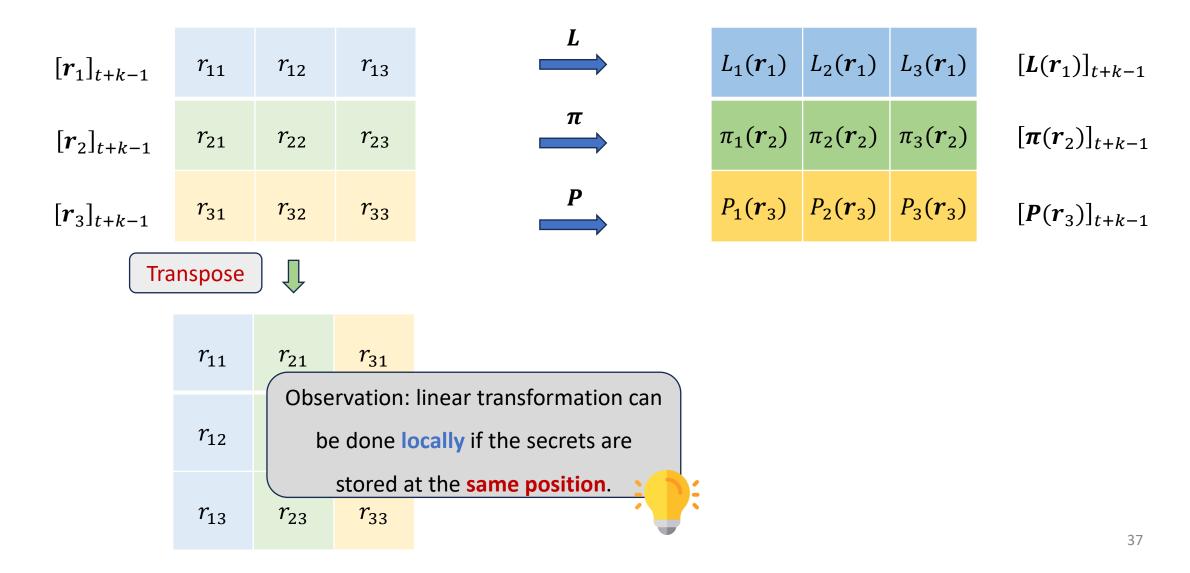
L

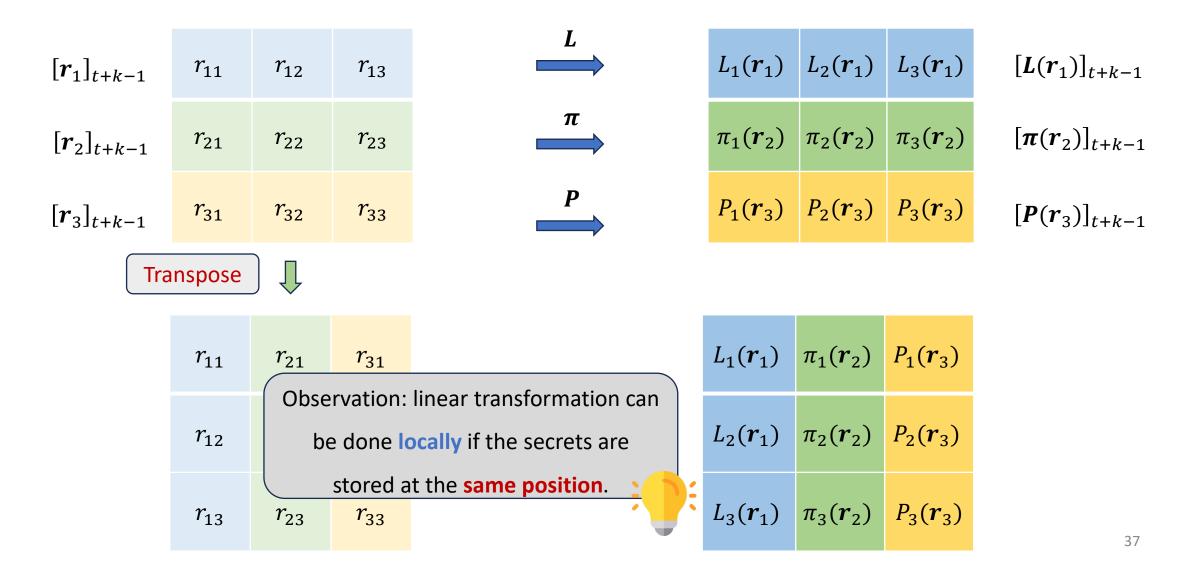
π

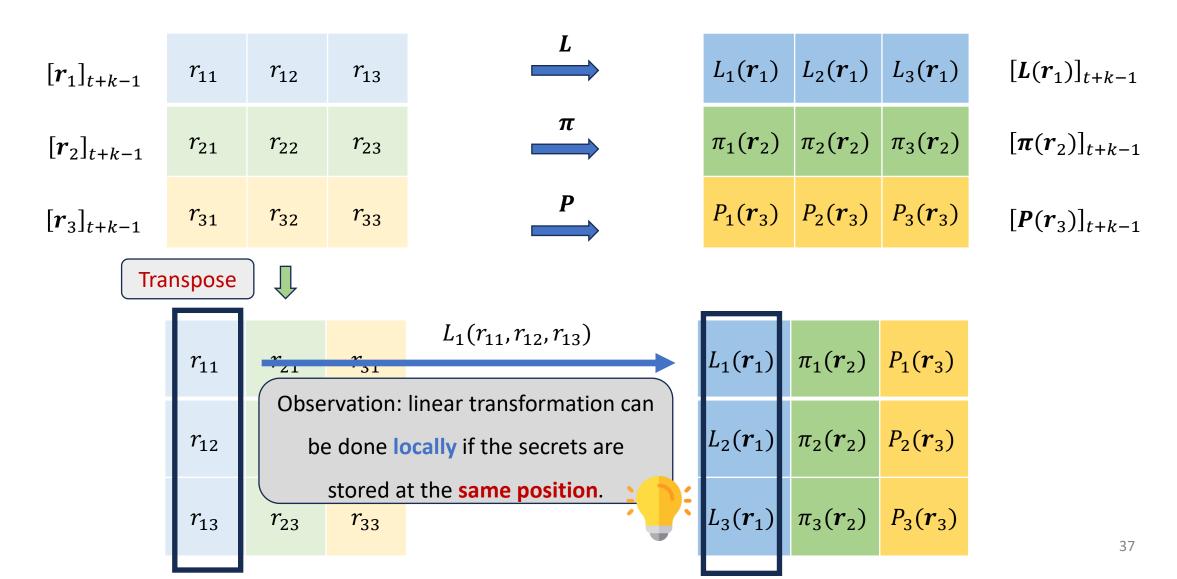
Р

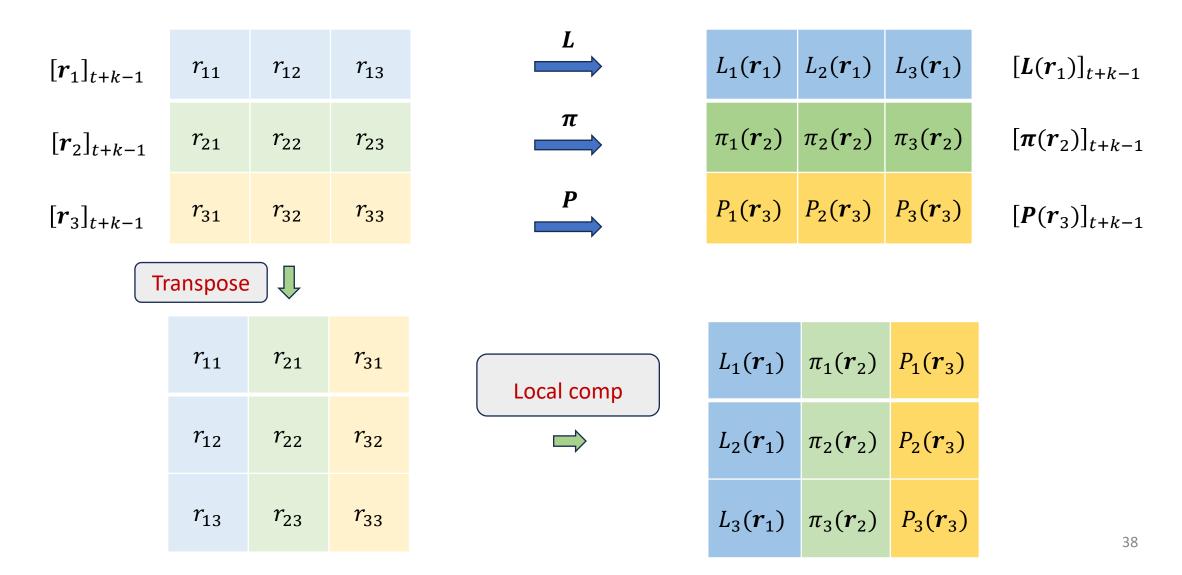
$[r_1]_{t+k-1}$	<i>r</i> ₁₁	<i>r</i> ₁₂	<i>r</i> ₁₃					
$[r_2]_{t+k-1}$	r ₂₁	r ₂₂	r ₂₃					
$[r_3]_{t+k-1}$	r ₃₁	r ₃₂	r ₃₃					
Transpose								
	<i>r</i> ₁₁	<i>r</i> ₂₁	<i>r</i> ₃₁					
	<i>r</i> ₁₂	<i>r</i> ₂₂	r ₃₂					
	<i>r</i> ₁₃	r ₂₃	r ₃₃					

