Perfectly-Secure MPC with
Constant Online Communication
Complexity

Yifan Song
Tsinghua University & Shanghai Qi Zhi Institute
Xiaxi Ye
Tsinghua University

Multiparty Computation

Setting
v * n parties
e t corrupted parties

e Optimal resilience:n =3t + 1

‘7 , @ * Synchronous network

Goal
* Perfect security

Communication Complexity

Reference Overall Communication Online Communication Security Adversary

[BHOS] O(Cl-n+D-n*+n3 O0(C| -n+D- -n?+n3 Optimal Malicious with GOD
[GLS19] o(C|-n+n3) 0(|C| - n +n3) Resilience
n=3t+1

|C|: circuit size, D: circuit depth, n: number of parties, counted by field elements

Communication Complexity

Reference Overall Communication Online Communication Security Adversary

[BHOS] O(Cl-n+D-n*+n3 O0(C| -n+D- -n?+n3 Optimal Malicious with GOD
[GLS19] o(C|-n+n3) 0(|C| - n +n3) Resilience
n=3t+1
[DNO7] O(|C|-n) O(|C|-n) Optimal Semi-honest
Resilience
[EGPS22] O(|C|-n o(|C
(ICl - n) (ch = 26+ 1

|C|: circuit size, D: circuit depth, n: number of parties, counted by field elements

Communication Complexity

Reference Overall Communication Online Communication Security Adversary

[BHOS] O(Cl-n+D-n*+n3 O0(C| -n+D- -n?+n3 Optimal Malicious with GOD
[GLS19] o(|C| - n +n3) o(IC| - n+n3) Resilience
n=3t+1
[DNO7] o(|C]| - n) o(|C]| - n) Optimal Semi-honest
Resilience
EGPS22 O(|C|-n o(|C
[EGPS22) (Icl-n (cr Resilence

|C|: circuit size, D: circuit depth, n: number of parties, counted by field elements

Is it possible to construct a perfectly secure MPC protocol with GOD
such that the online communication complexity per gate is O (1)

while the overall communication remains O(n)?

Why Constant Online Communication?

* Online efficiency is important as the preprocessing phase which only

depends on the circuit size can be done in the idle time.

* Amortized online communication complexity per party decreases as

the increase of the number of parties!

Our Result

Reference Overall Communication Online Communication Security Adversary

[BHOS] 0(|C| -n+ D - n? + n3) O(|C| -n+ D - n? + n3) Optimal Malicious with
[GLS19] o(C| - n +n?) o(C| - n + n3) Res'g‘z”jel GOD
n =
Our result O(IC] -n+ D -n? + n®) O(IC]l +D -n+n®
[DNO7] o(|C]| - n) o(|C| - n) Optimal Semi-honest
Resilience
EGPS22 O(|C|-n o(|C
[] (cl-n) (cp = 2t 41
Theorem.

Let n = 3t + 1. For any arithmetic circuit C over FF of size |[F| = 2n of size |C| and depth D, there is an
information-theoretic MPC protocol against a fully malicious adversary controlling at most ¢ corrupted parties

with perfect security. The communication is O(|C| + D - n + n°) elements for the online phase and O(|C]| -

n+ D -n? + n*) elements for the offline phase.

Limitations of Our Result

Packed Shamir secret
sharing, hyper-

invertible matrix

{ Limitation 1: Only work for finite fields of size larger than 2n

Dispute control

framework

{ Limitation 2: Round complexity grows with number of parties }

A Relative Mention — Round complexity

* A line of works [ALR11, AAY22, AAPP23] focuses on optimizing

communication without O(n) overhead in the round complexity.

Reference Overall Communication Online Communication Round Security
complexity

[AAPP23] 0(|C|-n+ D -n? +n?) 0(D) n=3t+1
[GLS19] o(|C| -n+n?) o(|C| -n+n3) O(D +n) Malicious with
Ourresult O(|C|-n+D-n?+n>-logn) O(C|+D-n+n>-logn) 0(D + n?) Gl
(e} O O

If expected constant-round BA

and BC in [AC24] are used.

A Relative Mention — Round complexity

* A line of works [ALR11, AAY22, AAPP23] focuses on optimizing

communication without O(n) overhead in the round complexity.

Reference Overall Communication Online Communication Round Security
complexity

[AAPP23] 0(|C|-n+ D -n? +n?) 0(D) n=3t+1
[GLS19] o(|C| -n+n?) o(|C| -n+n3) O(D +n) | Malicious with
Ourresult O(|C|-n+D-n?+n>-logn) O(C|+D-n+n>-logn) | O(D + n?) Gl
(e} O O

If expected constant-round BA

and BC in [AC24] are used.

A Relative Mention — Circuit depth overhead

* [GLS19] removes the quadratic communication overhead in the

circuit depth.

Reference Overall Communication Online Communication Round Security
complexity

[AAPP23] O(|C]-n+ D -n?+n* 0(D) n=3t+1
[GLS19] O(|C| - n + n3) o(|C| -n+n?) O(D +n) Malicious with
Ourresult O(|C|-n+D-n?>+n°-logn) O(C|+D-n+n°-logn) O(D +n?) GOD

A Relative Mention — Circuit depth overhead

* [GLS19] removes the quadratic communication overhead in the

circuit depth.

Reference Overall Communication Online Communication Round Security
complexity

[AAPP23] O(|C]-n+ D -n?+n* 0(D) n=3t+1
[GLS19] O(|C| - n + n3) o(|C| -n+n?) O(D +n) Malicious with
Ourresult | O(|C|-n+D-n?>+n°-logn) |0(IC|+D-n+n°-logn) O(D + n?) GOD

A Relative Mention — Circuit depth overhead

* [GLS19] removes the quadratic communication overhead in the

circuit depth.

Reference Overall Communication Online Communication Round Security
complexity

[AAPP23] O(|C]-n+ D -n?+n* 0(D) n=3t+1
[GLS19] 0(|C| - n + n3) o(|C| -n+n?) O(D +n) Malicious with
Ourresult | O(|C|-n+D-n?>+n°-logn) |0(IC|+D-n+n°-logn) O(D + n?) GOD

Can we achieve the best

among three works?

