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The Scheme

▶ The secret sharer has n ∈ N parties to distribute their secret s among and
some security parameter 0 < t < 1.

▶ They choose a finite field Zp = Z/pZ of p = 2o(n) elements to embed their
secret in.

▶ They choose a random polynomial p(y) ∈ Zp[y ] with p(0) = s and degree
tn. Let x ∈ Ztn

p be the vector of its coefficients.
▶ To each party i they send the pair (i , p(i)) as the share of their secret. We

may instead construct some vectors {ℓi}n
i=0 ∈ Ztn

p such that ℓi · x = p(i) and
send the shares (i , p(i)).

Definition (Security)
We consider each party i > 0 to receive the share (i , ℓi · x). In this context, the
secret is secure against any tn − 1 shares being totally corrupted and can be
retrieved from tn shares.
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One-Bit Leakage Results

▶ Let fi : Zp → {−1, 1} represent the leakage functions.

Definition (Leakage)
The adversary receives all of the shares (i , fi(ℓi · x)). The question of interest is
how much information can be reconstructed about ℓ0 · x from these shares.

Theorem (Klein and Komargodski 2023)
Shamir’s Secret Sharing Scheme is one-bit leakage resilient for t > 0.688.

Theorem (K. 2024)
Shamir’s Secret Sharing Scheme is one-bit leakage resilient for t > 0.668.
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The Analytic Proxy

Definition
Let S ⊆ [n]. Then we define the function fS : Ztn

p → {−1, 1} as

fS(x) =
∏
i∈S

fi(ℓi · x) .

Theorem (Klein and Komargodski 2023)
If ∑

S⊆[n]

∣∣∣f̂S(ℓ0)
∣∣∣2

decays exponentially quickly in n for a fixed 0 < t < 1, the scheme is one-bit
leakage resilient.
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Bounding
∣∣∣f̂S(ℓ0)

∣∣∣
▶ Let |S| = (t + a)n.
▶ Let V (S) ⊆ ZS

p be the set of all vectors v with
∑

i∈S viℓi = ℓ0.
▶ For w ∈ Zan

p , let v(w) be the unique vector in V (S) where vi = wi for each
i ≤ an.

f̂S(ℓ0) =
∑

v∈V (S)

∏
i∈S

f̂i(vi) =
∑

w∈Zan
p

∏
i∈S

f̂i(vi(wi))

Lemma
If a < t/3, then

∣∣∣f̂S(ℓ0)
∣∣∣ ≤

(4an∏
i=1

∥∥∥f̂i
∥∥∥

L4

)
·

 (t+a)n∏
i=4an+1

∥∥∥f̂i
∥∥∥

L∞
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Bounding
∥∥∥f̂i∥∥∥L4

Theorem
If fi : Zp → {−1, 1} has k entries with fi(y) = 1, then if g : Zp → {−1, 1} with
g(y) = 1 if and only if y ∈ [1, k], then∥∥∥f̂i

∥∥∥
L2q

≤ ∥ĝ∥L2q

For each such g with mean µ, we may explicitly compute the L2q norm as

K2q(|µ|) =

|µ|2q + 2

√p∑
k=1

∣∣∣∣∣ 2π ·
sin
(
πk µ+1

2
)

k

∣∣∣∣∣
2q
1/2q
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Graph of K4(|µ|)

|µ|

y

K (|µ|)

A graph of K4(|µ|) on [0, 1] with increments at 0.1 intervals.
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Handling When µ Is Not Too Large

Definition (“Mean 0 Set")
We define our good set G to be the set where |µ| < 2/π, which is when our L∞

and L4 norms are bounded by K4(0) and K∞(0).

Definition (The Good L4 Set)
We define the set D to be when |µ| ∈ [2/π, 0.75], and so the L4 norm is bounded
by K4(0).

Definition (The Bad L4 Set)
We define the set C to be when |µ| ∈ [0.75, 0.782], which is when our bounds on
L4 are not as good as the mean-zero case, but there is little that we can do to fix
it.
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Handling when µ is Very Large
When µ is large, from an information theoretic perspective, fi is not conveying
very much to the adversary.