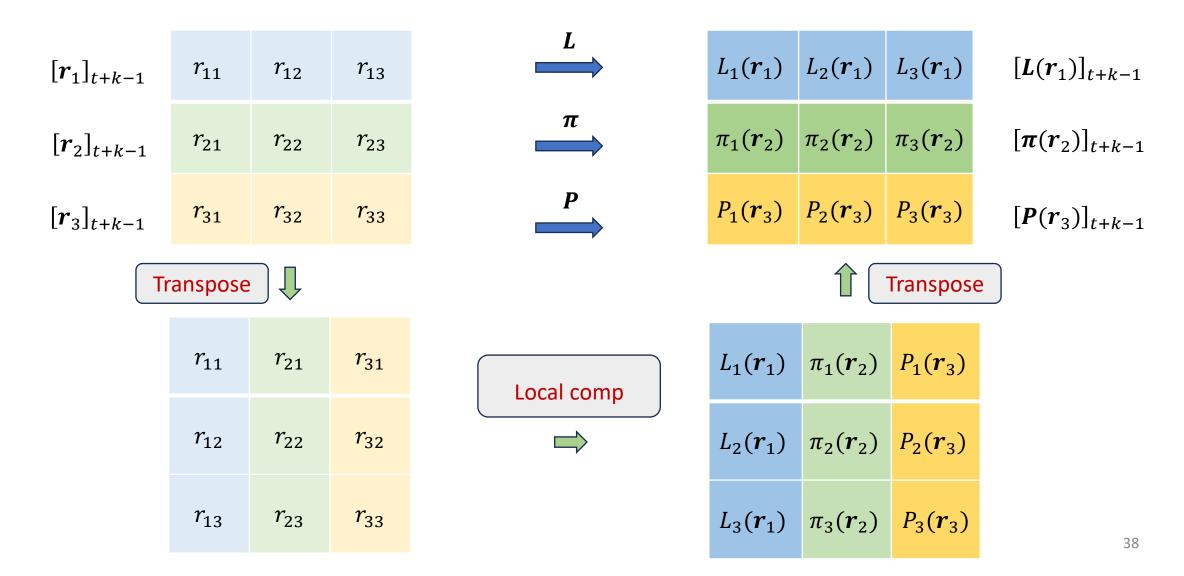


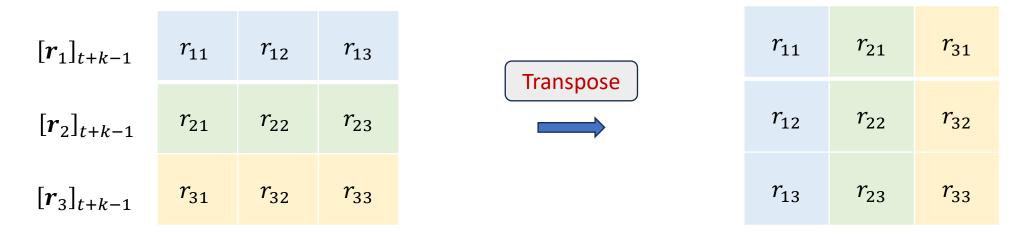


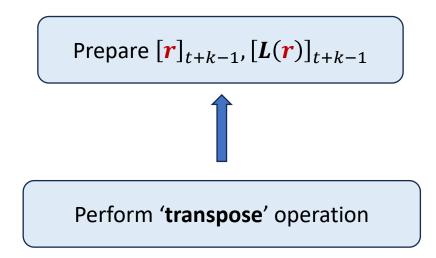


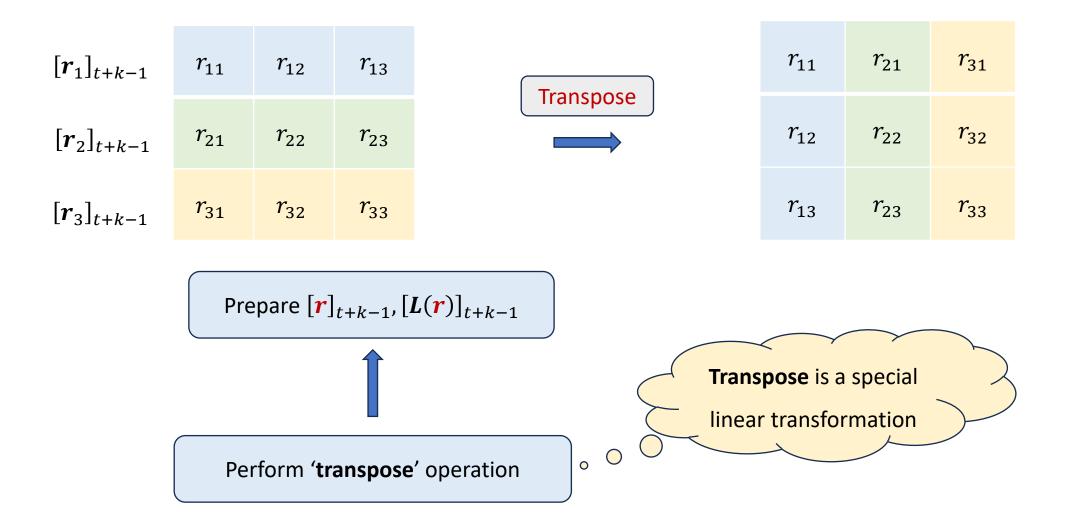






