zKSNARKS in the ROM with
Unconditional UC-Security

TL;DR Micali and BCS are UC-secure in the GROM

Giacomo Fenzi @ =P:-L

eprint.iacr.org/2024/724 Joint work with Alessandro Chiesa
=P

https://eprint.iacr.org/2024/724

Motivation

ZzkSNARKSs are deployed In the real world

ZzkSNARKSs are deployed In the real world

ZkSNARKSs are ZKPs
where verification Is

exponentially faster
than execution.

ZzkSNARKSs are deployed In the real world

E.g.: proof based rollups

to Improve scalability

ZzkSNARKSs are deployed In the real world

Blockchalin

E.g.: proof based rollups
to improve scalability

ZzkSNARKSs are deployed In the real world

Blockchalin

E.g.: proof based rollups
to improve scalability

Rollup Users

()
(=)

()

ZzkSNARKSs are deployed In the real world

Blockchalin

E.g.: proof based rollups
to Improve scalability
‘s

st” := Update(st, tx;, ..., tx,)

@ n st, st’]
. He
z \J /

ervice operator

Rollup Users

ZzkSNARKSs are deployed In the real world

Blockchalin

E.g.: proof based rollups
to improve scalability
‘s

st” := Update(st, tx;, ..., tx,)

@ n st, st’]
. He
z \J /

ervice operator

Rollup Users

ZzkSNARKSs are deployed In the real world

Blockchalin

E.g.: proof based rollups
to improve scalability

(s

" /
ervice operator 7T, St, St

Rollup Users

st’ := Update(st, tx;, ..., tX) Validator(s)

()

st, st’

Check 7«

/A
v - 0/1

\X / ‘

Goal: Modular Security Analysis

Goal: Modular Security Analysis

Goal: Modular Security Analysis

' Secure + Other components secure

Goal: Modular Security Analysis

' Secure + Other components secure

System

SeCcure

Goal: Modular Security Analysis

' Secure + Other components secure

System
secure

Goal: Modular Security Analysis

' Secure + Other components secure

S
Our focus w

System

SeCcure

Goal: Modular Security Analysis

' Secure + Other components secure
Our focus

Which zkSNARKs are UC-secure?

System

—

SeCcure

This work

zZKSNARKS 1n the ROM with Unconditional UC-Security

Alessandro Chiesa Giacomo Fenzi

alessandro.chiesalepfl.ch giacomo.fenzi@epfl.ch
EPFL EPFL

This work

zZKSNARKS 1n the ROM with Unconditional UC-Security

Alessandro Chiesa Giacomo Fenzi
alessandro.chiesa@epfl.ch giacomo.fenzi@epfl.ch
EPFL EPFL

Show existing zkSNARKs are UC-secure
(including deployed ones)

This work

zZKSNARKS 1n the ROM with Unconditional UC-Security

Alessandro Chiesa Giacomo Fenzi
alessandro.chiesa@epfl.ch giacomo.fenzi@epfl.ch
EPFL EPFL

Show existing zkSNARKs are UC-secure

inct
(including deployed ones) Succinc

This work

zZKSNARKS 1n the ROM with Unconditional UC-Security

Alessandro Chiesa Giacomo Fenzi
alessandro.chiesalepfl.ch giacomo.fenzi@epfl.ch
EPFL EPFL

Show existing zkSNARKs are UC-secure

inct
(including deployed ones) Succinc

ROM only: transparent, post-quantum,
unconditional security

This work

zZKSNARKS 1n the ROM with Unconditional UC-Security

Alessandro Chiesa Giacomo Fenzi
alessandro.chiesalepfl.ch giacomo.fenzi@epfl.ch
EPFL EPFL

Show existing zkSNARKs are UC-secure

inct
(including deployed ones) Succinc

ROM only: transparent, post-quantum, Concrete security bounds:
unconditional security useful for practitioners

Our results

Main Thm.

There exists a zkSNARK that is
unconditionally UC-secure in the GROM

Lemma

Let ARG be a “UC-friendly”
argument in the ROM.

Then, 11| ARG] is UC-secure in
the GROM

Theorem

The Micali construction is “UC-friendly” in the ROM,
provided that the underlying PCP is honest-verifier
zero knowledge and knowledge sound.

Corollary

The Micali construction is UC-secure in the GROM,
when Instantiated as above.

Theorem

The Micali construction is “UC-friendly” in the ROM,
provided that the underlying PCP is honest-verifier
zero knowledge and knowledge sound.

Same conditions required for KS of
Micali in the ROM

Corollary

The Micali construction is UC-secure in the GROM,
when Instantiated as above.

Theorem

The BCS construction is “UC-friendly” in the ROM,
provided that the underlying IOP is honest-verifier zero
knowledge and (state-restoration) knowledge sound.

Corollary

The BCS construction is UC-secure in the GROM,
when instantiated as above.

Theorem

The BCS construction is “UC-friendly” in the ROM,
provided that the underlying IOP is honest-verifier zero
knowledge and (state-restoration) knowledge sound.

Same conditions required for KS of
BCS in the ROM

Corollary

The BCS construction is UC-secure in the GROM,
when instantiated as above.

