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Mixed Fault Model
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• Send Omission(Ghost👻 ) 

• Receive Omission(Zombie🧟 ) 

• Byzantine Corruption 

• Full-Omission(Overlapping Faults)

Mixed Fault Model
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• Send Omission 

   When it sets itself as Send 
Omission, it must be the case it is 
send omission. 

   It must output the “correct” value if 
it is not receive omission.

• Receive Omission 

   It is allowed to output a flag Z=True 
to indicate it is actually receive 
omission. 

   When it outputs Z=True, it must be 
receive omission. 

   When it does not detect itself as 
receive omission, it has to output the 
“correct” value. 

    

Variant of Uniformity (Undead)
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• Receive Omission Detection 

If a party receives number of 
messages less than it expected, at 
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• Send Omission Detection 

If a party knows at least one 
nonfaulty party has not received the 
message it is expected to send, it can 
detect itself as send omission.

• Receive Omission Detection 

If a party receives number of 
messages less than it expected, at 
least one message has been 
dropped on its side, so it can detect 
itself as receive omission.

Basic Idea: Self-Detection
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Our Starting Point: Zombies and Ghosts[LS2022]

Undead Weak Multicast

   Byzantine Consensus

Undead Weak Graded Multicast

Undead Weak Consensus
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Failed to detect a Full-Omission Sender

I*

T RSH
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Our Solution Against Overlapping Faults
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Second Starting Point: Previous Lower Bound [ELT22]

If receive omissions are forced to become zombies and stop participating from the 
beginning of the protocol, there is no Byzantine Agreement Protocol with 

.2t + s + r ≥ n

Closes the Door, Leaves a Window

Our Result: There is a Byzantine Agreement Protocol with .s + r = n
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A Consensus Protocol with s+r=n(s<n)
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A Consensus Protocol with s+r=n(s<n)

Undead Very Weak Multicast

Output 
Safely

Undead Very Weak Multicast

Undead Very Weak Multicast

Undead Very Weak Multicast

For s+1 Different Leaders
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Total Omission Setting (s+r=n)
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• Complete Characterization  

    

   Impossibility proof in the case . 

• Separation Between Agreement and Broadcast 

   Impossibility proof for Broadcast with . 

• Optimal Resilience 

   Impossibility proof for Agreement with  (with overlapping).

s = n

s + r = n

s + r > n

Total Omission Setting (s+r=n)
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Thank you!