Outline

 Review: semi-honest protocol in [EGPS22]

* Towards full security via dispute control:

verification + identifying dispute pairs

* Towards general circuits via sharing transformation

Packed Shamir Secret Sharing

Parameters:
* packsize k

(Sl, S92,y ey Sk)

Use a degree-(t + k — 1) polynomial:

Py P, P; Py Ps Pg Py

* Each share is an evaluation point of this

polynomial. \ ' J | y J

* Any t shares are independent of the secrets.
Secrets Shares

K. Any t + k shares can reconstruct the secret5/

11

Packed Shamir Secret Sharing

S Parameters:
. ECp * packsize k
O
Secrets: s =
(Sl, S92,y ey Sk)

~ * degree-(t+k—1)

\

e Linearly homomorphic. P, P, P3 P, Ps Pg P;

[x] + [y] = [x +y] — ' ’
* Multiplicative friendly.

K lcli—1 - [X]t4k—1 = [€ * X]t 42k /

Use a degree-(t + k — 1) polynomial:

Secrets Shares

12

Packed Shamir Secret Sharing

S Parameters:
. ECp * packsize k
O
Secrets: s =
(Sl, S92,y ey Sk)

~ * degree-(t+k—1)

\

e Linearly homomorphic. P, P, P3 P, Ps Pg P;

[x] + [y] = [x +y] — ' ’
* Multiplicative friendly.

K lcli—1 - [X]t4k—1 = [€ * X]t 42k /

Use a degree-(t + k — 1) polynomial:

Secrets Shares

12

Generic Approach

[x1 + x2]

$

[(x1 + x2) - x3 - x4]

$

Mult)—I
[X3 - x4]

13

Generic Approach (SIMD Circuit)

[x1] '[=3 N [x1 + %3]
A

sl {)
[%4] '[g Ml [x3 * X4]

[(x1 + x2) * X3 * X4]

D

14

k = Q(n) for

Generic Approach (SIMD Circuit)

communication

benefits.

[x1] '[=3 N [x1 + %3]
A

sl {)
[%4] '[g Ml [x3 * X4]

[(x1 + x2) * X3 * X4]

D

14

Multiplication Protocol adapted from [EGPS22]

Multiplication

* Preprocessing: ([a@];yx—1, [Blrsr—1, [€ltsr—1)

* Input: [X]rsk—1, [Y]e4K-1-

\\\\\\

15

Multiplication Protocol adapted from [EGPS22]

Multiplication

* Preprocessing: ([a@];yx—1, [Blrsr—1, [€ltsr—1)

* Input: [X]¢pp—1, [Y]err-1-

\\\\\\

/

_

[x + a]t+k—1 = [x]t+k—1 + [a]t+k—1

[y + blirk—1 = [¥]tsr—1 + [Dlrsr-1

)

15

Multiplication Protocol adapted from [EGPS22]

Multiplication

* Preprocessing: ([a@];yx—1, [Blrsr—1, [€ltsr—1)

* Input: [X]¢pp—1, [Y]err-1-

\\\\\\

/
[x + alisr—1, [y + Blisr—1

_

[x + a]t+k—1 = [x]t+k—1 + [a]t+k—1

[y + blirk—1 = [¥]tsr—1 + [Dlrsr-1

)

15

Multiplication Protocol adapted from [EGPS22]

Multiplication
é » Preprocessing: ([@ltk—1, [B]esk—1, [€]t4r-1) —_
¢ e
wv =
* Input: [X]¢pp—1, [Y]err-1-
/
[Reconstructx +a,y+ b J x+ aliik—1, [y + Dlisk- [x + alerr—1 = [X]err—1 + [@lt1x—1

_

[y + blirk—1 = [¥]tsr—1 + [Dlrsr-1

)

15

Multiplication Protocol adapted from [EGPS22]

Multiplication
é » Preprocessing: ([@ltk—1, [B]esk—1, [€]t4r-1) —_
¢ e
wv =
* Input: [X]¢pp—1, [Y]err-1-
/
[Reconstructx +a,y+ b J x+ aliik—1, [y + Dlisk- [x + alerr—1 = [X]err—1 + [@lt1x—1

_

[y + blirk—1 = [¥]tsr—1 + [Dlrsr-1

)

[Compute [x + a]i_1, [y + b]k—1 J

15

Multiplication Protocol adapted from [EGPS22]

Multiplication
é » Preprocessing: ([@ltk—1, [B]esk—1, [€]t4r-1) —_
¢ e
wv =
* Input: [X]¢pp—1, [Y]err-1-
/
[Reconstructx +a,y+ b J x+ aliik—1, [y + Dlisk- [x + alerr—1 = [X]err—1 + [@lt1x—1

_

[y + blirk—1 = [¥]tsr—1 + [Dlrsr-1

)

[x + alx—1, [y + blx—1

{ Compute [x + a];_1, [y + bli_1 J e

15

Multiplication Protocol adapted from [EGPS22]

Multiplication
é » Preprocessing: ([@ltk—1, [B]esk—1, [€]t4r-1) —_
¢ e
wv =
* Input: [X]¢pp—1, [Y]err-1-
/
[Reconstructx +a,y+ b J x+ aliik—1, [y + Dlisk- [x + alerr—1 = [X]err—1 + [@lt1x—1

[x + alx—1, [y + blx—1

{ Compute [x + a];_1, [y + bli_1 J e

_

[y + blirk—1 = [¥]tsr—1 + [Dlrsr-1

)

—|y + blx—1 - lalesr—1 + [€li4r-1

{ e o

|

15

Multiplication Protocol adapted from [EGPS22]

Degree Reduction

» Preprocessing: ([r]iy2k—2, [Tli4k-1)-

* Output: [x * y]yx_1

\\\\\\

16

Multiplication Protocol adapted from [EGPS22]

Degree Reduction

» Preprocessing: ([r]iy2k—2, [Tli4k-1)-

* Output: [x * y]iyk—1

\\\\\\

[[z + 7]ii2k-2 = [Z]e2k—2 + [T]e42k—2 J

16

Multiplication Protocol adapted from [EGPS22]

Degree Reduction

» Preprocessing: ([r]iy2k—2, [Tli4k-1)-

* Output: [x * y]iyk—1

[z + T]i12k—2

\\\\\\

o [[z + 7]ii2k-2 = [Z]e2k—2 + [T]e42k—2 J

16

Multiplication Protocol adapted from [EGPS22]

¢ Degree Reduction
VAY .
é * Preprocessing: ([T]t+2k—2: [r]t+k—1)'

* Output: [x * y]iyk—1

[z + T]i12k—2

[Reconstructz + r]

\\\\\\

o [[z + 7]ii2k-2 = [Z]e2k—2 + [T]e42k—2 J

16

Multiplication Protocol adapted from [EGPS22]