Techniques

[CDGLN18]

GROM

Goal: ROM-like interface shared by all parties in the security experiment

[CDGLN18]

12

GROM

Goal: ROM-like interface shared by all parties in the security experiment

[CDGLN18]

Flavor: restricted programmable and observable global random oracle

12

GROM

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

Flavor: restricted programmable and observable global random oracle

f

GRO

12

GROM

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

Flavor: restricted programmable and observable global random oracle

» Query(x): as in ROM

f

GRO

12

GROM

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

Flavor: restricted programmable and observable global random oracle

4 R
» Query(x): as in ROM
« Observe(s): get all queries with prefix s from adversary or
from parties with sid # s
GRO
\ _Jl

12

GROM

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

Flavor: restricted programmable and observable global random oracle

4 R
» Query(x): as in ROM
« Observe(s): get all queries with prefix s from adversary or
from parties with sid # s
; | o | GRO
» Program(x, y): Program the GRO (maintaining consistency)
\ _Jl

12

GROM

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

Flavor: restricted programmable and observable global random oracle

» Query(x): as in ROM

« Observe(s): get all queries with prefix s from adversary or
from parties with sid # s

» Program(x, y): Program the GRO (maintaining consistency)

» IsProgrammed(x): allows parties in session sid to check if
a x = sid o X" has been programmed

f

GRO

12

GROM

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

Flavor: restricted programmable and observable global random oracle

» Query(x): as in ROM

« Observe(s): get all queries with prefix s from adversary or
from parties with sid # s

» Program(x, y): Program the GRO (maintaining consistency)

» IsProgrammed(x): allows parties in session sid to check if
a x = sid o X" has been programmed

f

GRO

12

GROM

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

Flavor: restricted programmable and observable global random oracle

» Query(x): as in ROM

« Observe(s): get all queries with prefix s from adversary or
from parties with sid # s

» Program(x, y): Program the GRO (maintaining consistency)

» IsProgrammed(x): allows parties in session sid to check if
a x = sid o X" has been programmed

f

GRO

Crucial: Simulator can program points without being detected!

12

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

using import

13

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

using import

T

13

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

using import

ﬂ‘l
——

b,

13

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

using import

ﬂ‘l
.

b,

13

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

using import

timE(ﬂ') < p(/lin — /10ut)

13

We consider adversaries that are

UC Wlth BUdgetS resource bounded and

| computationally unbounded. We
Plain UC only models model this introducing budgets

adversaries that are
computationally bounded
using import

timE(ﬂ') < p(/lin — /10ut)

13

UC with BUdgetS We consider adversaries that are

resource bounded and

computationally unbounded. We
model this introducing budgets

Plain UC only models
adversaries that are

computationally bounded
using import

timE(ﬂ') < p(/lm — /10ut)

13

We consider adversaries that are

UC Wlth BUdgetS resource bounded and

| computationally unbounded. We
Plain UC only models model this introducing budgets

adversaries that are
computationally bounded
using import

Budgets

timE(ﬂ') < p(/lm — /10ut)

13

We consider adversaries that are

UC Wlth BUdgetS resource bounded and

| computationally unbounded. We
Plain UC only models model this introducing budgets

adversaries that are
computationally bounded
using import

Budgets

tq query

timE(ﬂ') < p(/lm — /10ut)

13

We consider adversaries that are

UC Wlth BUdgetS resource bounded and

| computationally unbounded. We
Plain UC only models model this introducing budgets

adversaries that are
computationally bounded
using import

Budgets

tq query

- programming

timE(ﬂ') < p(/lm — /10ut)

13

We consider adversaries that are

UC Wlth BUdgetS resource bounded and

| computationally unbounded. We
Plain UC only models model this introducing budgets

adversaries that are
computationally bounded
using import

Budgets

tq Query 4 , proving

- programming

timE(ﬂ') < p(/lm — /10ut)

13

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

using import

timE(ﬂ') < p(/lm — /10ut)

We consider adversaries that are

resource bounded and
computationally unbounded. We
model this introducing budgets

Budgets

tq Query 4 , proving

f, programming ¢, verification

13

We consider adversaries that are

UC Wlth BUdgetS resource bounded and

| computationally unbounded. We
Plain UC only models model this introducing budgets

adversaries that are
computationally bounded
using import

Budgets

tq Query 4 , proving

f, programming ¢, verification

Budget can then be spent on:

timE(ﬂ') < p(/lm — /10ut)

13

We consider adversaries that are

UC Wlth BUdgetS resource bounded and

| computationally unbounded. We
Plain UC only models model this introducing budgets

adversaries that are
computationally bounded
using import

Budgets

tq Query 4 , proving

f, programming ¢, verification

Budget can then be spent on:

time(xr) < p(/lin — /10ut) G RO

13

Our main lemma

Wrapper protocol 1| ARG]

UC-friendly
completeness

ARG inthe [NV)G friendly ZK

ROM

UC-friendly KS

UC-secure

zkSNARK

14

UC-friendly — UC-secure

UC-friendly — UC-secure

UC-friendly — UC-secure

G, = Ideal

UC-friendly — UC-secure

G, = Ideal

Simulator can
program
undetectably

UC-friendly — UC-secure

G, G, G, = Ideal
E

S R W

Simulator can UC-friendly

program completeness
undetectably P 15

UC-friendly — UC-secure

G, G, G; G, = Ideal
2 4
v v

ey

Simulator can UC-friendly UC-friendly

program completeness ZK
undetectably 15

UC-friendly — UC-secure

G, G, G; G, = Ideal
2 4
v v

ey ey’

Simulator can UC-friendly UC-friendly UC-friendly

program completeness ZK KS
undetectably 15

UC-friendly — UC-secure

UC-friendly properties exactly defined for these game hops

G, G, G; G, = Ideal
2 4
v v

ey ey’

Simulator can UC-friendly UC-friendly UC-friendly

program completeness ZK KS
undetectably 15

UC-friendly completeness

Adversary should not be able to make honestly
generated proofs fail to verify.

16

UC-friendly completeness

Adversary should not be able to make honestly
generated proofs fail to verify.

16

Vof

UC-friendly completeness

Adversary should not be able to make honestly
generated proofs fail to verify.

Pr

Vof

UC-friendly completeness

Adversary should not be able to make honestly

generated proofs fail to verify.

Pr

Vof

UC-friendly completeness

Adversary should not be able to make honestly
generated proofs falil to verify.

Vof

<

N Query(x)
]['

" Program(x, y)

Pr

16

UC-friendly completeness

Adversary should not be able to make honestly
generated proofs falil to verify.