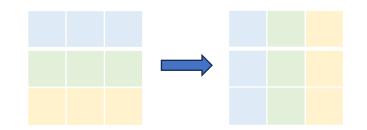


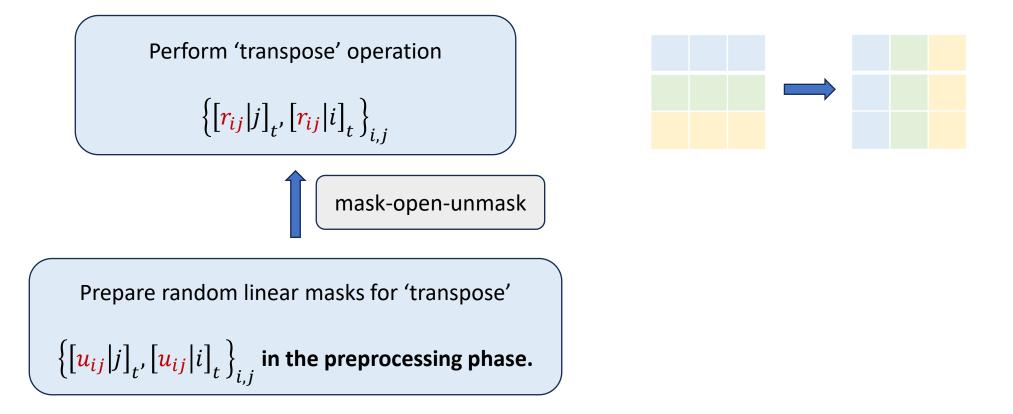


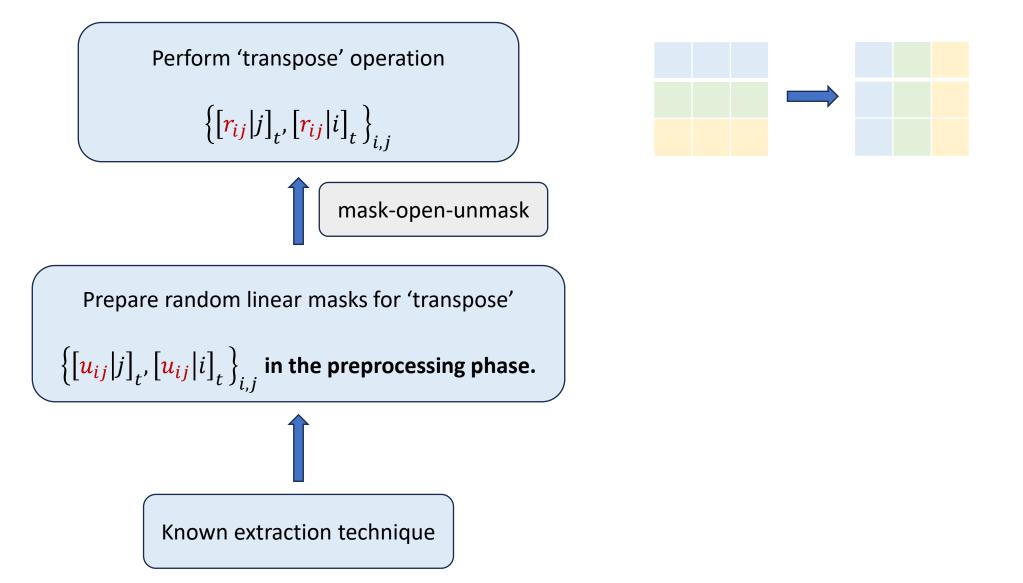


