
Consensus in the presence
of Overlapping Faults and
Total Omission Setting

1

Julian Loss, CISPA Helmholtz Center for Information Security

Kecheng Shi, CISPA Helmholtz Center for Information Security

Gilad Stern, Tel Aviv University

I. Introduction

II. Our contribution in the presence of
Overlapping faults

III. Our contribution in the Total Omission
setting

IV. Conclusion

Table of
Contents

2

3

Byzantine Agreement

Byzantine Agreement

• Validity

Inputs

Outputs

• Consistency • Termination

Byzantine Agreement

• Validity

1

1 😈

Inputs

Outputs

• Consistency • Termination

Byzantine Agreement

• Validity

1

1 😈

1

1 😈

Inputs

Outputs

• Consistency • Termination

Byzantine Agreement

• Consistency• Validity

1

1 😈

1

1 😈

Inputs

Outputs

0

1 😈

• Termination

Byzantine Agreement

• Consistency• Validity

1

1 😈

1

1 😈

Inputs

Outputs

0

1 😈

v

v 😈

• Termination

• Termination

Byzantine Agreement

• Consistency• Validity

1

1 😈

1

1 😈

Inputs

Outputs

0

1 😈

v

v 😈

a

b 😈

• Termination

Byzantine Agreement

• Consistency• Validity

1

1 😈

1

1 😈

Inputs

Outputs

0

1 😈

v

v 😈

a

b 😈

v

v’ 😈

11

Mixed Fault Model

12

• Send Omission(Ghost👻)

• Receive Omission(Zombie🧟)

• Byzantine Corruption

• Full-Omission(Overlapping Faults)

Mixed Fault Model

13

Omissions

14

Omissions

• Send Omission 👻

15

Omissions

 👻 🤖• Send Omission 👻

16

Omissions

 👻 🤖❌• Send Omission 👻

17

• Receive Omission 🧟

Omissions

• Send Omission 👻 👻 🤖❌

 🤖 🧟

18

Omissions

 👻 🤖❌

 🤖 🧟❌

• Send Omission 👻

• Receive Omission 🧟

19

• Receive Omission

Variant of Uniformity (Undead)

20

• Receive Omission

 It is allowed to output a flag Z=True
to indicate it is actually receive
omission.

 When it outputs Z=True, it must be
receive omission.

 When it does not detect itself as
receive omission, it has to output the
“correct” value.

Variant of Uniformity (Undead)

21

• Send Omission• Receive Omission

 It is allowed to output a flag Z=True
to indicate it is actually receive
omission.

 When it outputs Z=True, it must be
receive omission.

 When it does not detect itself as
receive omission, it has to output the
“correct” value.

Variant of Uniformity (Undead)

22

• Send Omission

 When it sets itself as Send
Omission, it must be the case it is
send omission.

 It must output the “correct” value if
it is not receive omission.

• Receive Omission

 It is allowed to output a flag Z=True
to indicate it is actually receive
omission.

 When it outputs Z=True, it must be
receive omission.

 When it does not detect itself as
receive omission, it has to output the
“correct” value.

Variant of Uniformity (Undead)

23

Basic Idea: Self-Detection

24

• Receive Omission Detection

Basic Idea: Self-Detection

25

• Receive Omission Detection

If a party receives number of
messages less than it expected, at
least one message has been
dropped on its side, so it can detect
itself as receive omission.

Basic Idea: Self-Detection

26

• Send Omission Detection• Receive Omission Detection

If a party receives number of
messages less than it expected, at
least one message has been
dropped on its side, so it can detect
itself as receive omission.

Basic Idea: Self-Detection

27

• Send Omission Detection

If a party knows at least one
nonfaulty party has not received the
message it is expected to send, it can
detect itself as send omission.

• Receive Omission Detection

If a party receives number of
messages less than it expected, at
least one message has been
dropped on its side, so it can detect
itself as receive omission.