Vof

<

Query(x)

]’Z

" Program(x, y)

Pr

x Proof(x, w)

7P (x, W)
Add 7 to ProofList

16

UC-friendly completeness

Adversary should not be able to make honestly
generated proofs falil to verify.

Vof

<

N Query(x)
]['

" Program(x, y)

Pr

x Proof(x, w)

7P (x, W)
Add 7 to ProofList

16

UC-friendly completeness

Adversary should not be able to make honestly
generated proofs falil to verify.

Vof

(x, 7) € ProofList

and 7 Query(x)

" Program(x, y)

Pr

x Proof(x, w)

7P (x, W)
Add 7 to ProofList

16

UC-friendly completeness

Adversary should not be able to make honestly

enerated proofs fail to verify. ‘
g P y V of
(x, 7) € ProofList
and 1 Query(x)

]’Z

" Program(x, y)

Pr

x Proof(x, w)

7P (x, W)
Add 7 to ProofList

16

UC-friendly completeness

Adversary should not be able to make honestly

enerated proofs fail to verify. ‘
g P y V of
(x, 7) € ProofList
and 1 Query(x)

]’Z

" Program(x, y)

Pr

x Proof(x, w)

T Pf(x, w)

or

programmed point

| Add 7 to ProofList
\ V queries /
S

16

UC-friendly completeness

Adversary should not be able to make honestly

enerated proofs fail to verify. ‘
g P y V of
(x, 7) € ProofList
and 1 Query(x)

]’Z

\ " Program(x, y)

x Proof(x, w)

T Pf(x, w)

Pr /

or

IN

programmed point

| Add 7 to ProofList
\ V queries /
S

16

UC-friendly completeness

Adversary should not be able to make honestly

enerated proofs fail to verify. ‘
g P y V of
(x, m) € ProofList
and 1 Query(x)

]’Z

" Program(x, y)
E

x Proof(x, w)

T < Pf(x, W)

IN

or
| ’ Add 7 to ProofList
\ V queries /
S

programmed point

16

UC-friendly ZK

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

17

UC-friendly ZK

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

a4)

18, Vo
S.1

17

UC-friendly ZK

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

a4)

18, Vo

Real S.t Ideal

%

17

UC-friendly ZK

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

-

Real

0/1

18, Vo
S.1

~

Ideal

%

17

0/1

UC-friendly ZK

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

-

Real

0/1

18, Vo
S.1

~

Ideal

»

Proof(x, w)

T < Pf(x, W)

%

17

0/1

UC-friendly ZK

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

-

Real

0/1

18, Vo
S.1

»

Proof(x, w)

T < Pf(x, W)

%

17

0/1

Ideal

2 Proof(x, w)
7z, tr — S/(x)

Program f according to tr

UC-friendly ZK

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

-

Real

18, Vo
S.1

<

Query(x)

]’Z

0/1

" Program(x, y)

Proof(x, w)

T Pf(x, W)

%

17

Ideal

<

Query(x)

]’Z

0/1

" Program(x, y)

2 Proof(x, w)
7z, tr — S/(x)

Program f according to tr

UC-friendly ZK

Adversary should not be able to distinguish real and si

even with access to a programming oracle.

~

Real

18, Vo
S.1

>

Query(x)

]'E

0/1

" Program(x, y)

Proof(x, w)

T < Pf(x, W)

&

17

ldeal

>

Query(x)

]'E

0/1

" Program(x, y)

2 Proof(x, w)
7z, tr — S/(x)

Program f according to tr

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

18

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

18

EERZ%

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

Pr

EERZ%

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs

that the extractor cannot extract a withess from

Pr

EERZ%

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs

that the extractor cannot extract a witness from

Pr

EERZ%

]'Z

>

Query(x)

18

" Program(x, y)

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs 1
that the extractor cannot extract a witness from 32V of

>

Query(x)
" Program(x, y)

]'Z

x Proof(x, w)

Pr

T, tr < S/ (x, w)

Program f according to tr
Add (x,) to ProofList

18

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs 1
that the extractor cannot extract a witness from 32V of

>

Query(x)
" Program(x, y)

]'Z

x Proof(x, w)

Pr

T, tr < S/ (x, w)

Program f according to tr
Add (x,) to ProofList

18

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs 1
that the extractor cannot extract a witness from 32V of

>

Query(x)
" Program(x, y)

]'Z

x Proof(x, w)

Pr

T, tr < S/ (x, w)

Program f according to tr
Add (x,) to ProofList

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs 1
that the extractor cannot extract a witness from 32V of

>

Query(x)
" Program(x, y)

]'Z

x Proof(x, w)

l T, tr < S/ (x, w)

(x, 1) Program f according to tr

Pr

‘ Add (x,) to ProofList

18

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs 1
that the extractor cannot extract a witness from 32V of

® P

N Query(x)
f

" Program(x, y)

Proof(x, w)
l T, tr < S/ (x, w)

(x,) tr Program f according to tr

Pr

‘ | Add (x,) to ProofList

18

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs 1
that the extractor cannot extract a witness from 32V of

® P

N Query(x)
f

" Program(x, y)

Proof(x, w)
l T, tr < S/ (x, w)

(x,) tr Program f according to tr

Pr

Add (x,) to ProofList
W

18

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs 1
that the extractor cannot extract a witness from 32V of

® P

N Query(x)
f

" Program(x, y)

Proof(x, w)
l T, tr < S/ (x, w)

(x,) tr Program f according to tr

Pr

Add (x,) to ProofList
W

18

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs 1
that the extractor cannot extract a witness from 32V of

® P

N Query(x)
f

" Program(x, y)

P V does not query Proof(x, w)
r programmed points l T, tr < Sf(x, W)
(x,) tr Program f according to tr

Add (x,) to ProofList
W

18

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs 1
that the extractor cannot extract a witness from 32V of