¢ Degree Reduction
VAY .
é * Preprocessing: ([T]t+2k—2: [r]t+k—1)'

* Output: [x * y]iyk—1

[z + r]t+2k—2
[Reconstructz + r]

[Compute [z + r];,_4 J

\\\\\\

o [[z + 7]ii2k-2 = [Z]e2k—2 + [T]e42k—2 J

16

Multiplication Protocol adapted from [EGPS22]

¢ Degree Reduction
VAY .
é * Preprocessing: ([T]t+2k—2: [r]t+k—1)'

* Output: [x * y]iyk—1

[z + r]t+2k—2
[Reconstructz + r]

[z +7]k_q

\\\\\\

o [[z + 7]ii2k-2 = [Z]e2k—2 + [T]e42k—2 J

[Compute [z + r];,_4 J e

16

Multiplication Protocol adapted from [EGPS22]

Degree Reduction

.‘. ‘V}
é .

Preprocessing: ([1]¢42k-2, [T]t4k—1)-

\\\\\\

* Output: [x * y]yx_1

[z + T]i12k—2

[Reconstructz + r]

o [[z + 7]ii2k-2 = [Z]e2k—2 + [T]e42k—2 J

> [2]t 1k—1 = [2+ 7)1 — [T]ik-1 J

[z +7]k_q

[Compute [z + 1] J e

16

Multiplication Protocol adapted from [EGPS22]

Degree Reduction

é * Preprocessing: ([T]ts2k-2, [T]t4r-1)- -

* Output: [x * y]t1x—1

|

[z + T]i12k—2

Reconstructz + r]

o [[z + 7]ii2k-2 = [Z]e2k—2 + [T]e42k—2 J

|

[z +7]k_q

> [2]t 1k—1 = [2+ 7)1 — [T]ik-1 J

Compute [z + 1] J e

-

-

Ifk =Qm), 0(1) eIementsW

per gate.
v }

Multiplication Protocol adapted from [EGPS22]

Degree Reduction

é * Preprocessing: ([T]ts2k-2, [T]t4r-1)- -

* Output: [x * y]yx_1

[z + r]t+2k—2
[Reconstructz + r]

o [[z + 7]ii2k-2 = [Z]e2k—2 + [T]e42k—2 J

[z +7]k_q

> [2]t 1k—1 = [2+ 7)1 — [T]ik-1 J

[Compute [z + r];,_4 J e

s
If k = Q(n), 0(1) elements

per gate.
_ J

Switch to malicious

setting?

Multiplication Protocol adapted from [EGPS22]

-‘- [x + alisk—1, [V + Blesr—1

& | 1
2,

[x + alp_1, [y + blr—1

[z + T]i12k—2

3

[z +7]}-1

O

17

Multiplication Protocol adapted from [EGPS22]

-‘- [x + alisk—1, [V + Blesr—1

& | 1
2,

[x + alp_1, [y + blr—1

[z + T]i12k—2

3

[z +7]}-1

O

[Adversary may send incorrect shares to Py, 4. o,
L] @

17

Multiplication Protocol adapted from [EGPS22]

iy
UC)
_/

[x + aleip—1, [y + Blesr-1

[x + ali_1, [y + blx_1

2,

[z + T]ii2k—2

[z + 7],y

3

O

\\\\\\

18

Multiplication Protocol adapted from [EGPS22]

-- A[x + aleig—1, [y + bleir-1 (&
LV o D &
_/ [x +ali_1, [y + blix-1

2,

[z + T]ii2k—2

3

[z + 7],y

O

Adversary may distribute sharings NOT of degree k — 1
LY
Y 1 ¢ or with incorrect secrets.

18

Outline

* Review: semi-honest protocol in [EGPS22]

* Towards full security via dispute control:

verification + identifying dispute pairs

* Towards general circuits via sharing transformation

Towards GOD: Dispute Control Framework gos

[- Initialize an empty set to record dispute pairs. J

[* Uniformly divide the circuit into n? segments. J

—

[» Evaluate the segments sequentially. J

20

Towards GOD: Dispute Control Framework sos)

-

For each segment,
* Evaluate the segment. ()

_ e Verify the computation. '

Towards GOD: Dispute Control Framework gos

- v

For each segment, N

* Evaluate the segment. ,'A

_ e Verify the computation. '

21

Towards GOD: Dispute Control Framework gos

P
4 / Evaluate the next segment. J

For each segment, N

AN

* Evaluate the segment. ,'A

_ e Verify the computation. '

21

Towards GOD: Dispute Control Framework gos

-

.

For each segment,
* Evaluate the segment.

e Verify the computation.

v

Vs

.

AN

Evaluate the next segment. J

21

Towards GOD: Dispute Control Framework s

P
4 J Evaluate the next segment. J

For each segment, < 3

* Evaluate the segment. 0 p
o ¥ > . .)
_ * Verify the computation. Identify a dispute pair.
‘ , \ [
a [

8

21

Towards GOD: Dispute Control Framework s

P
4 J Evaluate the next segment. J

For each segment, < 3

* Evaluate the segment. 0 p
o ¥ > . .)
_ * Verify the computation. Identify a dispute pair.
‘ , \ [
@ U a [

8

21

Towards GOD: Dispute Control Framework s

P
4 J Evaluate the next segment.
For each segment, N\ A
* Evaluate the segment. 0 p
o ¥ D . . .
_ * Verify the computation. Identify a dispute pair.
‘ , \ o
@ U a [

Corrupted parties will be
eliminated. Find a relay

for each dispute pair

QBFOIZ]. /

21

Towards GOD: Dispute Control Framework s

P
/For el sEsEr . J | Evaluate the next segment. J
) X
* Evaluate the segment. 0 p
_ * Verify the computation. - o ')\ Identify a dispute pair. .
t R O
Corrupted parties will be Two disputed A
eliminated. Find a relay =) parties wil
for each dispute pair never talk to

QBFOlz],) _ e€achother. /

21

Towards GOD: Dispute Control Framework s

-

For each segment,

* Evaluate the segment.

_ * Verify the computation.

v |

AN

Evaluate the next segment. J

-

{

X

g Identify a dispute pair.

J

Corrupted parties will be
eliminated. Find a relay

for each dispute pair

~

Two disputed
parties will

never talk to

QBFOIZ]. /

\ each other. /

P
—

.

dispute pair.

