Cryptography in the Common Haar State Model: Feasibility Results and Separations

Prabhanjan Ananth (UCSB) Aditya Gulati (UCSB) **Yao-Ting Lin** (UCSB)

Introduction

Common Reference String Model

- Motivation: Bypass impossibility results in the plain model
- Trusted setup outputs a **reference string** *crs* to each party, including the adversary
- Applications: NIZK, MPC, ...

Common Random String Model

- Trusted setup outputs a **random string** *r* to each party, including the adversary
- Lack of structure \Rightarrow Easier to instantiate (e.g. lottery draw, cloud pattern)
- More desirable than the Common Reference String Model

Could Quantum be Useful?

Common Reference Quantum State Model

• [Morimae-Nehoran-Yamakawa'24] (see also [Qian'24]):

Stat.-hiding & Stat.-binding quantum commitments **exist** in the Common Reference Quantum State Model (quantum analogue of the Common **Reference** String Model)

• Impossible in the Common Reference String Model

Our work: Common Haar State (CHS) Model (quantum analogue of the Common Random String Model)

Definition: Common Haar State (CHS) Model

- Trusted setup outputs polynomial copies of a Haar random state $|\psi\rangle$ to each party, including the adversary
- An independent and concurrent work by [Chen-Coladangelo-Sattath'24] also introduced the same model

Motivation

1. Bypassing impossibilities in the plain model

Some primitive that requires computational assumptions could be statistically secure in the CHS model

2. Modular approach for designing primitives

Instantiate the common Haar state by state designs or pseudorandom states (PRS) in the plain model

3. Black-box separations

Background: Quantum Pseudorandom Primitives

- Pseudorandom States (PRS) Generator:
 - Defined by [Ji-Liu-Song'18]
 - ➢ Quantum analogue of PRG
 - Computationally indistinguishable from a Haar state, even when the adversary holds many copies
 - Stat.-secure, **stretch** PRS is **impossible** in the plain model

Background: Quantum Pseudorandom Primitives

- Pseudorandom States (PRS) Generator:
 - Defined by [Ji-Liu-Song'18]
 - ➢ Quantum analogue of PRG
 - Computationally indistinguishable from a Haar state, even when the adversary holds many copies
 - Stat.-secure, **stretch** PRS is **impossible** in the plain model

- Pseudorandom Function-Like State (PRFS) Generator:
 - Defined by [<u>Ananth</u>-Qian-Yuen'21]
 - ➢ Quantum analogue of PRF
 - \succ Computationally indistinguishable from an oracle that outputs an i.i.d. Haar state $|\psi_x\rangle$ on input x

Under the parameter regime that is impossible to achieve in the plain model

• Positive result: Bounded-query stat.-secure PRFS in the CHS model

Under the parameter regime that is impossible to achieve in the plain model

• Positive result: Bounded-query stat.-secure PRFS in the CHS model

We construct PRFS that is secure against $O(n/\log^{1+\varepsilon}(n))$ number of queries in the CHS model for any $\varepsilon > 0$

Under the parameter regime that is impossible to achieve in the plain model

• Positive result: Bounded-query stat.-secure PRFS in the CHS model

> We construct PRFS that is secure against $O(n/\log^{1+\varepsilon}(n))$ number of queries in the CHS model for any $\varepsilon > 0$

First construction of PRFS with input length $\omega(\log n)$ from PRS in the plain model

Under the parameter regime that is impossible to achieve in the plain model

• Positive result: Bounded-query stat.-secure PRFS in the CHS model

> We construct PRFS that is secure against $O(n/\log^{1+\varepsilon}(n))$ number of queries in the CHS model for any $\varepsilon > 0$

First construction of PRFS with input length $\omega(\log n)$ from PRS in the plain model

It implies bounded-copy stat.-secure stretch PRS, stat.-hiding & stat.-binding quantum commitment in the CHS model

Under the parameter regime that is impossible to achieve in the plain model

• Positive result: Bounded-query stat.-secure PRFS in the CHS model

We construct PRFS that is secure against $O(n/\log^{1+\varepsilon}(n))$ number of queries in the CHS model for any $\varepsilon > 0$

First construction of PRFS with input length $\omega(\log n)$ from PRS in the plain model

It implies bounded-copy stat.-secure stretch PRS, stat.-hiding & stat.-binding quantum commitment in the CHS model

Stronger results + simpler proof compared to [Chen-Coladangelo-Sattath'24]

- Negative results:
 - 1. Optimality of our construction:

> We break a class of PRS constructions using $O(n/\log n)$ copies

> [Chen-Coladangelo-Sattath'24] break every construction of PRS in the CHS model using O(n) copies

- Negative results:
 - 1. Optimality of our construction:

> We break a class of PRS constructions using $O(n/\log n)$ copies

- > [Chen-Coladangelo-Sattath'24] break every construction of PRS in the CHS model using O(n) copies
- Impossibility of stat.-secure Quantum-Computation-Classical-Communication (QCCC) key agreement and commitment in the CHS model

• Negative results:

1. Optimality of our construction:

> We break a class of PRS constructions using $O(n/\log n)$ copies

- Chen-Coladian Each party performs local quantum of PRS in the CHS model using computation and communicates classically
- 2. Impossibility of state of cure Quantum-Computation-Classical-Communication (QCCC) key agreement and commitment in the CHS model

