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Impagliazzo’s Five Worlds
Algorithmica P=NP

Heuristica P-NP, but problems in NP are
easy on average.

Pessiland hard on average problems in NP,
OWFs don’t exist.

Minicrypt OWFs exist, PKE does not exist.

Cryptomania PKE exists
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What happens in the quantum world?

 Are OWFs necessary in the quantum world?

 What are the minimal assumptions needed to build quantum
cryptography??
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Microcrypt

o Set of primitives that are potentially weaker than OWFs.

o Security is formulated in terms of the hardness of an inherently
quantum problem.

e Although weaker than OWFs, microcrypt contains primitives like
pseudo-random states (PRS), one way state generators (OWSGs), etc.



Pseudorandom States (PRSs)

 Computational Approximations to the Haar Measure.

* |ntuitively, Haar distribution is the uniform distribution over guantum states.
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Pseudorandom states

A pair of efficient quantum poly-time (QPT) algorithms (GenKey, GenState) is a pseudorandom state
(PRS) if

e Given security parameter A, GenKey(1%) outputs a key k € {0,1}%.
e givenkey k € {0,1 }’1, GenState(k) outputs n-qubit state |y) = | PRS(k)).

e for all 7, for all poly-time algorithms D (called a distinguisher),

‘ 9) is Haar-random
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Pseudorandom States (PRSs)

 Where do PRSs fit in the complexity landscape”?

2018: Zhengfeng Ji, Yi-Kai Liu, Fang Song defined PRS as quantum analogue of PRGs.

Construction: PRS can be constructed from quantum secure one-way functions (OWFs).

2021: William Kretschmer showed OWFs cannot be constructed from PRS
in a black-box way.

PRS — 7?77



Classical Digital Signatures (DS)

Unforgeability security game between adversary A and

challenger C.

Challenger Adversary A

sk — SKGen(1%) pk
pk < PKGen(sk) :

m 0 < Signg(m)
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Quantum Public Key Digital Signatures
Tuple of algorithms (Skgen, Pkgen, Sign, Verify):

. Sngn(l’l) — sk: QPT algorithm for generating the secret key.
» PKgen(sk) — | pk): deterministic QPT algorithm for generating the
quantum public key.

e Sign(m, sk) — o : QPT algorithm for signing a classical message,
to produce a classical signature.

e Verify (m, o, | pk)) — 0/1: QPT algorithm that takes as input a
message, a candidate signature, | pk), and outputs accept/reject.



Prior Work

PRS— One time secure QDS scheme with quantum public
keys. (MY22a)

Challenger Adversary A

sk — SKGen(1%) \pk>®p0|)/(/1)

| pk) <« PKGen(sk)

m o<« Signg,.(m)

the set of OQO

set of
messages
queried by
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Outputlifl =
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otherwise




Main Result

There exists a quantum oracle © such that:

« PRSs exist relative to 0.
« No multi-time secure QDS scheme exists relative to 0.



Main Result

There exists a quantum oracle © such that:

« PRSs exist relative to 0.
« No multi-time secure QDS scheme exists relative to 0.

There does not exist a fully black box construction of multi-time
secure quantum digital signature (QDS) schemes from pseudo-
random states (PRS).



Oracle O
@:(%9 Q)
e 7/ Collection of haar random unitaries { % ,} ,n, Where each % ,

s an indexed list of 2¢ haar random unitaries acting on £ qubits.
 (): classical oracle for a fixed EXP complete problem.
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QDS schemes do not exist relative to (%, Q)

An Adversary A breaking any QDS scheme relative to 0.
e How can A use Q7

A uses @ to perform a brute-force search for a secret key sk such that,
signatures generated using sk pass the verification procedure with the

public key ‘pk>sk*




Simulating queries to %

Informal statement:

Let C be a quantum circuit making poly(A) queries to a haar random
unitary U on A qubits.

Then, w.h.p. over sampling two such Haar random unitaries U and U’,
for a given input | x),

| Pr[CY(]x)) = 1] = Pr[CY(|x)) = 1]| < negl(4)



Simulating queries to %

Informal statement:

Let C be a quantum circuit making poly(A) queries to a haar random
unitary U on A qubits.

Then, w.h.p. over sampling two such Haar random unitaries U and U’,
for a given input | x),

| Pr[CY(|x)) = 1] = Pr[CY (| x)) = 1]] < negl(4)

This concentration bound is strong enough to support a union bound
over all standard basis inputs |x).



Simulating queries to %

In our setting C = Verify®(PKGen®(.), m,.), for some message m,
which makes T queries to %.

(@ can perform brute force search over secret keys sk, by replacing
oracle calls to %/ with unitary T designs.
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« A makes polynomially many queries to the signing oracle,
obtaining message-signature pairs (11,, 6)).
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Using A’s queries to C

« A makes polynomially many queries to the signing oracle,
obtaining message-signature pairs (1, ;).

» (@ runs an iterative brute force attack which depends on

(m., 0;), identifying a shrinking the set of “candidate” secret
keys.
« (Q samples a secret key from the set of candidate secret keys.



Iterative brute force attack

» (0 generates the set Consistent.

e sk € Consistent if

, , 9
Vi, Pr[Verify? - ®(PKGen*“%(sk), m,o;) = 1] > 10 where 6; = Sign?-2(sk*, m,) .

sk

Consistent




Iterative procedure to find a good signer sk

() generates the set Goodsigner.
» sk € Goodsigner if most sk’ € Consistent accept most signatures
generated by sk.

. 1
|accept,, | > 10 | Consistent |, where accepty, = {sk’: |m : Verify(PKgen(sk'), m, Sign(sk,m))| > g}

sk*

GoodSigner

Consistent




Iterative procedure to find a good signer sk

() generates the set Stingy.
» sk € Stingy if it does not accept most signatures generated by
most sk’ € Consistent.

| friends ;| < 5 | Consistent |, where friends = {sk’ . sk € accept .}

sk*

GoodSigner
Consisten



Iterative procedure to find a good signer sk

() generates the set Stingy.

() samples a key sk from

S,.

Good Signer

sk*

Consistent

S_1

Candidates = sk U Candidates

Stingy




Iterative procedure to find a good signer sk

() generates the set GoodSigner.

Good Signer
sk*
S 1




Iterative procedure to find a good signer sk

() generates the set Stingy.

() samples a key sk from Good Signer
S5. N
S_1
S_2

Candidates = sk U candidates Stingy




PRSs exist relative to 0
On input key k, sample a unitary from %‘k‘, and apply it to | ())@V“.




PRSs exist relative to 0
On input key k, sample a unitary from %‘k‘, and apply it to | O)®V“.

Security proof sketch:
Want to show that, for all QPT A©-% 3 negl such that,

| Pr [A%%r %1 =1]— Pr [[A"%r%2(1%) = 1]| < negl(4)
k—[24] We—p1,n2)



PRSs exist relative to 0

Main ldea:

Reduce PRS distinguishing task to a black box Grover search
problem.

Construct an algorithm B such that,
A
| Egon[Pr[B% = 1]] — Pr[B® = 1]| = adv(A)




Open Questions

 Result only applies to digital signatures with a quantum public
key, but with classical secret key and signatures. If we allow
the latter to be quantum as well, then is there a construction?



