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The Scheme

» The secret sharer has n € N parties to distribute their secret s among and
some security parameter 0 < t < 1.

> They choose a finite field Z, = Z/pZ of p = 2°(n) elements to embed their
secret in.

> They choose a random polynomial p(y) € Z,[y] with p(0) = s and degree
tn. Let x € Z;” be the vector of its coefficients.

> To each party i they send the pair (i, p(i)) as the share of their secret. We
may instead construct some vectors {/;}_, € Z}" such that ¢; - x = p(i) and
send the shares (i, p(/)).

Definition (Security)

We consider each party i > 0 to receive the share (i, ¢; - x). In this context, the
secret is secure against any tn — 1 shares being totally corrupted and can be
retrieved from tn shares.



One-Bit Leakage Results

> Let f;: Z, — {—1,1} represent the leakage functions.

Definition (Leakage)

The adversary receives all of the shares (i, f;i(¢; - x)). The question of interest is
how much information can be reconstructed about £y - x from these shares.

Theorem (Klein and Komargodski 2023)

Shamir’s Secret Sharing Scheme is one-bit leakage resilient for t > 0.688.

Theorem (K. 2024)

Shamir's Secret Sharing Scheme is one-bit leakage resilient for t > 0.668.
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The Analytic Proxy

Definition
Let S C [n]. Then we define the function fs : Z" — {—1,1} as

fs(x) =[] fitti - ).

i€s
Theorem (Klein and Komargodski 2023)

If )
> ‘l?s(go)‘

SCln]

decays exponentially quickly in n for a fixed 0 < t < 1, the scheme is one-bit
leakage resilient.



Bounding ‘E(fo)‘

> Let |S| = (t+ a)n.
> Let V(S) C Zg be the set of all vectors v with » ;s vil; = fo.

» For w € Z7", let v(w) be the unique vector in V/(S) where v; = w; for each
i < an.

fs(bo) = > JIfw) = > [[Fwi(w))

veVv(S)ies WEZI" i€S

Dustin Kasser 5/ 15



Bounding ‘E(fg)‘

> Let |S|=(t+ a)n.
> Let V(S) C Zg be the set of all vectors v with » ;s vil; = fo.

» For w € Z7", let v(w) be the unique vector in V(S) where v; = w; for each
i < an.

= > IAw) = > [THu(w))

veVv(S)ies WEZ;” i€S

Lemma

If a < t/3, then

fi

o < (I

(t+a)n
- UIL .-

i=4an+1



Bounding Hf,”m

If f; : Zp — {—1,1} has k entries with f;(y) =1, then if g : Z, — {—1,1} with
g(y) =1 if and only if y € [1, k], then

J#

For each such g with mean u, we may explicitly compute the L29 norm as

< lIgll 20

L2

1/2q
VP . +1 2q
2 2 sin (mk&=
Kaql1) = |u|q+2§j;-%
k=1




Graph of Ky(|u])

"

A~

>
4 |l

A graph of Ks(|u|) on [0,1] with increments at 0.1 intervals.
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Handling When 1 Is Not Too Large

Definition (“Mean 0 Set")

We define our good set G to be the set where |u| < 2/m, which is when our L
and L* norms are bounded by K4(0) and K (0).

Definition (The Good L* Set)

We define the set D to be when |u| € [2/7,0.75], and so the L* norm is bounded
by K4(0)

Definition (The Bad L* Set)

We define the set C to be when |u| € [0.75,0.782], which is when our bounds on
L* are not as good as the mean-zero case, but there is little that we can do to fix

| :':
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Handling when 1 is Very Large

When p is large, from an information theoretic perspective, f; is not conveying
very much to the adversary.

Definition (The Weak Induction Set)

We define the set B to be when || € [0.782,0.836], and in this case we can use
an induction argument to claim that its L* can be replaced by a value no worse
than our Bad L* set.

Definition (The Strong Induction Set)

We define the set A to be when |u| € [0.836, 1], and in this case we can use an
induction argument to replace the L* norm with K(0), our mean-zero value.

Using the L? induction argument of Klein and Komargodski, we can also say that

5 ) tn—an+0.555| A|+0.4|B|+ 15! +0.1238| D|

o) < (2



Bounds on ‘fg(fo)‘
Lemma (Klein and Komargodski 2023)

‘FS(&))‘ - (;) (t—a)n

Lemma (K. 2024)

‘ f;(go)‘ _ <2> (t—0.66a)n

™

RENELS

One should not expect this induction argument to do much better than

(t+a)n (t—0.53a)n

= 2 2

‘fs(fo)‘ <2* <—> < (—) -
s s



Setting Up For the Averaging Argument

> Let a>0, and a < K < t/2 — a be a parameter.
> Let S’ C [n] be of size (t — K)n, and we will take it to be fixed.
> Let S C S’ be of size (K + 2a)n, and we will take it to be a fixed choice.

> Let T be of size (K + a)n with T NS’ =0, and we will average over all sets
of this form.

We define A(T) to be a vector in ZPTUSI that fulfills

Y M=t

ieS'uT

II

=

and maximizes

FOu(D)



Peaks Are Far Apart

Lemma

If two sets T and T’ share N elements, then there exists some set B C S of size
N + 1 such that for each i € B,

Ai(T) #M(T')



Averaging

2 n(t—K—3a)
7r> ;

-~

v

‘fS’UT <
ies

)fS’UT go‘ <> TTJ% O T)‘ ( )"‘f—K—3a>

T je§
Since for each T, \; takes different values over Zf,, we may expand our sum to

range over all vectors in Zg. Then

N > 2n(t—K—3a)
Z ’fs(fo)‘ < (i) Z H
T ezt ies
2 2n(t—K—3a)
3) 11

i€S

~

f;

2 2n(t—K—3a)
e~ <7r)




Averaging Bound

We know that
—~ 2 2 2n(t—K—3a)
Z‘fS(%)‘ < (W>
T

and so

Sl = (%) ()

b
However, there are many more ways to write a set of size (t + a) as S’ U T than

as simply S, and so when we cancel out over-counting we obtain the following
lemma.

Lemma (K. 2024)

Ll <o {(E3) (o) (7).




Thank You
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