Showing Improved Security for Shamir's Secret Sharing Scheme

Dustin Kasser

University of Georgia

▶ The secret sharer has $n \in \mathbb{N}$ parties to distribute their secret s among and some security parameter $0 < t < 1$.

- ▶ The secret sharer has $n \in \mathbb{N}$ parties to distribute their secret s among and some security parameter $0 < t < 1$.
- \blacktriangleright They choose a finite field $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ of $p = 2^{o(n)}$ elements to embed their secret in.

- ▶ The secret sharer has $n \in \mathbb{N}$ parties to distribute their secret s among and some security parameter $0 < t < 1$.
- \blacktriangleright They choose a finite field $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ of $p = 2^{o(n)}$ elements to embed their secret in.
- ▶ They choose a random polynomial $p(y) \in \mathbb{Z}_p[y]$ with $p(0) = s$ and degree tn. Let $x \in \mathbb{Z}_p^{tn}$ be the vector of its coefficients.

- ▶ The secret sharer has $n \in \mathbb{N}$ parties to distribute their secret s among and some security parameter $0 < t < 1$.
- \blacktriangleright They choose a finite field $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ of $p = 2^{o(n)}$ elements to embed their secret in.
- ▶ They choose a random polynomial $p(y) \in \mathbb{Z}_p[y]$ with $p(0) = s$ and degree tn. Let $x \in \mathbb{Z}_p^{tn}$ be the vector of its coefficients.
- \blacktriangleright To each party *i* they send the pair $(i, p(i))$ as the share of their secret. We may instead construct some vectors $\{\ell_i\}_{i=0}^n \in \mathbb{Z}_p^{tn}$ such that $\ell_i \cdot x = p(i)$ and send the shares (i*,* p(i)).

- ▶ The secret sharer has $n \in \mathbb{N}$ parties to distribute their secret s among and some security parameter $0 < t < 1$.
- \blacktriangleright They choose a finite field $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ of $p = 2^{o(n)}$ elements to embed their secret in.
- ▶ They choose a random polynomial $p(y) \in \mathbb{Z}_p[y]$ with $p(0) = s$ and degree tn. Let $x \in \mathbb{Z}_p^{tn}$ be the vector of its coefficients.
- \blacktriangleright To each party *i* they send the pair $(i, p(i))$ as the share of their secret. We may instead construct some vectors $\{\ell_i\}_{i=0}^n \in \mathbb{Z}_p^{tn}$ such that $\ell_i \cdot x = p(i)$ and send the shares (i*,* p(i)).

Definition (Security)

We consider each party i *>* 0 to receive the share (i*, ℓ*ⁱ · x). In this context, the secret is secure against any $tn - 1$ shares being totally corrupted and can be retrieved from tn shares.

One-Bit Leakage Results

► Let $f_i: \mathbb{Z}_p \to \{-1,1\}$ represent the leakage functions.

Definition (Leakage)

The adversary receives all of the shares $(i, f_i(\ell_i \cdot x))$. The question of interest is how much information can be reconstructed about *ℓ*⁰ · x from these shares.

Theorem (Klein and Komargodski 2023)

Shamir's Secret Sharing Scheme is one-bit leakage resilient for t *>* 0*.*688.

Theorem (K. 2024)

Shamir's Secret Sharing Scheme is one-bit leakage resilient for t *>* 0*.*668.

The Analytic Proxy

Definition

If

Let $S \subseteq [n]$. Then we define the function $f_S: \mathbb{Z}_p^{tn} \rightarrow \{-1,1\}$ as

$$
f_{S}(x)=\prod_{i\in S}f_{i}(\ell_{i}\cdot x).
$$

Theorem (Klein and Komargodski 2023)

$$
\sum_{S\subseteq[n]}\left|\widehat{f_S}(\ell_0)\right|^2
$$

decays exponentially quickly in *n* for a fixed $0 < t < 1$, the scheme is one-bit leakage resilient.