\
Always find

a hew

)

8

21

Towards GOD: Dispute Control Framework s

-

For each segment,

* Evaluate the segment.

_ * Verify the computation.

v |

AN

Evaluate the next segment. J

-

X

g Identify a dispute pair.

{

U alo)e

8

Corrupted parties will be
eliminated. Find a relay

for each dispute pair

~

Two disputed
parties will

never talk to

QBFOIZ]. /

\ each other. /

4) 4 N
Always find Re-evaluation
-' a hew -' occurs at most
dispute pair. 0(n?) times.

21

Towards GOD: Dispute Control Framework s

-

For each segment,

* Evaluate the segment.

_ * Verify the computation.

v |

AN

Evaluate the next segment. J

-

X

{

Corrupted parties will be
eliminated. Find a relay

for each dispute pair

~

Two disputed
parties will

never talk to

QBFOIZ]. /

\ each other. /

P
—

.

d

Always find

a hew

ispute pair.

\

)

g Identify a dispute pair.

J

8

-

Re-evaluation

-' occurs at most

~

K 0(n?) times.)

-

=
\

. . \
Communication
at most
doubles.)

21

Outline

* Review: semi-honest protocol in [EGPS22]

* Towards full security via dispute control:

verification + identifying dispute pairs

* Towards general circuits via sharing transformation

Towards GOD: Verification - 1 @

% (‘)
®

4)
X+ aliik—1, [y + bliyi—1 [x + a]tik—1 = [x]t4k-1 + [@]thi—1

&

L [y + bliik-1 = [V]esk—1 + [Dlesr-1 y

Vs

o [z + T]t+2k—2 = [Z]t+2k—2 + [T]t+2k—2

-

J
{ Adversary may send incorrect shares to Py 4. “ﬁ"

[z + 7] 2k—2

23

Towards GOD: Verification - 1

% (G}
®

4)
X+ aliik—1, [y + bliyi—1 [x + a]tik—1 = [x]t4k-1 + [@]thi—1

&

L [y + bliik-1 = [V]esk—1 + [Dlesr-1 y

()

o [z + T]t+2k—2 = [Z]t+2k—2 + [T]t+2k—2

-

J
{ Adversary may send incorrect shares to Py 4. .‘ﬁt,

[z + 7] 2k—2

\

The whole sharing is

determined by shares

of honest parties.) 53

Towards GOD: Verification - 1

% (6)
®

4 I
X+ aliik—1, [y + bliyi—1 [x + a]tik—1 = [x]t4k-1 + [@]thi—1

&

a

L [y + bliik-1 = [V]esk—1 + [Dlesr-1 y

()

o [z + T]t+2k—2 = [Z]t+2k—2 + [T]t+2k—2

-

Set (t+2k—2)+1<n-—t. [z + 7]es2k-2

A

In particular, k = (t + 2)/2.

J
@ { Adversary may send incorrect shares to Py 4. .‘ﬁt,

\

The whole sharing is

determined by shares

of honest parties.) 53

Towards GOD: Verification - 1

&

Set(t+2k—2)+1<n-—t.
In particular, k = (t + 2)/2.

@)

The whole sharing is

determined by shares :>

of honest parties.)

A

®

&

p
[x +aleip—1, [y + bBlesr-1

a

[x + a]t+k—1 = [x]t+k—1 + [a]t+k—1

N [y + blirr—1 = [¥]tsk-1 + [Dlrsr—1)

~

Vs

[z + 7] 2k—2

A

-

o [z + T]t+2k—2 = [Z]t+2k—2 + [T]t+2k—2

N

J

{ Adversary may send incorrect shares to Py 4.

/

"

Pying can detect the errors by checking whether the received

shares form a valid sharing of correct degree.

\

)

23

Towards GOD: Verification - 2

v
[x + altik—1, [y + Blesi—1 (G}
) LR
DO 2°
wv =

[x + alx_1, [y + blx_1

Sal
® @
e

[z + T]i2k—2
Adversary may distribute sharings of NOT

degree k — 1 or with incorrect secrets. [z + 7]y

0 :

®
[]

)

Towards GOD: Verification - 2

[x + alx_1, [y + blx_1

o
®

[z + T]i2k—2
Adversary may distribute sharings of NOT

degree k — 1 or with incorrect secrets. [z + 7]y

0 :

[AII parties check their shares of ([u];y2k—2, [U]r—1). J

v
[x + altik—1, [y + Blesi—1 (G}

\\\\\\

24

Towards GOD: Verification - 2

v
[x + altik—1, [y + Blesi—1 (G}

\\\\\\

[x + alx_1, [y + blx_1

Sal
® @
e

[z + 7]k

Adversary may distribute sharings of NOT

degree k — 1 or with incorrect secrets. [z + 7]y

0 :

Determined by shares
of honest parties

[AII parties check their shares of ([u];y2k—2, [U]r—1). J

24

Towards GOD: Verification — 2 sros

[AII parties check their shares of ([u];y2k—2, [U]x—1)- J

25

Q

Towards GOD: Verification — 2 sros %

[AII parties check their shares of ([u];y2k—2, [U]x—1)- J

[wy] esok—2, [U1]k—1 (n—1t)

(2] 1 2-2 [U2]i-1 ™ pairs to be

[u3]t+2k—2; [u3]k—1 checked

25

*

Towards GOD: Verification — 2 sros %

[AII parties check their shares of ([u];y2k—2, [U]x—1)- J

[V1])t426—2) [V1] k-1 [urlerar—2, [U1lk-1 (n—1)

[Vl 42k—2, [V2] k-1 — o | [uzliion—2 [uzli—r ™ pairs to be

M checked

[uslsok—2, [U3lk-1

[V3let2k-2, [V3]k-1

[v4]t+2k—2; [174]k—1

25

Towards GOD: Verification — 2 sros @

[AII parties check their shares of ([u];y2k—2, [U]x—1)- J

(n—t) pairs | =" [V1le42k-2, [V1]k-1 [wy] esok—2, [U1]k—1 (n—1)

are checked — o | [Uzltiok—2 [Uz]lk—1 pairs to be

by honest M checked

-
parties (; ’ [v3]t+2k—2; [Vg]k—1 [us]t+2k—2; [uB]k—l

[v2let2k-2, [V2]k-1

[v4]t+2k—2; ['V4]k—1

25

Towards GOD: Verification — 2 sros

[AII parties check their shares of ([u];y2k—2, [U]x—1)- J

[v4]t+2k—2; ['V4]k—1

B.o -
(n — t) pairs Tt [V1letr2k-2, [V1]k-1 [ul]t+2k—2: [ul]k—l (n—1t)
ore chected ’ @ [v2les2r—2, [V2]k-1 — M o | [uzliion—2 [uzli—r [pairs to be
by honest
~ checked
parties ‘7 ’ [v3]t+2k—2; [vB]k—1 [uB]t+2k—2; [uB]k—l

All (n — t) honest
parties are happy. 75

Towards GOD: Verification — 2 sros

(n — t) pairs
are checked
by honest

parties

IIIIII

[AII parties check their shares of ([u];y2k—2, [U]x—1)- J

[vl]t+2k—2; [”1]k—1
[vz]t+2k—2; [vz]k—1

[v3]t+2k—2; [v3]k—1

[v4]t+2k—2; [174]k—1

All (n — t) honest

parties are happy.

