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Introduction



Common Reference String Model

• Motivation: Bypass impossibility results in the plain model
• Trusted setup outputs a reference string 𝑐𝑟𝑠 to each party, including the adversary
• Applications: NIZK, MPC, …
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Common Random String Model

• Trusted setup outputs a random string 𝑟 to each party, including the adversary
• Lack of structure ⟹ Easier to instantiate (e.g. lottery draw, cloud pattern)
• More desirable than the Common Reference String Model
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Could Quantum be Useful?



Common Reference Quantum State Model

• [Morimae-Nehoran-Yamakawa’24] (see also [Qian’24]):
Stat.-hiding & Stat.-binding quantum commitments exist in the Common 
Reference Quantum State Model (quantum analogue of the Common Reference 
String Model)
• Impossible in the Common Reference String Model
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Our work: Common Haar State (CHS) Model
(quantum analogue of the Common Random String Model)



Definition: Common Haar State (CHS) Model

• Trusted setup outputs polynomial copies of a Haar random state 𝜓  to each 
party, including the adversary

• An independent and concurrent work by [Chen-Coladangelo-Sattath’24] also 
introduced the same model
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Motivation

1. Bypassing impossibilities in the plain model
➢Some primitive that requires computational assumptions could be statistically secure 

in the CHS model

2. Modular approach for designing primitives
➢Instantiate the common Haar state by state designs or pseudorandom states (PRS) in 

the plain model

3. Black-box separations



Background: Quantum Pseudorandom Primitives
• Pseudorandom States (PRS) Generator:

➢Defined by [Ji-Liu-Song’18]
➢Quantum analogue of PRG
➢Computationally indistinguishable from a Haar state, 

even when the adversary holds many copies
➢Stat.-secure, stretch PRS is impossible in the plain model

PRS
𝑘 ∈ 0,1 𝑛 |PRS(𝑘)⟩



• Pseudorandom States (PRS) Generator:
➢Defined by [Ji-Liu-Song’18]
➢Quantum analogue of PRG
➢Computationally indistinguishable from a Haar state, 

even when the adversary holds many copies
➢Stat.-secure, stretch PRS is impossible in the plain model

PRS
𝑘 ∈ 0,1 𝑛 |PRS(𝑘)⟩

• Pseudorandom Function-Like State (PRFS) Generator:
➢Defined by [Ananth-Qian-Yuen’21]
➢Quantum analogue of PRF
➢Computationally indistinguishable from an oracle that outputs an i.i.d. Haar state 𝜓𝑥  

on input 𝑥

PRFS
𝑘 ∈ 0,1 𝑛

|PRFS(𝑘, 𝑥)⟩

𝑥 ∈ 0,1 𝑛

Background: Quantum Pseudorandom Primitives
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Our Results

• Positive result: Bounded-query stat.-secure PRFS in the CHS model

➢We construct PRFS that is secure against 𝑂(𝑛/log1+𝜀(𝑛)) number of  queries in 
the CHS model for any 𝜀 > 0

➢First construction of PRFS with input length 𝜔(log 𝑛) from PRS in the plain model

➢It implies bounded-copy stat.-secure stretch PRS, stat.-hiding & stat.-binding 
quantum commitment in the CHS model

➢Stronger results + simpler proof compared to [Chen-Coladangelo-Sattath’24]

Under the parameter regime that is 

impossible to achieve in the plain model



Our Results
• Negative results: 

1. Optimality of our construction:
➢We break a class of PRS constructions using 𝑂(𝑛/log 𝑛) copies
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Our Results
• Negative results: 

1. Optimality of our construction:
➢We break a class of PRS constructions using 𝑂(𝑛/log 𝑛) copies of the common Haar state

➢ [Chen-Coladangelo-Sattath’24] break every construction of PRS in the CHS model using 
𝑂(𝑛) copies

2. Impossibility of stat.-secure Quantum-Computation-Classical-
Communication (QCCC) key agreement and commitment in the CHS 
model

3. Black-box separations between PRFS with output length 𝜔(log 𝑛) and
{ QCCC key agreement, QCCC commitment }

Main technical tool: 

LOCC Haar Indistinguishability
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LOCC Haar Indistinguishability

Alice Bob

Challenger

communication

Exp 0 (i.i.d. Haar states)

Alice Bob

Challenger

communication

Exp 1 (same Haar state)

Can two communicating parties w.h.p distinguish i.i.d. vs same Haar states?

• Our work: (Alice, Bob)’s distinguishing advantage is 𝑂(𝑡2/2𝑛)

➢Holds for Positive Partial Transpose (PPT) operators, which is a strict superset of LOCC operators
➢The bound is tight: ∃ (Alice, Bob) with advantage Ω(𝑡2/2𝑛)

• If allow quantum communication: SWAP test ⟹ Easy

• Two-party adversary (Alice, Bob) (1) computationally unbounded (2) classical communication (3) no 
shared entanglement
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Our Construction of PRS

Construction:

On key 𝑘 ∈ 0,1 𝑛 and 𝑚-qubit common Haar state |𝜓⟩,
PRS 𝑘 ≔ (𝑍𝑘 ⊗ id𝑚−𝑛)|𝜓⟩

where 𝑍𝑘 ≔ 𝑍𝑘1⨂𝑍𝑘2 ⊗ ⋯ ⊗ 𝑍𝑘𝑛

• Efficient generation
• Stretch
• Security: symmetric subspace + combinatorial arguments
• Work for |𝜓⟩ of any length ≥ key length



Impossibility of Interactive QCCC 
Primitives in the CHS model



A Framework for Proving Impossibilities in CHS model
• Some stat.-secure QCCC protocol (e.g. key agreement, commitment) exists in the 
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A Framework for Proving Impossibilities in CHS model
• Some stat.-secure QCCC protocol (e.g. key agreement, commitment) exists in the 

CHS model
• Define a new protocol in the plain model by replacing 𝜓  with 𝜓𝐴  and 𝜓𝐵

• By LOCC Haar indistinguishability, the new protocol in the plain model remains 
correct and statistically secure ⟹ Contradiction!
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Separating Interactive QCCC Primitives from PRFS 
with Output Length 𝜔(log 𝑛) 
• PRS with output length 𝑂(log 𝑛) implies QCCC commitment [AGQY’22] [ALY’24]

• Our work: consider a stronger variant of the CHS model that trivially implies PRFS:
➢Setup prepares a set of i.i.d. Haar states 𝜓𝑘,𝑥 𝑘,𝑥∈ 0,1 𝑛

➢Party queries on 𝑘, 𝑥  classically and gets one copy of 𝜓𝑘,𝑥

• Define PRFS 𝑘, 𝑥 ≔ 𝜓𝑘,𝑥

• Using the same idea to rule out { QCCC key agreement, QCCC commitment } relative 
to 𝜓𝑘,𝑥 𝑘,𝑥∈ 0,1 𝑛



Summary
• Common Haar State Model: a quantum analogue of the Common Random 

String Model

• Some stat.-secure primitives, which are impossible in the plain model, exist 
in the CHS model

• Separating interactive QCCC primitives from PRFS with super-logarithmic 
output length

• Quantum Haar Random Oracle Model: Each party has access to a Haar unitary oracle
➢Feasibilities & Limitations?
➢Very recent works: [Ananth-Bostanci-Gulati-Lin’24], [Hhan-Yamada’24], …

• LOCC Haar Indistinguishability in the oracle setting ?  𝐴𝑈 , 𝐵𝑈 ≈LOCC 𝐴𝑈 , 𝐵𝑉  ?

Thanks!

Open Questions & Follow-Up Works
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