® P

N Query(x)
f

" Program(x, y)

Proof(x, w)

l T, tr < S/ (x, w)

V does not query
Pr

programmed points

(x,) tr Program f according to tr

(x,) & ProofList Add (x,) to ProofList
b W

18

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs 1
that the extractor cannot extract a witness from 32V of

® P

N Query(x)
f

" Program(x, y)

Proof(x, w)

l T, tr < S/ (x, w)

V does not query
Pr

programmed points

(x,) tr Program f according to tr

(x,) & ProofList Add (x,) to ProofList
(x,w) € R b o

18

UC-friendly knowledge soundness

Adversary should not be able to generate fresh proofs

that the extractor cannot extract a witness from

Pr

V does not query
programmed points

(x,) & ProofList

(x,w) & R

EERZ%

>

Query(x)

]'Z

l

(x, 77)

tr

" Program(x, y)

Proof(x, w)

T, tr < S/ (x, w)

Program f according to tr

Add (x,) to ProofList
W

18

IN

UC-friendly knowledge sounc

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

" Program(x, y)

Proof(x, w)

l T, tr < S/ (x, w)

V does not query
Pr

programmed points

IN
A

(x,7) tr Program f according to tr

(x,) & ProoflList | Add (x,) to ProofList
(x,w) € R H o

18

Conclusion

Recap:
What we talked about

20

Recap:
What we talked about

 UC with budgets

20

Recap:
What we talked about

o UC with budgets
 UC-friendly security properties imply UC-security

20

Recap:
What we talked about

o UC with budgets
 UC-friendly security properties imply UC-security

o UC-friendly completeness

20

Recap:
What we talked about

o UC with budgets
 UC-friendly security properties imply UC-security
o UC-friendly completeness

» UC-friendly zero knowledge

20

Recap:
What we talked about

o UC with budgets

 UC-friendly security properties imply UC-security
o UC-friendly completeness
» UC-friendly zero knowledge

o UC-friendly knowledge soundness

20

There 1S more!

What we did not talk about

There 1S more!

What we did not talk about

» Concrete security bounds

21

There 1S more!

What we did not talk about

» Concrete security bounds

 UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKS)

21

There 1S more!

What we did not talk about

» Concrete security bounds
 UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKS)

 UC-friendly properties are necessary

21

There 1S more!

What we did not talk about

» Concrete security bounds
 UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKS)
 UC-friendly properties are necessary

 We can handle adaptive corruptions with strong UC-friendly properties

21

There 1S more!

What we did not talk about

» Concrete security bounds

 UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKS)
 UC-friendly properties are necessary

 We can handle adaptive corruptions with strong UC-friendly properties

* Merkle trees have (strong) UC-friendly hiding

21

There 1S more!

What we did not talk about

» Concrete security bounds

 UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKS)
 UC-friendly properties are necessary

 We can handle adaptive corruptions with strong UC-friendly properties

* Merkle trees have (strong) UC-friendly hiding

* Merkle trees have (strong) UC-friendly extraction

21

There 1S more!

What we did not talk about

» Concrete security bounds

 UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKS)
 UC-friendly properties are necessary

 We can handle adaptive corruptions with strong UC-friendly properties

* Merkle trees have (strong) UC-friendly hiding

* Merkle trees have (strong) UC-friendly extraction

 Open question: extend the result to IOPs without straightline KS

21

Conclusion

8.6 UC-secure zkSNARKS from Micali

We combine the results in Sections 8.3 to 8.5 to show that, when instantiated with a suitable PCP, the Micali
construction yields a UC-secure zZkSNARK.

Theorem 8.14. Let PCP be a probabilistically checkable proof with:
* (resp. strong) honest-verifier zero knowledge (Definition 8.3) with error (pcp.

* knowledge soundness (Definition 8.2) with error Kpcp.

Set MT := MT[\, X, |, ryr] and ARG := Micali[PCP, r]. ThenI1,[ARG] (%, t,,4,,£,)-UC-realizes F,sgc in

qy Yps Lpo

the GRO-hybrid model with simulation overhead {, - (I(n),l(n) - q(n) + 1) and error

Ruc (EARG’ CarGs Karas Ay T, g, o, Ep’ gv)
In the above we let:

° zUC(eARGa CARG) KJARG))‘7 ’I’L, tqa tp) Epa fv) = 6ARG()‘a na tqa tpa gpa Ev)+<ARG()\) ’I’L, tqa tp) Ep)""{'ARG()‘a n) tqv tpa fp, Bv)
as in Theorem 6.1,

* exrc(A n,ty,t,, 4, 4,) as in Lemma 8.7.

* Carc(A,n,tg, t,, 2., 0,) as in Lemma 8.11,

* karc(A,n,tg,t,, L5, 4,) as in Lemma 8.13.

s gy Upy Tpy

These zkSNARKSs are UC-secure In
the GROM Concrete security bounds!

22

Thank you!

Extra slides

Modelling shared functionalities [BCHTZ22]

Modelling shared functionalities [BCHTZ22]

Plain UC security not enough for shared setups

Modelling shared functionalities [BCHTZ22]

Plain UC security not enough for shared setups
Plain UC:

4)
} g
- J

Modelling shared functionalities [BCHTZ22]

Plain UC security not enough for shared setups
Plain UC:

4)
- pl
-)

25

Modelling shared functionalities [BCHTZ22]

Plain UC security not enough for shared setups
Plain UC:

4)
- pl
-)

Solution: UC with Global Subroutines!

25

Plain UC security not enough for shared setups

Plain UC:

-

Solution: UC with Global Subroutines!

UCGS:

-

Modelling shared functionalities

25

[BCHTZ22]

Plain UC security not enough for shared setups

Plain UC:

-

Solution: UC with Global Subroutines!