[wq 4262, [U1]k—1
o | [Ualtiok—2 [Ua]lk-1

[uslsok—2, [U3lk-1

S

Super-invertibility

correct.

All (n — t) pairs are

(n—1t)
pairs to be

checked

25

Towards GOD: Verification — 2 sros

[AII parties check their shares of ([u];y2k—2, [U]x—1)- J

(n—1t)pairs | Tew" [vl]t+2k—2; [v1]k_1 [ul]t+2k—2: [ul]k—l (n—1t)

are checked - [V2let2k-2, [V2]k-1 — o | [Uzlerzi—2 [Uz]i—s [pairs to be
by honest M checked
parties -

[v4]t+2k—2; ['V4]k—1

‘) [l s (s [u3]es2k—2, [U3]k—1

[Batch-wise verification: O (n) elements per pair. 1

26

Outline

* Review: semi-honest protocol in [EGPS22]

* Towards full security via dispute control:

verification + identifying dispute pairs

* Towards general circuits via sharing transformation

.Q:

Towards GOD: ldentifying Dispute Pairs

{Verification fails 1

.Q:

J [x +alisir—1, [y + bliyi—1

el

% o
’ [z + 7] 12k
[Verification fails ' ‘ o

Towards GOD: ldentifying Dispute Pairs

sharings are incorrect.

P..;.. . complains the received
{Verification — 1 fails J‘{ king P

28

o o
‘@.

N
J [x + aleyp—1, [¥y + Blesr—1

1
’ [z + 7]t yok—2
[Verification fag ‘ o
\ 4

Towards GOD: ldentifying Dispute Pairs

P..;.. . complains the received
[Verification — 1 fails J‘{ king P

sharings are incorrect.

.) N
{Verification — 2 fails }- P complains the received "o || [V1ltr2k—2, [V1]k-1
([vilts2k-2, [Vilk-1) is
: [V2ler2k—2, [V2]k-1
_ incorrect.)
o ‘s [V3]er2k-2, [V3]k-1

@ [Valtt2k-2, [Valk-1

28

.Q:

[x + alirk—1, [y + bliig—1

P..;.. . complains the received ‘A‘)
[Verification — 1 fails J‘ king EOMP é o
sharings are incorrect. S
’ |z + r]t+2k—2
[Verification fails | o
/

Towards GOD: ldentifying Dispute Pairs

- e 29
{Verification — 2 fails }‘ P; complains the received ™ || [V1]panrezs [V1]es
(il er2k—2, [Vilk-1) is
' V2] t426—2, [V2]lk-1
_ Incorrect.)
l o ‘7 “ [wsler2k—2, [V3lk-1
Ask Pying to provide a correct @ [Waleszr—2 [Valk-1

version. 28

.Q:

[x + alirk—1, [y + bliig—1

P... - complains the received e ‘ o
[Verification — 1 fails J‘ king P
sharings are incorrect.
’ © |z + r]t+2k—2
[Verification fails | o
/

Towards GOD: ldentifying Dispute Pairs

.) %=
{Verification — 2 fails }- P complains the received "o || [V1ltr2k—2, [V1]k-1
(lviltr2k-2 [Vilk=1) is
: waoler2k—2, [V2lk-1
_ incorrect.)
l o r7V [V3]er2k-2, [V3]k-1

Ask Pyin 4 to provide a correct @ [Valerak—2) [Valk-1
[A dispute pair]-

version. 28

.Q:

{Verification -1 fails}‘ L Pring complains the received } X+ altrr-1,[¥ + blers—1
.‘ ‘- <

Towards GOD: |dentifying Dispute Pairs - 1

sharings are inconsistent.

[z + T]i2k-2

(1
3

29

.Q:

{Verification -1 failsJ‘ { Pring complains the received } X+ altrr-1,[¥ + blers—1
.‘ ‘- <

sharings are inconsistent.

!

Pying cannot identify
S
incorrect shares * £ %

Towards GOD: |dentifying Dispute Pairs - 1

[z + T]i2k-2

(1
3

29

.Q:

{Verification -1 failsJ‘ { Pring complains the received } X+ altrr-1,[¥ + blers—1
.‘ ‘- <

sharings are inconsistent.

!

Pying cannot identify
S
incorrect shares * £ %

Resort to deg-t
[sharings

Towards GOD: |dentifying Dispute Pairs - 1

[z + T]i2k-2

(1
3

29

.Q:

[x + alisrk—1, ¥+ bleir-1

P
<

Towards GOD: |dentifying Dispute Pairs - 1

{Verification -1 failsJ‘ { Pring complains the received }

sharings are inconsistent.

!

Pying cannot identify

N .

[z + T]i2k-2

(1
3

\ V'
incorrect shares * £ ¢

[Resort to deg-t)

sharings
£ Need to compute deg-t sharings

L with O(1) elements per gate. _+/l¢

29

[Zl Z) ZS]t+k—1

L

Locally transform k degree-t

sharings to packed sharings.

|

[Zl Z) ZS]t+k—1

30

L

Locally transform k degree-t

sharings to packed sharings.

[|21 2, ZS]t+k—1]

30

L

Locally transform k degree-t

sharings to packed sharings.

[|21 2, ZB]t+k—1]

L

Locally transform k degree-t

sharings to packed sharings.

