On black-box separations of quantum digital signatures from pseudorandom states.

Saachi Mutreja Columbia

Joint work with Andrea Coladangelo (University of Washington).

Impagliazzo's Five Worlds Algorithmica P=NP

Heuristica P NP, but problems in NP are ≠easy on average.

Pessiland **Pessiland hard on average problems in NP,** OWFs don't exist.

Minicrypt \qquad / OWFs exist, PKE does not exist.

Cryptomania PKE exists

What happens in the quantum world?

• Are OWFs necessary in the quantum world?

What happens in the quantum world?

- Are OWFs necessary in the quantum world?
- What are the *minimal assumptions* needed to build quantum cryptography?

Microcrypt

- Set of primitives that are potentially weaker than OWFs.
- Security is formulated in terms of the hardness of an inherently quantum problem.

Microcrypt

- Set of primitives that are potentially weaker than OWFs.
- Security is formulated in terms of the hardness of an inherently quantum problem.
- Although weaker than OWFs, microcrypt contains primitives like pseudo-random states (PRS), one way state generators (OWSGs), etc.

Pseudorandom States (PRSs)

- Computational Approximations to the Haar Measure.
- Intuitively, Haar distribution is the uniform distribution over quantum states.

Pseudorandom states

A pair of efficient quantum poly-time (QPT) algorithms (GenKey, GenState) is a **pseudorandom state (PRS)** if

- Given security parameter λ , GenKey(1^{λ}) outputs a key $k \in \{0,1\}^{\lambda}$.
- given key $k \in \{0,1\}^{\Lambda}$, GenState(k) outputs *n*-qubit state $|\psi\rangle = |\text{PRS}(k)\rangle$.
- for all t , for all poly-time algorithms D (called a **distinguisher**),

$$
D\left(\left|\psi\right\rangle,...,\left|\psi\right\rangle\right) \approx D\left(\left|\vartheta\right\rangle,...,\left|\vartheta\right\rangle\right)
$$

Pseudorandom States (PRSs)

• Where do PRSs fit in the complexity landscape?

2018: Zhengfeng Ji, Yi-Kai Liu, Fang Song defined PRS as quantum analogue of PRGs. **Construction**: PRS can be constructed from quantum secure one-way functions (OWFs).

2021: William Kretschmer showed OWFs *cannot* be constructed from PRS in a black-box way.

 $PRS \rightarrow ????$

-
-
-

Classical Digital Signatures (DS) Unforgeability security game between adversary A and challenger C.

Quantum Public Key Digital Signatures Tuple of algorithms (Skgen, Pkgen, Sign, Verify):

- SKgen $(1^{\lambda}) \rightarrow$ sk: QPT algorithm for generating the secret key. • PKgen(sk) \rightarrow $|pk\rangle$: deterministic QPT algorithm for generating the
- quantum public key.
- Sign $(m, sk) \rightarrow \sigma$: QPT algorithm for signing a classical message, to produce a classical signature.
- Verify $(m, \sigma, |pk\rangle) \rightarrow 0/1$: QPT algorithm that takes as input a message, a candidate signature, $\vert\,pk\rangle$, and outputs accept/reject.

Prior Work $PRS \rightarrow$ One time secure QDS scheme with quantum public keys. (MY22a)

Main Result There exists a quantum oracle O such that:

- **PRSs exist relative to 0.**
- No multi-time secure QDS scheme exists relative to $\mathcal O$.

Main Result There exists a quantum oracle O such that:

- **PRSs exist relative to 0.**
- No multi-time secure QDS scheme exists relative to $\mathcal O$.

There does not exist a fully black box construction of multi-time secure quantum digital signature (QDS) schemes from pseudo-

random states (PRS).

Oracle 0

-
- Q : classical oracle for a fixed EXP complete problem.

$=$ $(\mathcal{U}, \mathcal{Q})$ • \mathcal{U} : Collection of haar random unitaries $\{\mathcal{U}_{\ell}\}_{\ell \in \mathbb{N}}$, where each \mathcal{U}_{ℓ} is an indexed list of 2^{ℓ} haar random unitaries acting on ℓ qubits. 2^ℓ haar random unitaries acting on ℓ

QDS schemes do not exist relative to $(\mathcal{U}, \mathcal{Q})$

An Adversary A breaking any QDS scheme relative to $\mathscr O$.

• How can A use 2?

QDS schemes do not exist relative to $(\mathcal{U}, \mathcal{Q})$

An Adversary A breaking any QDS scheme relative to $\mathscr O$.

• How can A use Q ?

signatures generated using sk pass the verification procedure with the public key $|pk\rangle_{sk*}$.