Bounding $\left| \widehat{f_S}(\ell_0) \right|$

- \blacktriangleright Let $|S| = (t + a)n$.
- ▶ Let $V(S) \subseteq \mathbb{Z}_p^S$ be the set of all vectors v with $\sum_{i \in S} v_i \ell_i = \ell_0$.
- ▶ For $w \in \mathbb{Z}_p^{an}$, let $v(w)$ be the unique vector in $V(S)$ where $v_i = w_i$ for each $i \leq an$.

$$
\widehat{f}_{S}(\ell_0) = \sum_{v \in V(S)} \prod_{i \in S} \widehat{f}_{i}(v_i) = \sum_{w \in \mathbb{Z}_p^{an}} \prod_{i \in S} \widehat{f}_{i}(v_i(w_i))
$$

Bounding $\left| \widehat{f_S}(\ell_0) \right|$

- \blacktriangleright Let $|S| = (t + a)n$.
- ▶ Let $V(S) \subseteq \mathbb{Z}_p^S$ be the set of all vectors v with $\sum_{i \in S} v_i \ell_i = \ell_0$.
- ▶ For $w \in \mathbb{Z}_p^{an}$, let $v(w)$ be the unique vector in $V(S)$ where $v_i = w_i$ for each $i \leq an$.

$$
\widehat{f}_{S}(\ell_0) = \sum_{v \in V(S)} \prod_{i \in S} \widehat{f}_{i}(v_i) = \sum_{w \in \mathbb{Z}_p^{an}} \prod_{i \in S} \widehat{f}_{i}(v_i(w_i))
$$

Lemma

If $a < t/3$, then

$$
\left|\widehat{f_{\mathcal{S}}(\ell_0)}\right| \leq \left(\prod_{i=1}^{4an} \left\|\widehat{f}_i\right\|_{L^4}\right) \cdot \left(\prod_{i=4an+1}^{(t+a)n} \left\|\widehat{f}_i\right\|_{L^{\infty}}\right)
$$

Theorem

If $f_i: \mathbb{Z}_p \to \{-1,1\}$ has k entries with $f_i(y) = 1$, then if $g: \mathbb{Z}_p \to \{-1,1\}$ with $g(y) = 1$ if and only if $y \in [1, k]$, then

 $\left\|\widehat{f}_i\right\|_{\mathsf{L}^{2q}} \leq \left\|\widehat{g}\right\|_{\mathsf{L}^{2q}}$

For each such g with mean μ , we may explicitly compute the L^{2q} norm as

$$
K_{2q}(|\mu|) = \left(|\mu|^{2q} + 2\sum_{k=1}^{\sqrt{p}} \left| \frac{2}{\pi} \cdot \frac{\sin(\pi k \frac{\mu+1}{2})}{k} \right|^{2q} \right)^{1/2q}
$$

Graph of $K_4(|\mu|)$

A graph of $K_4(|\mu|)$ on [0, 1] with increments at 0.1 intervals.

Handling When *µ* Is Not Too Large

Definition ("Mean 0 Set")

We define our good set G to be the set where $|\mu| < 2/\pi$, which is when our L^{∞} and \mathcal{L}^4 norms are bounded by $\mathcal{K}_4(0)$ and $\mathcal{K}_\infty(0).$

Definition (The Good L⁴ Set)

We define the set D to be when $|\mu| \in [2/\pi,0.75]$, and so the L^4 norm is bounded by $K_4(0)$.

Definition (The Bad L^4 Set)

We define the set C to be when $|\mu| \in [0.75, 0.782]$, which is when our bounds on L^4 are not as good as the mean-zero case, but there is little that we can do to fix it.

Handling when *µ* is Very Large

When μ is large, from an information theoretic perspective, f_i is not conveying very much to the adversary.

Definition (The Weak Induction Set)

We define the set B to be when $|\mu| \in [0.782, 0.836]$, and in this case we can use an induction argument to claim that its L^4 can be replaced by a value no worse than our Bad L^4 set.

Definition (The Strong Induction Set)

We define the set A to be when $|\mu| \in [0.836, 1]$, and in this case we can use an induction argument to replace the L^4 norm with $K(0)$, our mean-zero value.

Using the L^2 induction argument of Klein and Komargodski, we can also say that

$$
\left|\hat{f_S}(\ell_0)\right| \le \left(\frac{2}{\pi}\right)^{tn-an + 0.555|A| + 0.4|B| + \frac{|C|}{3} + 0.1238|D|}
$$

.

$$
Bounds on \left| \widehat{f_S}(\ell_0) \right|
$$

Lemma (Klein and Komargodski 2023)

$$
\left|\widehat{f}_{\mathsf{S}}(\ell_0)\right| \leq \left(\frac{2}{\pi}\right)^{(t-a)n}
$$

Lemma (K. 2024)

$$
\left|\widehat{f}_{\mathsf{S}}(\ell_0)\right| \leq \left(\frac{2}{\pi}\right)^{(t-0.66a)n}
$$

Remark

One should not expect this induction argument to do much better than

$$
\left|\widehat{f}_{S}(\ell_0)\right| \leq 2^{an} \left(\frac{2}{\pi}\right)^{(t+a)n} \leq \left(\frac{2}{\pi}\right)^{(t-0.53a)n}
$$

Dustin Kasser 10 / 15 *Dustin Kasser* 10 */ 15 Dustin Kasser*

.