Basic Idea: Self-Detection

28

Our Starting Point: Zombies and Ghosts[LS2022]

Undead Weak Multicast

29

Our Starting Point: Zombies and Ghosts[LS2022]

Undead Weak Multicast

Undead Weak Graded Multicast

30

Our Starting Point: Zombies and Ghosts[LS2022]

Undead Weak Multicast

Undead Weak Graded Multicast

Undead Weak Consensus

31

Our Starting Point: Zombies and Ghosts[LS2022]

Undead Weak Multicast

Undead Weak Graded Multicast

Undead Weak Consensus

Weak Consensus

32

Our Starting Point: Zombies and Ghosts[LS2022]

Undead Weak Multicast

 Byzantine Consensus

Undead Weak Graded Multicast

Undead Weak Consensus

Weak Consensus

33

Undead Weak Multicast[LS23]

I*

T RSH

34

Undead Weak Multicast[LS23]

I*

T RSH

35

Undead Weak Multicast[LS23]

I*

T RSH

36

Undead Weak Multicast[LS23]

I*

T RSH

37

Failed to detect a Full-Omission Sender

I*

T RSH

❌ ❌

38

Our Solution Against Overlapping Faults

I*

T RSH

39

Our Solution Against Overlapping Faults

🧟

T RSH

❌ ❌❌

40

Our Solution Against Overlapping Faults

👻

T RSH

❌ ❌

41

Second Starting Point: Previous Lower Bound [ELT22]

42

Second Starting Point: Previous Lower Bound [ELT22]

If receive omissions are forced to become zombies and stop participating from the
beginning of the protocol, there is no Byzantine Agreement Protocol with

.2t + s + r ≥ n

43

Second Starting Point: Previous Lower Bound [ELT22]

If receive omissions are forced to become zombies and stop participating from the
beginning of the protocol, there is no Byzantine Agreement Protocol with

.2t + s + r ≥ n

Closes the Door, Leaves a Window

44

Second Starting Point: Previous Lower Bound [ELT22]

If receive omissions are forced to become zombies and stop participating from the
beginning of the protocol, there is no Byzantine Agreement Protocol with

.2t + s + r ≥ n

Closes the Door, Leaves a Window

Our Result: There is a Byzantine Agreement Protocol with .s + r = n

45

A Consensus Protocol with s+r=n(s<n)

46

A Consensus Protocol with s+r=n(s<n)

Undead Very Weak Multicast

47

A Consensus Protocol with s+r=n(s<n)

Undead Very Weak Multicast

Undead Very Weak Multicast

Undead Very Weak Multicast

Undead Very Weak Multicast

For s+1 Different Leaders

48

A Consensus Protocol with s+r=n(s<n)

Undead Very Weak Multicast

Output
Safely

Undead Very Weak Multicast

Undead Very Weak Multicast

Undead Very Weak Multicast

For s+1 Different Leaders

49

Total Omission Setting (s+r=n)

50

• Complete Characterization

 Impossibility proof in the case .s = n

Total Omission Setting (s+r=n)

51

• Complete Characterization

 Impossibility proof in the case .

• Separation Between Agreement and Broadcast

 Impossibility proof for Broadcast with .

s = n

s + r = n

Total Omission Setting (s+r=n)

52

• Complete Characterization

 Impossibility proof in the case .

• Separation Between Agreement and Broadcast

 Impossibility proof for Broadcast with .

• Optimal Resilience

 Impossibility proof for Agreement with (with overlapping).

s = n

s + r = n

s + r > n

Total Omission Setting (s+r=n)

Conclusion

53

• An Improvement of the state-of-the-art Mixed-Fault Byzantine Agreement
Protocol in the presence of Overlapping Faults.

Conclusion

54

• An Improvement of the state-of-the-art Mixed-Fault Byzantine Agreement
Protocol in the presence of Overlapping Faults.

• An Optimal Byzantine Agreement Protocol in the Total Omission Setting.

Conclusion

55

• An Improvement of the state-of-the-art Mixed-Fault Byzantine Agreement
Protocol in the presence of Overlapping Faults.

• An Optimal Byzantine Agreement Protocol in the Total Omission Setting.

• Many Interesting features in the Total Omission Setting.

Conclusion

56

• An Improvement of the state-of-the-art Mixed-Fault Byzantine Agreement
Protocol in the presence of Overlapping Faults.

• An Optimal Byzantine Agreement Protocol in the Total Omission Setting.

• Many Interesting features in the Total Omission Setting.

Conclusion

57

Thank you!