• Negative results:

1. Optimality of our construction:

> We break a class of PRS constructions using $O(n/\log n)$ copies

- 2. Impossibility of state of cure Quantum-Computation-Classical-Communication (QCCC) key agreement and commitment in the CHS model
- 3. Black-box separations between PRFS with output length $\omega(\log n)$ and {QCCC key agreement, QCCC commitment }

• Negative results:

1. Optimality of our construction:

> We break a class of PRS constructions using

> [Chen-Coladangelo-Sattath'24] break every O(n) copies

Main technical tool: LOCC Haar Indistinguishability

- 2. Impossibility of stat.-secure Quantum-Computation-Classical-Communication (QCCC) key agreement and commitment in the CHS model
- 3. Black-box separations between PRFS with output length $\omega(\log n)$ and {QCCC key agreement, QCCC commitment }

Can two communicating parties w.h.p distinguish i.i.d. vs same Haar states?

Can two communicating parties w.h.p distinguish i.i.d. vs same Haar states?

• If allow quantum communication: SWAP test \implies Easy

Can two communicating parties w.h.p distinguish i.i.d. vs same Haar states?

- If allow quantum communication: SWAP test \Rightarrow Easy
- Two-party adversary (Alice, Bob) (1) computationally unbounded (2) classical communication (3) no shared entanglement

Can two communicating parties w.h.p distinguish i.i.d. vs same Haar states?

- If allow quantum communication: SWAP test \Rightarrow Easy
- Two-party adversary (Alice, Bob) (1) computationally unbounded (2) classical communication (3) no shared entanglement
- Our work: (Alice, Bob)'s distinguishing advantage is $O(t^2/2^n)$
 - > Holds for Positive Partial Transpose (PPT) operators, which is a strict superset of LOCC operators

> The bound is tight: \exists (Alice, Bob) with advantage $\Omega(t^2/2^n)$

Our Construction of PRS

Our Construction of PRS

Construction:

On key $k \in \{0,1\}^n$ and m-qubit common Haar state $|\psi\rangle$, $|PRS(k)\rangle \coloneqq (Z^k \otimes id_{m-n})|\psi\rangle$

where
$$Z^k \coloneqq Z^{k_1} \otimes Z^{k_2} \otimes \cdots \otimes Z^{k_n}$$

- Efficient generation
- Stretch
- Security: symmetric subspace + combinatorial arguments
- Work for $|\psi\rangle$ of **any** length \geq key length

Impossibility of Interactive QCCC Primitives in the CHS model

A Framework for Proving Impossibilities in CHS model

• Some stat.-secure QCCC protocol (e.g. key agreement, commitment) exists in the CHS model

A Framework for Proving Impossibilities in CHS model

- Some stat.-secure QCCC protocol (e.g. key agreement, commitment) exists in the CHS model
- Define a new protocol in the **plain model** by replacing $|\psi\rangle$ with $|\psi_A\rangle$ and $|\psi_B\rangle$

A Framework for Proving Impossibilities in CHS model

- Some stat.-secure QCCC protocol (e.g. key agreement, commitment) exists in the CHS model
- Define a new protocol in the **plain model** by replacing $|\psi\rangle$ with $|\psi_A\rangle$ and $|\psi_B\rangle$
- By LOCC Haar indistinguishability, the new protocol in the plain model remains correct and statistically secure ⇒ Contradiction!

• PRS with output length $O(\log n)$ implies QCCC commitment [AGQY'22] [ALY'24]

- PRS with output length $O(\log n)$ implies QCCC commitment [AGQY'22] [ALY'24]
- Our work: consider a stronger variant of the CHS model that trivially implies PRFS:

> Setup prepares a set of i.i.d. Haar states $\{|\psi_{k,x}\rangle\}_{k,x\in\{0,1\}^n}$

> Party queries on (k, x) classically and gets one copy of $|\psi_{k,x}\rangle$

- PRS with output length $O(\log n)$ implies QCCC commitment [AGQY'22] [ALY'24]
- Our work: consider a stronger variant of the CHS model that trivially implies PRFS:

> Setup prepares a set of i.i.d. Haar states $\{|\psi_{k,x}\rangle\}_{k,x\in\{0,1\}^n}$

> Party queries on (k, x) classically and gets one copy of $|\psi_{k,x}\rangle$

- Define $|PRFS(k, x)\rangle \coloneqq |\psi_{k,x}\rangle$
- Using the same idea to rule out { QCCC key agreement, QCCC commitment } relative to $\{|\psi_{k,x}\rangle\}_{k,x\in\{0,1\}^n}$

Summary

- Common Haar State Model: a quantum analogue of the Common Random String Model
- Some stat.-secure primitives, which are impossible in the plain model, exist in the CHS model
- Separating interactive QCCC primitives from PRFS with super-logarithmic output length

Open Questions & Follow-Up Works

Quantum Haar Random Oracle Model: Each party has access to a Haar unitary oracle
Feasibilities & Limitations?

Very recent works: [Ananth-Bostanci-Gulati-Lin'24], [Hhan-Yamada'24], ...

• LOCC Haar Indistinguishability in the **oracle** setting? $(A^U, B^U) \approx_{\text{LOCC}} (A^U, B^V)$?

Thanks!