Setting Up For the Averaging Argument

- ▶ Let $a > 0$, and $a \leq K \leq t/2 a$ be a parameter.
- ► Let $S' \subseteq [n]$ be of size $(t K)n$, and we will take it to be fixed.
- ► Let $\tilde{S} \subseteq S'$ be of size $(K + 2a)n$, and we will take it to be a fixed choice.
- ► Let T be of size $(K + a)n$ with $T \cap S' = \emptyset$, and we will average over all sets of this form.

Definition

We define $\lambda($ $\mathcal{T})$ to be a vector in $\mathbb{Z}_\rho^{{\mathcal{T}} \cup S'}$ that fulfills

 $i \in$

$$
\sum_{\epsilon \in S' \cup T} \lambda_i(T) \ell_i = \ell_0
$$

and maximizes

$$
\prod_{i\in\tilde{\mathsf{S}}}\left|\widehat{f}_{i}(\lambda_{i}(\mathcal{T}))\right|
$$

Peaks Are Far Apart

Lemma

If two sets $\mathcal T$ and $\mathcal T'$ share N elements, then there exists some set $B\subseteq \tilde{\mathcal S}$ of size $N + 1$ such that for each $i \in B$,

 $\lambda_i(T) \neq \lambda_i(T')$

Averaging

Lemma

$$
\left|\widehat{f}_{S' \cup T}\right| \leq \prod_{i \in \widetilde{S}}\left|\widehat{f}_i\left(\lambda_i(T)\right)\right| \cdot \left(\frac{2}{\pi}\right)^{n(t-K-3a)}
$$

$$
\sum_{T} \left| \widehat{f_{S' \cup T}}(\ell_0) \right|^2 \leq \sum_{T} \prod_{i \in \tilde{S}} \left| \widehat{f}_i(\lambda_i(T)) \right|^2 \cdot \left(\frac{2}{\pi} \right)^{2n(t-K-3a)}
$$

Since for each $\mathcal{T},~\lambda_i$ takes different values over $\mathbb{Z}_p^{\tilde{S}}$, we may expand our sum to range over all vectors in $\mathbb{Z}_p^{\tilde{S}}.$ Then

$$
\sum_{\mathcal{T}} \left| \widehat{f}_{S}(\ell_{0}) \right|^{2} \leq \left(\frac{2}{\pi} \right)^{2n(t-K-3a)} \sum_{\varphi \in \mathbb{Z}_{p}^{5}} \prod_{i \in \tilde{S}} \left| \widehat{f}_{i}(\lambda_{i}(\mathcal{T})) \right|^{2} =
$$

$$
\left(\frac{2}{\pi} \right)^{2n(t-K-3a)} \prod_{i \in \tilde{S}} \left\| \widehat{f}_{i} \right\|_{L^{2}} = \left(\frac{2}{\pi} \right)^{2n(t-K-3a)}
$$

.

Averaging Bound

We know that

$$
\sum_{T} \left| \widehat{f}_{S}(\ell_0) \right|^2 \leq \left(\frac{2}{\pi} \right)^{2n(t-K-3a)}
$$

and so

$$
\sum_{S'} \sum_{T} \left| \widehat{f}_S(\ell_0) \right|^2 \leq {n \choose (t-k)n} \left(\frac{2}{\pi}\right)^{2n(t-K-3a)}
$$

However, there are many more ways to write a set of size $(t+a)$ as $S' \cup \mathcal{T}$ than as simply S, and so when we cancel out over-counting we obtain the following lemma.

Lemma (K. 2024)

$$
\sum_{|S|=(t+a)n} \left|\widehat{f}_S(\ell_0)\right|^2 \leq O\left(\binom{(t+a)n}{(t-k)n}^{-1} \cdot \binom{n}{(t-k)n} \cdot \left(\frac{2}{\pi}\right)^{2n(t-k-3a)}\right).
$$

Thank You