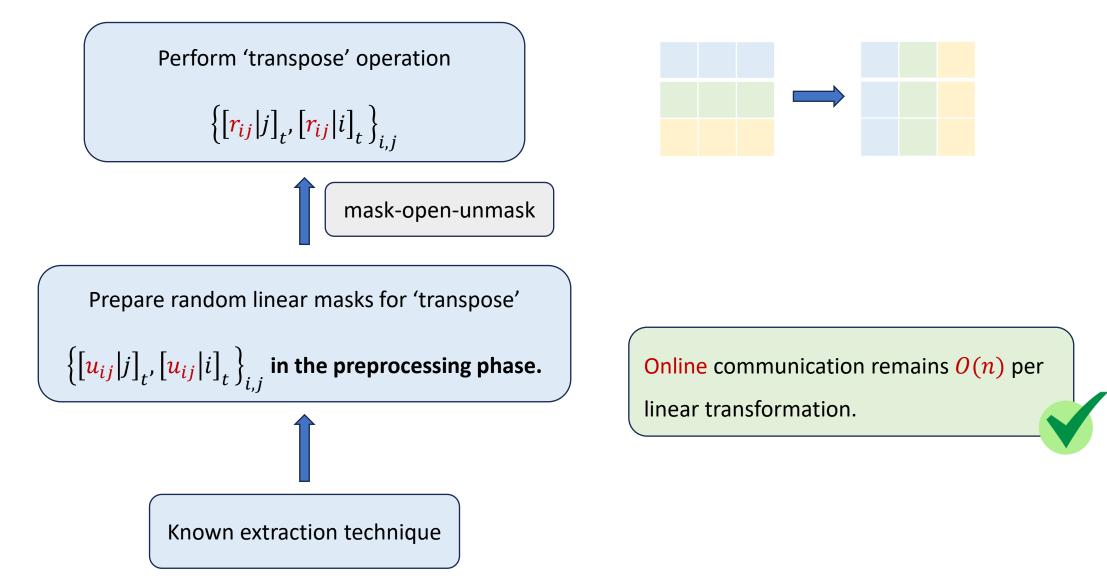
Perform 'transpose' operation

 $\left\{ \left[\mathbf{r}_{ij} | j \right]_{t}, \left[\mathbf{r}_{ij} | i \right]_{t} \right\}_{i,j}$