A uses Q to perform a *brute-force* search for a secret key sk such that,

Simulating queries to Informal statement:

- unitary *U* on *λ* qubits.
- for a given input $|x\rangle$,

 $|\Pr[C^U(|x\rangle) = 1] - \Pr[C^U(|x\rangle) = 1]| \leq \text{negl}(\lambda)$

Let C be a quantum circuit making poly(λ) queries to a haar random

Then, w.h.p. over sampling two such Haar random unitaries U and $U^{\prime},$

Simulating queries to Informal statement:

- Let C be a quantum circuit making poly (λ) queries to a haar random unitary *U* on *λ* qubits.
- Then, w.h.p. over sampling two such Haar random unitaries U and $U^{\prime},$ for a given input $|x\rangle$,
- $|\Pr[C^U(|x\rangle) = 1] \Pr[C^U(|x\rangle) = 1]| \leq \text{negl}(\lambda)$

over all standard basis inputs $|x\rangle$.

This concentration bound is strong enough to support a union bound

Simulating queries to which makes T queries to U .

oracle calls to $\mathcal U$ with unitary T designs.

Simulating queries to
$$
\mathcal{U}
$$

In our setting $C = \text{Verify}^{\mathcal{Q}}(\text{PKGen}^{\mathcal{Q}}(.), m, .)$, for some message *m*,

can perform brute force search over secret keys sk, by replacing

Using *A***'s queries to** *C*

• makes polynomially many queries to the signing oracle, *A* $\textbf{obtaining message-signature pairs}~(m_i, \sigma_i).$

Using *A***'s queries to** *C*

- **• makes polynomially many queries to the signing oracle,** *A* $\textbf{obtaining message-signature pairs}~(m_i, \sigma_i).$
- Q runs an iterative brute force attack which depends on $(m_{\widetilde l},\sigma_{\widetilde l})$, identifying a shrinking the set of "candidate" secret **keys.**

Using *A***'s queries to** *C*

- **• makes polynomially many queries to the signing oracle,** *A* $\textbf{obtaining message-signature pairs}~(m_i, \sigma_i).$
- Q runs an iterative brute force attack which depends on $(m_{\widetilde l},\sigma_{\widetilde l})$, identifying a shrinking the set of "candidate" secret **keys.**
- $\mathcal Q$ samples a secret key from the set of candidate secret keys.

Iterative brute force attack

- **Q** generates the set Consistent.
- $sk \in$ Consistent if ∀*i*, Pr[*Verify* $\mathscr{P}(\mathcal{P}KGen^{\mathcal{U}',\mathcal{Q}}(sk), m_i, \sigma_i) = 1] \geq 0$

- generates the set Goodsigner. *Q*
- *sk* ∈ Goodsigner if most *sk'* ∈ Consistent accept most signatures generated by sk. $|accept_{sk}| \ge$ 9 $\frac{1}{10}$ | *Consistent* |, where $accept_{sk} = \{ sk' : | m : Verify(PKgen(sk'), m, Sign(sk, m) \} \ge$

- generates the set Stingy. *Q*
- *sk* ∈ Stingy if it does not accept most signatures generated by most . *sk*′∈ Consistent
	- $|friends_{sk}| \leq$ 1

generates the set Stingy. *Q*

 Q samples a key sk from S_1 .

Candidates = *sk* ∪ Candidates

Q generates the set GoodSigner.

S_1

PRSs exist relative to On input key *k*, sample a unitary from $\mathcal{U}_{|k|}$, and apply it to $|0\rangle^{\otimes |k|}$.

| Pr k ←[2^{λ}] $[A^{\mathcal{U}_k, \mathcal{U}_1, \dots \mathcal{U}_{2^{\lambda}}}(1^{\lambda}) = 1] - P$

$W \leftarrow \mu_{2^{n(\lambda)}}$ $[[A^{W,\mathcal{U}}_1,...\mathcal{U}_{2\lambda}(1^{\lambda})-1] \leq negl(\lambda)$

PRSs exist relative to On input key k , sample a unitary from $\mathcal{U}_{[k]}$, and apply it to $(0)^{\otimes |\ell|}$. k , sample a unitary from ${\mathscr U}_{|k|}$, and apply it to $\ket{0}^{\otimes |k|}$

Security proof sketch: Want to show that, for all QPT $A^{(.) ,\mathscr{U}},\ \exists$ negl such that, *A*(.), ∃negl

PRSs exist relative to Main Idea:

Construct an algorithm *B* such that, $\mathbb{E}_{k \leftarrow [2^{\lambda}]}$ $[Pr[B^{e_k} = 1]] - Pr[B^{0^{2^{\lambda}}} = 1]| = adv(A)$

Reduce PRS distinguishing task to a black box Grover search problem.

Open Questions

• Result only applies to digital signatures with a quantum public key, but with classical secret key and signatures. If we allow the latter to be quantum as well, then is there a construction?