[|21 2, ZB]t+k—1]

[Error correction J
E——)

[A dispute pair J

30

Towards GOD: Double-dipping Issue (s -4k_2=2t+2

LS19] o

o
209 QOB B Bes
L) - Annn : ' - & o u
| J \ \ : J

| Y / |
t corrupted 2k — 1 honest 2k — 1 honest
[x + aliip—1, [y + Bleig—1
n le']_1, [y + bli_1 [x + alg—1, [y + blx-1
[Zz' + 7] 2k—2 [z +7]i42k—2

©

(Z’ + T‘) — (Z + T‘) = (e’ — (x + a)) *y "A: { Simpler method }

31

Outline

* Review: semi-honest protocol in [EGPS22]

* Towards full security via dispute control:

verification + identifying dispute pairs

* Towards general circuits via sharing transformation

Towards general circuits: Network Routing s

Towards general circuits: Network Routing s

o X— >
Mult
ﬁ
ﬁ
ﬁ

Collect secrets
from different

packed sharings

33

Towards general circuits: Network Routing s

:

Add

A

Mult

A

Mult

A

Add

Re-order
secrets
Mult
—p >
e
—p

Collect secrets

from different

packed sharings

33

Towards general circuits: Network Routing s
Re-order
secrets

{ Network routing J
Mult)

Collect secrets

:

Add

A
|

I
|

Mult

A

Mult

from different

packed sharings

A

Add

Towards general circuits

:

Add

A

Mult

A

Mult

A

Add

Re-order

secrets

Mult

Collect secrets
from different

packed sharings

: Network Routing s

Fan-out gates

and permutation

are linear

{ Network routing J

[GPS21, GPS22] J

mask-open-unmask [DIK10] J

33

Towards general circuits: Network Routing s

Re-order

Fan-out gates
secrets

{ Network routing J
Mult

\ —_—

/ [GPS21, GPS22]]

and permutation

are linear

Ve

mask-open-unmask [DIK10] J

.

Mult -
— Collect secrets - ~
L from different Prepare linear masks
\ packed sharings (] = [L()]
Add - \ J

I .

Towards general circuits: Random linear mask

{ Goal: Prepare [T+ k-1, [L()]t 4x-1 } -|— {Different linear transformations L }

34

Towards general circuits: Random linear mask

{ Goal: Prepare [T+ k-1, [L()]t 4x-1 } -|— {Different linear transformations L }

L = (L, Ly L3)
[7]e+k-1 51 2 T3 ——> Ly(r) L, () L3(7) L)]e4r-1

34

Towards general circuits: Random linear mask

Goal: Prepare [T+ k-1, [L()]t 4x-1 } -|— {Different linear transformations L }
L= (L, Ly L3)
[7]t+r-1 &1 2 T3 ——> Ly(r) L,(r) Lz (1) L)) t4k-1
1st 2nd 3rd 1st 2nd 3rd
position position position position position position

34

Towards general circuits: Random linear mask

L= (L1; L, L3)

—
[r111]; m L,(1T) [L,(r)|1];
[r2]1]¢) L, (1) [L,()]1]¢
[r3|1]; 3 L; (1) [L3(r)]1];
]]

1st 15t
position position

Towards general circuits: Random linear mask

[r111]; &1
[r211];)
[r51]; T3

.

position

L = (L, Ly L3)
—

-

Ll(r)=C1'r1+C2'T2+C3'T'3

[Li(M)1]; = ¢1 - [+ ¢z - [12]2]; + c3 - [13]3];

)

L,(1) [L,(r)|1];
L, (1) [Lo(r)]1];
L3(r) [L3(r)[1];
]
lst
position

Towards general circuits: Random linear mask

L= (L1; L, L3)

—
[r111]; m Ve ~ L@ [L,(r)|1];
Ll(r) =C1'T'1+C2 'T'2+C3 ' I3
[5]1]; T [Li(M)1]; = ¢1 - [+ ¢z - [12]2]; + c3 - [13]3]; L,(1) [L,(1)|1];
o)
\
Observation: linear transformation can be
[73]1]¢ 13 L3 (1) [L3()]1],
done locally if the secrets are stored at the
ﬁ same position. y ﬁ
1st 15t

position position
35

Towards general circuits: Random linear mask

71 e4k—1, [L(re) e k-1

[72]lt4k—1 [T(Tr2)] 4 k-1

[73]lt4k-1, [P(r3)]e4k-1

—

— k transformations

36

Towards general circuits: Random linear mask

[71]etk-1

k= [raliik-1

[73]¢tk-1

71 e4k—1, [L(re) e k-1

[72]lt4k—1 [T(Tr2)] 4 k-1

[73]lt4k-1, [P(r3)]e4k-1

Ny
o
Ny

_—

— k transformations

Ly(ry) Lp(ry) Ls(ry) [L(T1)]t4k-1
mTy(ry) ma(ry) ms(ry) [T(r2)] k-1

Py(r3) Py(r3) Ps(rs3) [P(13)]t k-1

36

Towards general circuits

L
2 1 12 13 m—)

14
[rolizn—1 T21 22 723 —

- Random linear mask

Li(ry) Ly(ri) Ls(ry) [L(T1)]t4r-1
my(ry) ma(ry) ms(ry) [T ()] t4k-1

Pi(r3) Py(r3) P3(1s3) [P(T3)]t4+k-1

Towards general circuits: Random linear mask

[71)e4k-1 "1 12
Folesk T T2
73]t 4k-1 31 32

[Transpose] @

Li(ry) Ly(ri) Ls(ry) [L(T1)]t4r-1
my(ry) ma(ry) ms(ry) [T ()] t4k-1

Pi(r3) Py(r3) P3(1s3) [P(T3)]t4+k-1

37

Towards general circuits: Random linear mask

L
711t 4k-1 T11 T12 13 — Li(ry) Lp(ry) Lz(rq) [L(rD)]esr—1
[rolizn—1 T21 22 723 ; m(rz) ma(ry) ms(rz) [(r2)]ek-1
[r3]irn—y 731 32 33 ; Pi(r3) Py(r3) Ps(r3) [P(1r3)])tek-1

[Transpose] @

11 21 31

4 . .)
Observation: linear transformation can

12 be done locally if the secrets are

_ stored at the same position.