UCGS:

-

Modelling shared functionalities

25

[BCHTZ22]

Micali has UC-friendly ZK

Micali has UC-friendly ZK

Micali has UC-friendly ZK

G, = Ideal

Micali has UC-friendly ZK

G, = Ideal

FS input hard
to predict

Micali has UC-friendly ZK

G, G, = Ideal

FS input hard PCP honest-verifier
to predict /K

26

Micali has UC-friendly ZK

G, G, = Ideal

FS input hard Lemma: Merkle trees PCP honest-verifier
to predict have UC-friendly hiding 7K

26

Micali has UC-friendly ZK

Follows similarly to standard Micali ZK + Merkle trees are UC-friendly.

G, G, = Ideal

FS input hard Lemma: Merkle trees PCP honest-verifier
to predict have UC-friendly hiding 7K

26

Micali’s construction |

SIAM J. COMPUT. (© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 1253—-1298

COMPUTATIONALLY SOUND PROOFS*

SILVIO MICALIt

Micali’s construction |

SIAM J. COMPUT. (© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 1253—-1298

COMPUTATIONALLY SOUND PROOFS*

SILVIO MICALIt

Canonical construction of
ZkSNARK in the ROM

Micali’s construction |

SIAM J. COMPUT. (© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 1253—-1298

COMPUTATIONALLY SOUND PROOFS*

SILVIO MICALIt

Canonical construction of Straightline black-box extractor:
zkSNARK in the ROM compatible with UC!

Micali’s construction |

SIAM J. COMPUT. (© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 1253—-1298

COMPUTATIONALLY SOUND PROOFS*

SILVIO MICALIt

Canonical construction of Straightline black-box extractor:
zkSNARK in the ROM compatible with UC!

Proofs are non-malleable:
also required for UC-security!

Micali’s construction |

SIAM J. C (© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 1253—-1298

COMPUTATIONALLY SOUND PROOFS*

SILVIO MICALIt

Canonical construction of Straightline black-box extractor:
zkSNARK in the ROM compatible with UC!
Proofs are non-malleable: Stepping stone to BCS, which

also required for UC-security! underlies deployed zkSNARKSs

Micali’s construction 1}

Micali’s construction I
N/
[VPCP(J@/

@CP(X’ W) —
I

PCP o/

‘ ‘ Commitf rt, aux

MTOpen(rt, I, a,aux) — =«

Micali’s construction I
\ /)/ MTCheck/(rt,I,d,7) = 1 <
[VPCP(X) + 10 : rt = MTCommitf(H) A, = a

@CP(X» W) —
I

PCP 0/1 Merkle trees

28

‘ ‘ Commitf rt, aux

MTOpen(rt, I, a,aux) — =«

Micali’s construction I
\ /)/ MTCheck/(rt,I,d,7) = 1 <
[VPCP(X) + 10 : rt = MTCommitf(H) A, = a

@CP(X» W) —
I

PCP 0/1 Merkle trees

-

Fiat Shamir

28

‘ ‘ Commitf rt, aux

MTOpen(rt, I, a,aux) — =«

Micali’s construction I
\ /)/ MTCheck/(rt,I,d,7) = 1 <
[VPCP(X) + 10 : rt = MTCommitf(H) A, = a

@CP(X» W) —
I

PCP 0/1 Merkle trees

-

Fiat Shamir zkSNARK in the ROM

28

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

P(x, w) V(x)

29

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

Jes | fvT
P(x, w) V(x)

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

fFS fMT

P(x, w) V(x)

« Compute IT « Pprp(x, w)

29

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

fFS fMT

P(x, w) V(x)

« Compute IT « Pprp(x, w)

. Sample oy < {0,1}"¢

29

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

fFS fMT

P(x, w) V(x)

« Compute IT « Pprp(x, w)

. Sample oy < {0,1}"¢

. (rt,td) « MTCommit™(IT; 6y,1)

29

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

P(x, w)

« Compute IT « Pprp(x, w)

. Sample oy < {0,1}"¢

. (rt,td) « MTCommit™(IT; 6y,1)

 Sampleo « {0,1}’

Jes

29

fmr

V(x)

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

Jes | fvT
P(x, w) V(x)

« Compute IT « Pprp(x, w)

. Sample oy < {0,1}"¢

. (rt,td) « MTCommit™(IT; 6y,1)

 Sampleo « {0,1}’

e Setp = fes(x, rt, 0)

29

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

Jes

P(x, w)

« Compute I1 « Ppep(x, w)

. Sample oy < {0,1}"¢

o (rt,td) « MTCommithT(H; OMT)
 Sampleo « {0,1}’

e Setp = fes(x, rt, 0)

« Run Vgcp(x; p) to obtain
qguery-answers sets (0, a

29

fmr

V(x)

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

Jes | fvT
P(x, w) V(x)

« Compute IT « Pprp(x, w)

. Sample oy < {0,1}"¢

. (rt,td) « MTCommit™(IT; 6y,1)

 Sampleo « {0,1}’

e Setp = fes(x, rt, 0)

« Run Vgcp(x; p) to obtain
qguery-answers sets (0, a

« pf := MTOpen(td, Q)

29

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

fFS fMT

P(x, w)

« Compute I1 « Ppep(x, w)

. Sample oy < {0,1}"

o (rt,td) « MTCommithT(H; OMT)
 Sampleo « {0,1}’

e Setp = fes(x, rt, 0)

n .. -
 Run V,~p(x; p) to obtain (rt, 0, O, a, pf)
qguery-answers sets (0, a

« pf := MTOpen(td, Q)

29

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

Jes | fvT
P(x, w) V(x)

« Compute IT « Pprp(x, w)

. MTCheck(rt, O, a, pf) = 1
. Sample oy < {0,1}"

e Setp :=f(x,rt,o
. (rt, td) < MTCommit™(IT; 6y,7) p = frs()
« Sampleo < {0,1}"