Definition (The Weak Induction Set)
We define the set B to be when |µ| ∈ [0.782, 0.836], and in this case we can use
an induction argument to claim that its L4 can be replaced by a value no worse
than our Bad L4 set.

Definition (The Strong Induction Set)
We define the set A to be when |µ| ∈ [0.836, 1], and in this case we can use an
induction argument to replace the L4 norm with K (0), our mean-zero value.

Using the L2 induction argument of Klein and Komargodski, we can also say that

∣∣∣f̂S(ℓ0)
∣∣∣ ≤

(
2
π

)tn−an+0.555|A|+0.4|B|+ |C|
3 +0.1238|D|

.
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Bounds on
∣∣∣f̂S(ℓ0)

∣∣∣
Lemma (Klein and Komargodski 2023)

∣∣∣f̂S(ℓ0)
∣∣∣ ≤

(
2
π

)(t−a)n

Lemma (K. 2024)

∣∣∣f̂S(ℓ0)
∣∣∣ ≤

(
2
π

)(t−0.66a)n

Remark
One should not expect this induction argument to do much better than

∣∣∣f̂S(ℓ0)
∣∣∣ ≤ 2an

(
2
π

)(t+a)n
≤
(

2
π

)(t−0.53a)n
.
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Setting Up For the Averaging Argument

▶ Let a > 0, and a ≤ K ≤ t/2 − a be a parameter.
▶ Let S ′ ⊆ [n] be of size (t − K )n, and we will take it to be fixed.
▶ Let S̃ ⊆ S ′ be of size (K + 2a)n, and we will take it to be a fixed choice.
▶ Let T be of size (K + a)n with T ∩ S ′ = ∅, and we will average over all sets

of this form.

Definition
We define λ(T ) to be a vector in ZT∪S′

p that fulfills∑
i∈S′∪T

λi(T )ℓi = ℓ0

and maximizes ∏
i∈S̃

∣∣∣f̂i(λi(T ))
∣∣∣
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Peaks Are Far Apart

Lemma
If two sets T and T ′ share N elements, then there exists some set B ⊆ S̃ of size
N + 1 such that for each i ∈ B,

λi(T ) ̸= λi(T ′)
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Averaging
Lemma

∣∣∣f̂S′∪T

∣∣∣ ≤
∏
i∈S̃

∣∣∣f̂i (λi(T ))
∣∣∣ ·
(

2
π

)n(t−K−3a)
.

∑
T

∣∣∣f̂S′∪T (ℓ0)
∣∣∣2 ≤

∑
T

∏
i∈S̃

∣∣∣f̂i (λi(T ))
∣∣∣2 ·
(

2
π

)2n(t−K−3a)

Since for each T , λi takes different values over ZS̃
p , we may expand our sum to

range over all vectors in ZS̃
p . Then∑

T

∣∣∣f̂S(ℓ0)
∣∣∣2 ≤

(
2
π

)2n(t−K−3a) ∑
φ∈ZS̃

p

∏
i∈S̃

∣∣∣f̂i (λi(T ))
∣∣∣2 =

(
2
π

)2n(t−K−3a)∏
i∈S̃

∥∥∥f̂i
∥∥∥

L2
=
(

2
π

)2n(t−K−3a)
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Averaging Bound
We know that ∑

T

∣∣∣f̂S(ℓ0)
∣∣∣2 ≤

(
2
π

)2n(t−K−3a)

and so ∑
S′

∑
T

∣∣∣f̂S(ℓ0)
∣∣∣2 ≤

(
n

(t − k)n

)(
2
π

)2n(t−K−3a)

However, there are many more ways to write a set of size (t + a) as S ′ ∪ T than
as simply S, and so when we cancel out over-counting we obtain the following
lemma.

Lemma (K. 2024)

∑
|S|=(t+a)n

∣∣∣f̂S(ℓ0)
∣∣∣2 ≤ O

((
(t + a)n
(t − k)n

)−1
·
(

n
(t − k)n

)
·
(

2
π

)2n(t−k−3a)
)

.
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Thank You
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