13 23 33
g 37

Towards general circuits: Random linear mask

[rilesn—s T11 Ti2 T13 —> Li(ry) Lp(ry) L3(ry) [L(r)]esr—1
Floey T2 Tz Tas AN () M) ma@) [mE)leks
raleks T T T LN Pirs) Po() Ps(s) [P(rs)liis
[Transpose |]
711 791 731 Li(ry) my(ry) Pi(r3)

Ly(ry) ma(ry) Pu(rs)

4 . : :
Observation: linear transformation can
12 be done locally if the secrets are

_ stored at the same position.
T3 23 33 L3(ry) m3(rz) Ps(rs3)

Towards general circuits: Random linear mask

[Filsp—r T1 Tiz T3 — Li(ry) Lp(riy) Ls(ry) [L(rolesw-1
rloey T Tz T3 LN M) To@s) maa))l
roloie, Ts1 Tz Ta3 _P} Pi(r3) P(r3) Ps(r3) [P(ry)]pus:
(Tarspore] |
Ly(ri1, Tz T13)

1 W Tq (rZ) Pl (1"3)

4 . .)
Observation: linear transformation can

li2 be done locally if the secrets are my(rz) Pp(r3)

_ stored at the same position.
713 723 33

J m3(ry) Ps(rs3)

Towards general circuits

[rilevie-1 T1 Tz
172 ek-1 21 T22
(73] e4k—1 31 132
[Transpose]@

11 21

T12 722

713 23

[Local comp]

=

Ly(rq)

m1(73)

Py(rs3)

Ly(rq)

L,(rq)

Ls(rq)

Ly(rq)

T2 (72)

Py(13)

m1(13)

T2(73)

m3(7;)

Ls(rq)

m3(73)

P3(r3)

Py(r3)

Py(r3)

P3(r3)

- Random linear mask

[L(T1)]t4r-1
[T(r2)]ek-1

[P(13)]t4k-1

Towards general circuits

[rilevie-1 T1 Tz
rolevre-1 o1 T2z
(73] e4k—1 31 132
[Transpose]@

11 21

T12 722

713 23

[Local comp]

=

Ly(rq)

m1(73)

Py(rs3)

Ly(rq)

L,(rq)

Ls(rq)

- Random linear mask

Ly(ry) Ls(ry) [L(T1)]t4r-1

Ty (1ry) m3(rsy) [T ()] t4k-1

Py(r3) Ps(rs3)

ﬁ [Transpose]

[P(13)]t4k-1

my(ry) Py(rs3)

T (1ry) Pp(rs3)

m3(ry) Ps(rs3)

Towards general circuits: Random linear mask

[rl]t+k—1 "1 T2 13 1 21 31
[Transpose]
r I T:
[75]esr—1 721 T22 23 —> 12 22 32
r r r r I T
73]tk 31 32 33 13 23 33

[Prepare [r]ey k-1, [L()]¢+k-1]

I

{ Perform ‘transpose’ operation J

39

Towards general circuits: Random linear mask

[rl]t+k—1 "1 T2 13 1 21 31
[Transpose]
r I T:
[75]esr—1 721 T22 23 —> 12 22 32
r r r r I T
73]tk 31 32 33 13 23 33

[Prepare [r]ey k-1, [L()]¢+k-1]

I

{ Perform ‘transpose’ operation

Transpose is a special

linear transformation

J-o”

39

Towards general circuits: Random linear mask

-

Perform ‘transpose’ operation

{[""ij il [rislil, }

i,j

~

—

40

Towards general circuits: Random linear mask

4)

Perform ‘transpose’ operation

{["’ij il [rislil, }

i,j

/
I[mask-open-unmask]

-

R

Prepare random linear masks for ‘transpose’

[uij |j]t, [uij|i]t } _in the preprocessing phase.
L,j

~

)

—

40

Towards general circuits: Random linear mask

4)

Perform ‘transpose’ operation

{[nj il [rislil, }

i,j

/
I[mask-open-unmask]

-

L {[uij |j]t, [uij|i]t} _in the preprocessing phase.

Prepare random linear masks for ‘transpose’

l,j

~

)

I

{ Known extraction technique J

—

40

Towards general circuits: Random linear mask

4)

Perform ‘transpose’ operation

{[Tij il [rislil, }

i,j

/
I[mask-open-unmask]

-

L {[uij |j]t, [uij|i]t} _in the preprocessing phase.

Prepare random linear masks for ‘transpose’

l,j

~

—

)

I

{ Known extraction technique }

Online communication remains O(n) per

linear transformation.

v

40

summary

Semi-honest protocol
from [EGPS22]

|

41

summary

Semi-honest protocol

from [EGPS22]

Cross-layer

multiplication

o

Add deg-(n" — 1)
sharings and open to

prevent double-dipping

41

summary

Semi-honest protocol

from [EGPS22]

s A
Cross-layer
L multiplication y
s A
Efficient sharing
_ transformation

Reduce different
linear
transformations to

‘transpose’

42

summary

Semi-honest protocol

from [EGPS22]

s A
Cross-layer
L multiplication y
s A
Efficient sharing
_ transformation

/ Dispute control

[Efficient verificatio

n
:

Identify dispute

Ly

43

summary

Semi-honest protocol

from [EGPS22]

P
Cross-layer
L multiplication
p
Efficient sharing
_ transformation

/ Dispute control

[Efficient verificatio

n
:

Identify dispute

Ly

Py P, P3 Py Ps P Py

43

summary

Semi-honest protocol

from [EGPS22]

P
Cross-layer
L multiplication
p
Efficient sharing
_ transformation

/ Dispute control

[Efficient verificatio

n
:

Identify dispute

Ly

Py P, P3 Py Ps P Py

-

Higher-degree

Shamir sharings

~

kmake things difficult./

43

summary

Semi-honest protocol

from [EGPS22]

+ !

P
Cross-layer
L multiplication
p
Efficient sharing
_ transformation

/ Dispute control

[Efficient verificatio

Identify dispute

Ly

Perfectly-secure MPC

Online: O(1) per gate

KOfﬂine: O0(n) per gate)

p, P, P; P, P- P, P, _make things difficult.

\
Higher-degree

Shamir sharings

43

Thank you!