+ Setp = frs(x, rt, 0)

n .. -
 Run V,~p(x; p) to obtain (rt, 0, O, a, pf)
qguery-answers sets (0, a

« pf := MTOpen(td, Q)

29

Micali’'s construction IlI

Commit to PCP string using MT,
then apply FS transform

Jes | fvT
P(x, w) V(x)

« Compute IT « Pprp(x, w)

MTCheck™(rt, O, a, pf) = 1
Sample oy, < {0,1}"¢

(rt, td) « MTCommithT(H; OMT)
Sample ¢ < {0,1}"
Set p 1= frs(x, rt, 0)

n .. -
Run Vip~p(x; p) to obtain (rt, 0, O, a, pf)
qguery-answers sets (0, a

pf := MTOpen(td, Q)

29

[Canetti 2001]

UC Security |

[Canetti 2001]

UC Security |

* Motivation: Modular security analysis of protocols

30

[Canetti 2001]

UC Security |

* Motivation: Modular security analysis of protocols

« Why UC? ‘Gold-standard’ + vast literature

30

[Canetti 2001]

UC Security |

* Motivation: Modular security analysis of protocols

« Why UC? ‘Gold-standard’ + vast literature

N
[Composition Theorem J

30

7T : protocol

UC Secu rity I @ : ideal functionality

p : calling protocol

* Motivation: Modular security analysis of protocols

« Why UC? ‘Gold-standard’ + vast literature

N
[Composition Theorem J

30

7T : protocol

UC Secu rity I @ : ideal functionality

p : calling protocol

* Motivation: Modular security analysis of protocols

« Why UC? ‘Gold-standard’ + vast literature

N
[Composition Theorem J

30

7T : protocol

UC Secu rity I @ : ideal functionality

p : calling protocol

* Motivation: Modular security analysis of protocols

« Why UC? ‘Gold-standard’ + vast literature

N
[Composition Theorem J

a-o -

30

UC Security i

7 protocol & : environment

UC Secu rity II F :ideal functionality of : adversary

D : dummy party & : simulator

31

7 protocol & : environment

UC Secu rity II F :ideal functionality of : adversary

D : dummy party & : simulator

31

7 protocol & : environment

UC Secu rity II F :ideal functionality of : adversary

D : dummy party & : simulator

Goal: Cannot distinguish protocol from idealized version.

31

UC Security i

Goal: Cannot distinguish protocol from idealized version.

(

\

TRy F
e
Vo, A5, VE

_J

31

7t . protocol

& : environment

F :ideal functionality of : adversary

D : dummy party

& : simulator

UC Security i

Goal: Cannot distinguish protocol from idealized version.

(

Real

\

TRy F
e
Vo, A5, VE

_J

31

7t . protocol

& : environment

F :ideal functionality of : adversary

D : dummy party

& : simulator

UC Security i

Goal: Cannot distinguish protocol from idealized version.

(

Real

\

TRy F
e
Vo, A5, VE

7t . protocol

& : environment

F :ideal functionality of : adversary

D : dummy party

& : simulator

_J

&

Ideal

31

7 protocol & : environment

UC Secu rity II F :ideal functionality of : adversary

D : dummy party & : simulator

Goal: Cannot distinguish protocol from idealized version.

T R\ F
Real — ldeal
Vof/,AS VE

&

31

7 protocol & : environment

UC Secu rity II F :ideal functionality of : adversary

D : dummy party & : simulator

Goal: Cannot distinguish protocol from idealized version.

T X F
Real — ldeal
Vof/,AS VE

&

31

7 protocol & : environment

UC Secu rity II F :ideal functionality of : adversary

D : dummy party & : simulator

Goal: Cannot distinguish protocol from idealized version.
4 ™

TRy F
e
Vo, A5, VE

Real

_J

&

31

7 protocol & : environment

UC Secu rity II F :ideal functionality of : adversary

D : dummy party & : simulator

Goal: Cannot distinguish protocol from idealized version.

T X F
Real —
VoA, ASVE

&

31

7 protocol & : environment

UC Secu rity II F :ideal functionality of : adversary

D : dummy party & : simulator

Goal: Cannot distinguish protocol from idealized version.

T X F
Real —
VoA, ASVE
)
~

31

Argument functionality [LR22]

Argument functionality [LR22]
 Model a zkSNARK as an ideal functionality.

Argument functionality [LR22]

 Model a zkSNARK as an ideal functionality.
* Prover generates simulated proofs (without using the witness).

32

Argument functionality [LR22]

 Model a zkSNARK as an ideal functionality.
* Prover generates simulated proofs (without using the witness).
» \erifier aims to extract a withess from each accepting proof.

32

Argument functionality [LR22]

 Model a zkSNARK as an ideal functionality.
* Prover generates simulated proofs (without using the witness).
» \erifier aims to extract a withess from each accepting proof.

» Proofs generated in Prove are always accepted by Verify.

32

Argument functionality
 Model a zkSNARK as an ideal functionality.

* Prover generates simulated proofs (without using the witness).

» \erifier aims to extract a withess from each accepting proof.
» Proofs generated in Prove are always accepted by Verify.

r

37,*

\.

~

,

/

.

~
J

32

ILR22]

Argument functionality
 Model a zkSNARK as an ideal functionality.

* Prover generates simulated proofs (without using the witness).

» \erifier aims to extract a withess from each accepting proof.
» Proofs generated in Prove are always accepted by Verify.

r

37,*

\.

~

,

/

.

J

32

ILR22]

Argument functionality
 Model a zkSNARK as an ideal functionality.

* Prover generates simulated proofs (without using the witness).

» \erifier aims to extract a withess from each accepting proof.
» Proofs generated in Prove are always accepted by Verify.

r

97,*

\.

~

,

/

.

ILR22]

2

GRO

J

32

Argument functionality

 Model a zkSNARK as an ideal functionality.