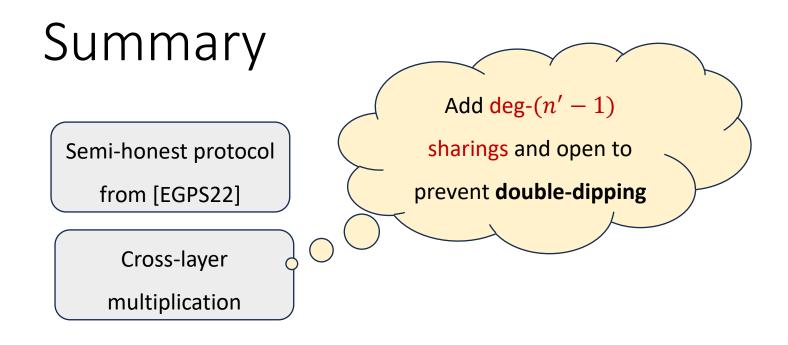


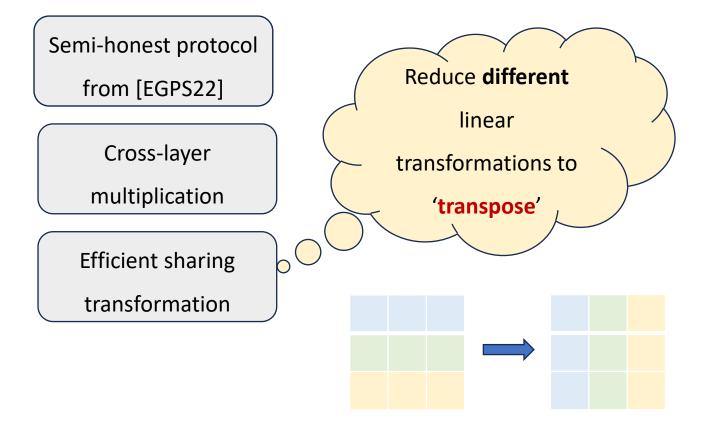


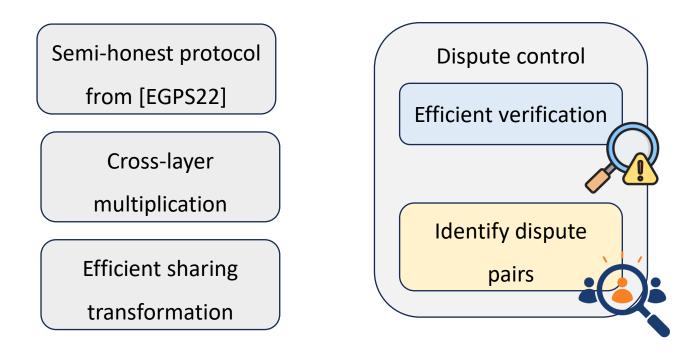


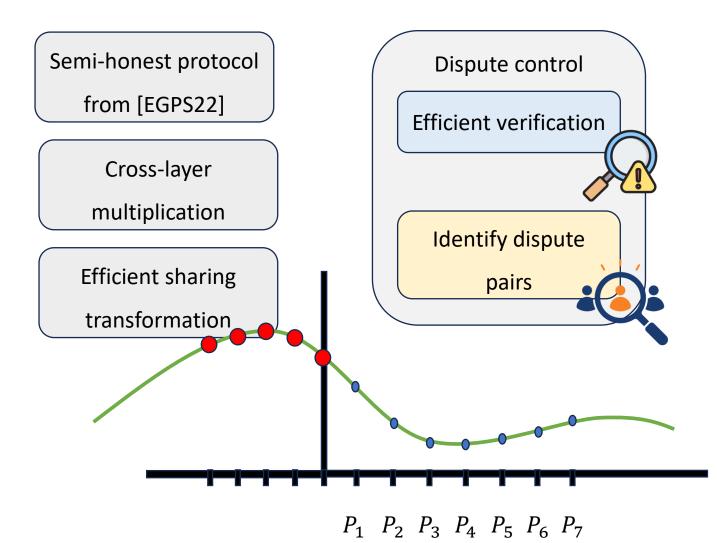