Credit:
Icons: https://www.flaticon.com/

44

https://www.flaticon.com/

	Slide 1: Perfectly-Secure MPC with Constant Online Communication Complexity
	Slide 2: Multiparty Computation
	Slide 3: Communication Complexity
	Slide 4: Communication Complexity
	Slide 5: Communication Complexity
	Slide 6: Why Constant Online Communication?
	Slide 7: Our Result
	Slide 8: Limitations of Our Result
	Slide 9: A Relative Mention – Round complexity
	Slide 10: A Relative Mention – Round complexity
	Slide 11: A Relative Mention – Circuit depth overhead
	Slide 12: A Relative Mention – Circuit depth overhead
	Slide 13: A Relative Mention – Circuit depth overhead
	Slide 14: Outline
	Slide 15: Packed Shamir Secret Sharing
	Slide 16: Packed Shamir Secret Sharing
	Slide 17: Packed Shamir Secret Sharing
	Slide 18: Generic Approach
	Slide 19: Generic Approach (SIMD Circuit)
	Slide 20: Generic Approach (SIMD Circuit)
	Slide 21: Multiplication Protocol adapted from [EGPS22]
	Slide 22: Multiplication Protocol adapted from [EGPS22]
	Slide 23: Multiplication Protocol adapted from [EGPS22]
	Slide 24: Multiplication Protocol adapted from [EGPS22]
	Slide 25: Multiplication Protocol adapted from [EGPS22]
	Slide 26: Multiplication Protocol adapted from [EGPS22]
	Slide 27: Multiplication Protocol adapted from [EGPS22]
	Slide 28: Multiplication Protocol adapted from [EGPS22]
	Slide 29: Multiplication Protocol adapted from [EGPS22]
	Slide 30: Multiplication Protocol adapted from [EGPS22]
	Slide 31: Multiplication Protocol adapted from [EGPS22]
	Slide 32: Multiplication Protocol adapted from [EGPS22]
	Slide 33: Multiplication Protocol adapted from [EGPS22]
	Slide 34: Multiplication Protocol adapted from [EGPS22]
	Slide 35: Multiplication Protocol adapted from [EGPS22]
	Slide 36: Multiplication Protocol adapted from [EGPS22]
	Slide 37: Multiplication Protocol adapted from [EGPS22]
	Slide 38: Multiplication Protocol adapted from [EGPS22]
	Slide 39: Multiplication Protocol adapted from [EGPS22]
	Slide 40: Multiplication Protocol adapted from [EGPS22]
	Slide 41: Outline
	Slide 42: Towards GOD: Dispute Control Framework [BH06]
	Slide 43: Towards GOD: Dispute Control Framework [BH06]
	Slide 44: Towards GOD: Dispute Control Framework [BH06]
	Slide 45: Towards GOD: Dispute Control Framework [BH06]
	Slide 46: Towards GOD: Dispute Control Framework [BH06]
	Slide 47: Towards GOD: Dispute Control Framework [BH06]
	Slide 48: Towards GOD: Dispute Control Framework [BH06]
	Slide 49: Towards GOD: Dispute Control Framework [BH06]
	Slide 50: Towards GOD: Dispute Control Framework [BH06]
	Slide 51: Towards GOD: Dispute Control Framework [BH06]
	Slide 52: Towards GOD: Dispute Control Framework [BH06]
	Slide 53: Towards GOD: Dispute Control Framework [BH06]
	Slide 54: Outline
	Slide 55: Towards GOD: Verification - 1
	Slide 56: Towards GOD: Verification - 1
	Slide 57: Towards GOD: Verification - 1
	Slide 58: Towards GOD: Verification - 1
	Slide 59: Towards GOD: Verification - 2
	Slide 60: Towards GOD: Verification - 2
	Slide 61: Towards GOD: Verification - 2
	Slide 62: Towards GOD: Verification – 2 [BH08]
	Slide 63: Towards GOD: Verification – 2 [BH08]
	Slide 64: Towards GOD: Verification – 2 [BH08]
	Slide 65: Towards GOD: Verification – 2 [BH08]
	Slide 66: Towards GOD: Verification – 2 [BH08]
	Slide 67: Towards GOD: Verification – 2 [BH08]
	Slide 68: Towards GOD: Verification – 2 [BH08]
	Slide 69: Outline
	Slide 70: Towards GOD: Identifying Dispute Pairs
	Slide 71: Towards GOD: Identifying Dispute Pairs
	Slide 72: Towards GOD: Identifying Dispute Pairs
	Slide 73: Towards GOD: Identifying Dispute Pairs
	Slide 74: Towards GOD: Identifying Dispute Pairs
	Slide 75: Towards GOD: Identifying Dispute Pairs - 1
	Slide 76: Towards GOD: Identifying Dispute Pairs - 1
	Slide 77: Towards GOD: Identifying Dispute Pairs - 1
	Slide 78: Towards GOD: Identifying Dispute Pairs - 1
	Slide 79: Towards GOD: Identifying Dispute Pairs - 1
	Slide 80: Towards GOD: Identifying Dispute Pairs - 1
	Slide 81: Towards GOD: Identifying Dispute Pairs - 1
	Slide 82: Towards GOD: Identifying Dispute Pairs - 1
	Slide 83: Towards GOD: Identifying Dispute Pairs - 1
	Slide 84: Towards GOD: Double-dipping Issue [GLS19]
	Slide 85: Outline
	Slide 86: Towards general circuits: Network Routing [GPS21]
	Slide 87: Towards general circuits: Network Routing [GPS21]
	Slide 88: Towards general circuits: Network Routing [GPS21]
	Slide 89: Towards general circuits: Network Routing [GPS21]
	Slide 90: Towards general circuits: Network Routing [GPS21]
	Slide 91: Towards general circuits: Network Routing [GPS21]
	Slide 92: Towards general circuits: Random linear mask
	Slide 93: Towards general circuits: Random linear mask
	Slide 94: Towards general circuits: Random linear mask
	Slide 95: Towards general circuits: Random linear mask
	Slide 96: Towards general circuits: Random linear mask
	Slide 97: Towards general circuits: Random linear mask
	Slide 98: Towards general circuits: Random linear mask
	Slide 99: Towards general circuits: Random linear mask
	Slide 100: Towards general circuits: Random linear mask
	Slide 101: Towards general circuits: Random linear mask
	Slide 102: Towards general circuits: Random linear mask
	Slide 103: Towards general circuits: Random linear mask
	Slide 104: Towards general circuits: Random linear mask
	Slide 105: Towards general circuits: Random linear mask
	Slide 106: Towards general circuits: Random linear mask
	Slide 107: Towards general circuits: Random linear mask
	Slide 108: Towards general circuits: Random linear mask
	Slide 109: Towards general circuits: Random linear mask
	Slide 110: Towards general circuits: Random linear mask
	Slide 111: Towards general circuits: Random linear mask
	Slide 112: Towards general circuits: Random linear mask
	Slide 113: Summary
	Slide 114: Summary
	Slide 115: Summary
	Slide 116: Summary
	Slide 117: Summary
	Slide 118: Summary
	Slide 119: Summary
	Slide 120