* Prover generates simulated proofs (without using the witness).

» \erifier aims to extract a withess from each accepting proof.
» Proofs generated in Prove are always accepted by Verify.

(")

97,*

\. w,

Setup(s)
e GetV,S,Efromd&

.

ILR22]

2

GRO

J

32

Argument functionality [LR22]

 Model a zkSNARK as an ideal functionality.
* Prover generates simulated proofs (without using the witness).
» \erifier aims to extract a withess from each accepting proof.

» Proofs generated in Prove are always accepted by Verify.

(" 9*)

\. w,

Setup(s)
e GetV,S,Efromd&

GRO

Prove(x, w)
e Sim 7, tr « SCROs(x)

\-\Program GRO according to tr /

32

2

Argument functionality [LR22]

 Model a zkSNARK as an ideal functionality.
* Prover generates simulated proofs (without using the witness).
» \erifier aims to extract a withess from each accepting proof.

» Proofs generated in Prove are always accepted by Verify.

é *)
o
> AN
Setup(s) Verlfy(x, 71')
. b IV yGRO; ~ ™
e GetV,S.Efromd& bV (%, 7) Ll
« If 7w was generated by Prove, accept l—|
e If b =0 orany query in try is programmed,
Prove(x, w) reject. N GRO
o Sim 7, tr < SCRO(x) * Obtain query-list Queries from GRO <«
* Program GRO according to tr .« w « ECROsy(x, 7, Queries)
e If (x,w) & R fail, else accept - J

32

Wrapper protocol

Wrapper protocol

Converts an argument ARG = (P, V) in the ROM into a protocol in the GROM

33

Wrapper protocol

Converts an argument ARG = (P, V) in the ROM into a protocol in the GROM

IIJARG]

33

Wrapper protocol

Converts an argument ARG = (P, V) in the ROM into a protocol in the GROM

IIJARG]

GRO

33

Wrapper protocol

Converts an argument ARG = (P, V) in the ROM into a protocol in the GROM

IIJARG]

Setup(s)
* Do nothing

GRO

33

Wrapper protocol

Converts an argument ARG = (P, V) in the ROM into a protocol in the GROM

II[ARG]
Setup(s) Prove(x, w)
* Do nothing . T PGROS(X, W)
 Return x
4 l T)
GRO
_ /

33

Wrapper protocol

Converts an argument ARG = (P, V) in the ROM into a protocol in the GROM

II[ARG]
Setup(s) Prove(x, w)
* Do nothing . T PGROS(X, W)
Verify(x,) . Return
« b & VORO(x, 7 p 1 .
e If b =0 oranyqueryintryis
programmed, reject. Else, T
accept. T GRO
_ /

33

Recap and Goal

Recap and Goal

Find an ARG in the ROM such that

Recap and Goal

Find an ARG in the ROM such that

INn the

GRO

Recap and Goal

Find an ARG in the ROM such that

INn the

GRO

Recap and Goal

Find an ARG in the ROM such that

INn the

GRO

Related works

Related works

COACO: A Framework for Building Composable Zero-Knowledge
Proofs

Ahmed Kosbaf Zhichao Zhao* Andrew Miller! Yi Qiant
T-H. Hubert Chan* Charalampos Papamanthou' Rafael Passt abhi shelat®
Elaine Shit

Lift-and-Shift: Obtaining Simulation Extractable
Subversion and Updatable SNARKSs Generically*

Behzad Abdolmaleki!, Sebastian Ramacher?, and Daniel Slamanig?

TIRAMISU: Black-Box Simulation Extractable
NIZKs in the Updatable CRS Model

Karim Baghery and Mahdi Sedaghat

Universally Composable NIZKs: Circuit-Succinct,
Non-Malleable and CRS-Updatable

Behzad Abdolmaleki', Noemi Glaeser!+?, Sebastian Ramacher®, and Daniel
Slamanig?®

35

Related works

Append an encryption of the
withess to the proof.

- Cannot be succinct | 7| > |w]

COACO: A Framework for Building Composable Zero-Knowledge
Proofs

Ahmed Kosbaf Zhichao Zhao* Andrew Miller! Yi Qian?
T-H. Hubert Chan* Charalampos Papamanthou' Rafael Passt abhi shelat®
Elaine Shit

Lift-and-Shift: Obtaining Simulation Extractable
Subversion and Updatable SNARKSs Generically*

Behzad Abdolmaleki!, Sebastian Ramacher?, and Daniel Slamanig?

TIRAMISU: Black-Box Simulation Extractable
NIZKs in the Updatable CRS Model

Karim Baghery and Mahdi Sedaghat

Universally Composable NIZKs: Circuit-Succinct,
Non-Malleable and CRS-Updatable

Behzad Abdolmaleki', Noemi Glaeser!+?, Sebastian Ramacher®, and Daniel
Slamanig3

Related works

Append an encryption of the
withess to the proof.

- Cannot be succinct | 7| > |w]

COACO: A Framework for Building Composable Zero-Knowledge

Proofs
Ahmed Kosbaf Zhichao Zhao* Andrew Miller! Yi Qian?
T-H. Hubert Chan* Charalampos Papamanthou' Rafael Passt abhi shelat®
Elaine Shit

Lift-and-Shift: Obtaining Simulation Extractable . 1 ble 3 Is h
Subversion and Updatable SNARKs Generically* Universally Composable X-protocols in the

Global Random-Oracle Model

Behzad Abdolmaleki!, Sebastian Ramacher?, and Daniel Slamanig?