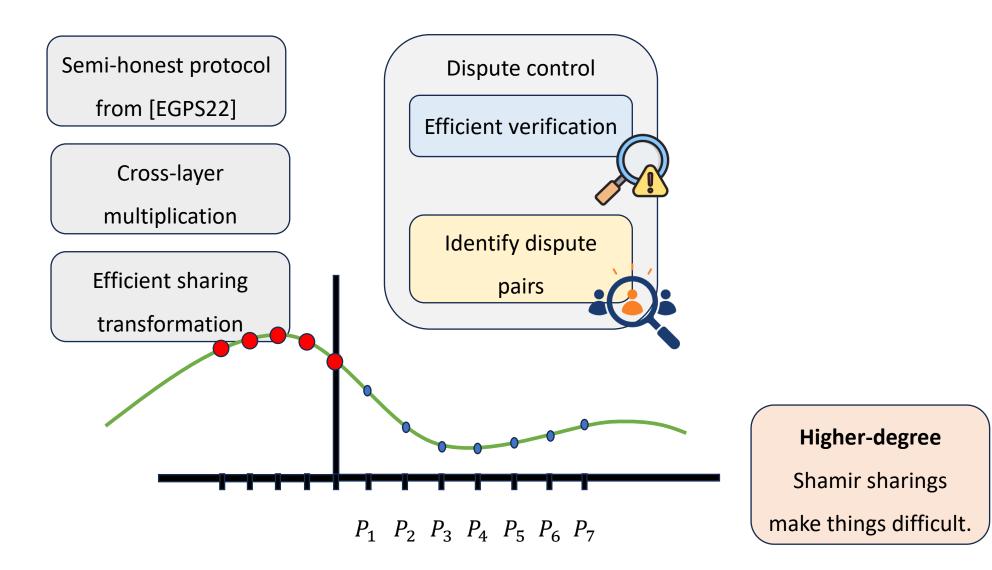
Semi-honest protocol from [EGPS22]



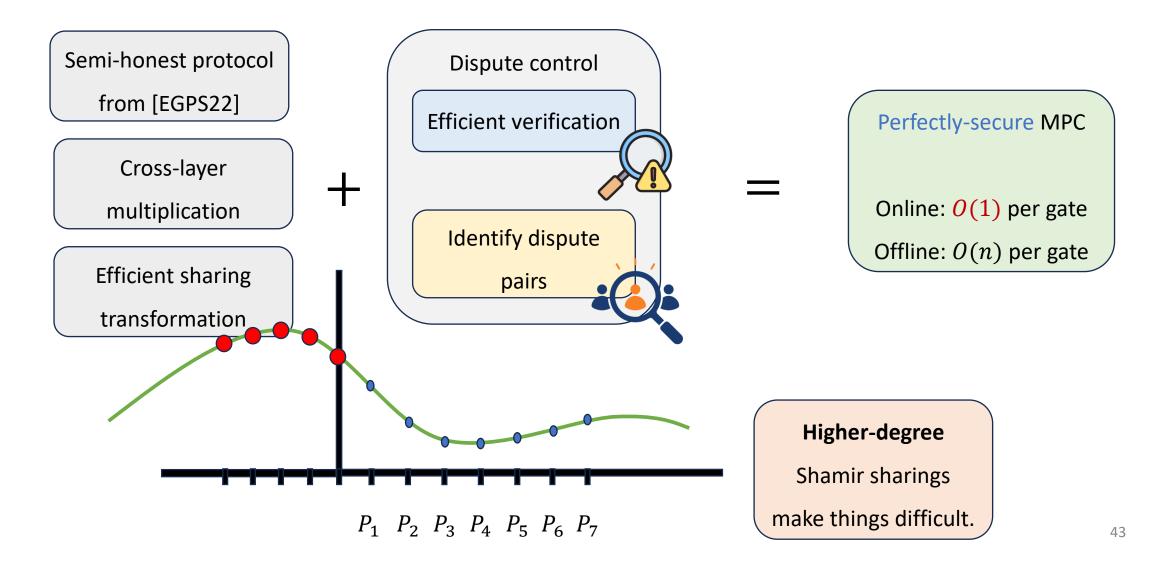








Summary



Thank you!

Credit: Icons: <u>https://www.flaticon.com/</u>