: : Anna Lysyanskaya and
TIRAMISU: Black-Box Simulation Extractable Leah Namisa Rosenbloom

NIZKs in the Updatable CRS Model

Efficient and Universally Composable
Non-Interactive Zero-Knowledge Proofs of

Universally Composable NIZKs: Circuit-Succinct, Knowledge with Security Against
Non-Malleable and CRS-Updatable Adaptive Corruptions

Karim Baghery and Mahdi Sedaghat

Behzad Abdolmaleki', Noemi Glaeser!+?, Sebastian Ramacher®, and Daniel
Slamanig® Anna Lysyanskaya and
Leah Namisa Rosenbloom

35

Related works

Append an encryption of the Compile Z-protocol into NIZK
withess to the proof.

+ Techniques inspired this work

- Cannot be succinct | 7| > |w] |
- Not succinct

COACO: A Framework for Building Composable Zero-Knowledge
Proofs

Ahmed Kosbal Zhichao Zhao* Andrew Miller Yi Qian? - EX p e n S i Ve C O m p i | at i O n (n O n - F S)

T-H. Hubert Chan* Charalampos Papamanthou' Rafael Passt abhi shelat®
Elaine Shit

Lift-and-Shift: Obtaining Simulation Extractable . 1 ble 3 Is h
Subversion and Updatable SNARKs Generically* Universally Composable X-protocols in the

Global Random-Oracle Model

Behzad Abdolmaleki!, Sebastian Ramacher?, and Daniel Slamanig?

: : Anna Lysyanskaya and
TIRAMISU: Black-Box Simulation Extractable Leah Namisa Rosenbloom

NIZKs in the Updatable CRS Model

Efficient and Universally Composable
Non-Interactive Zero-Knowledge Proofs of

Universally Composable NIZKs: Circuit-Succinct, Knowledge with Security Against
Non-Malleable and CRS-Updatable Adaptive Corruptions

Karim Baghery and Mahdi Sedaghat

Behzad Abdolmaleki', Noemi Glaeser!+?, Sebastian Ramacher®, and Daniel
Slamanig® Anna Lysyanskaya and
Leah Namisa Rosenbloom

35

Succinct UC-secure zkSNARKSs

Witness-Succinct
Universally-Composable SNARKSs*

Chaya Ganesh!®, Yashvanth Kondi?, Claudio Orlandi?®, Mahak Pancholi?, Akira Takahashi®®, and
Daniel Tschudi*

36

Succinct UC-secure zkSNARKSs

Witness-Succinct
Universally-Composable SNARKSs*

Chaya Ganesh!®, Yashvanth Kondi?, Claudio Orlandi?®, Mahak Pancholi?, Akira Takahashi®®, and
Daniel Tschudi*

First UC-secure SNARK

36

Succinct UC-secure zkSNARKSs

Witness-Succinct
Universally-Composable SNARKSs*

Chaya Ganesh!®, Yashvanth Kondi?, Claudio Orlandi?®, Mahak Pancholi?, Akira Takahashi®®, and
Daniel Tschudi*

First UC-secure SNARK

Combines simulation-extractable
ZkSNARK with a PCS

36

Succinct UC-secure zkSNARKSs

Witness-Succinct
Universally-Composable SNARKSs*

Chaya Ganesh!®, Yashvanth Kondi?, Claudio Orlandi?®, Mahak Pancholi?, Akira Takahashi®
Daniel Tschudi®

, and

First UC-secure SNARK

Combines simulation-extractable
ZkSNARK with a PCS

Use Fischlin-like techniques to
achieve straight-line extraction

36

Succinct UC-secure zkSNARKSs

Witness-Succinct
Universally-Composable SNARKSs*

Chaya Ganesh!®, Yashvanth Kondi?, Claudio Orlandi?®, Mahak Pancholi?, Akira Takahashi®
Daniel Tschudi®

, and

First UC-secure SNARK + Achieves succinct proofs

Combines simulation-extractable
ZkSNARK with a PCS

Use Fischlin-like techniques to
achieve straight-line extraction

36

Succinct UC-secure zkSNARKSs

Witness-Succinct
Universally-Composable SNARKSs*

Chaya Ganesh!®, Yashvanth Kondi?, Claudio Orlandi?®, Mahak Pancholi?, Akira Takahashi®®, and
Daniel Tschudi*

First UC-secure SNARK + Achieves succinct proofs

. . . + UC-Secure in the (hon-programmable)
Combines simulation-extractable observable GROM

zkSNARK with a PCS

Use Fischlin-like techniques to
achieve straight-line extraction

36

Succinct UC-secure zkSNARKSs

Witness-Succinct
Universally-Composable SNARKs*

Chaya Ganesh!®, Yashvanth Kondi?, Claudio Orlandi?®, Mahak Pancholi?, Akira Takahashi®®, and
Daniel Tschudi*

First UC-secure SNARK + Achieves succinct proofs

. . . + UC-Secure in the (hon-programmable)
Combines simulation-extractable observable GROM

zkSNARK with a PCS

- EXpensive non-standard construction

Use Fischlin-like techniques to
achieve straight-line extraction

36

Succinct UC-secure zkSNARKSs

Witness-Succinct
Universally-Composable SNARKs*

Chaya Ganesh!®, Yashvanth Kondi?, Claudio Orlandi?®, Mahak Pancholi?, Akira Takahashi®®, and
Daniel Tschudi®

First UC-secure SNARK + Achieves succinct proofs

. . . + UC-Secure in the (hon-programmable)
Combines simulation-extractable observable GROM

zkSNARK with a PCS

- EXpensive non-standard construction

Use Fischlin-like techniques to | |
achieve straight-line extraction - Focuses on asymptotic security

36

zkSNARKS (in the ROM)

zkSNARKS (in the ROM)

G’(x, W) \

zkSNARKS (in the ROM)

G’(x, W)

V(x)

zkSNARKS (in the ROM)

V(x)

zkSNARKS (in the ROM)

zkSNARKS (in the ROM)

zkSNARKS (in the ROM)

G’(x, W) \ |

V(x)

zkSNARKS (in the ROM)

® Zero-Knowledge
o 3S: P(x,w) ~ S/(x)

Claim:
| know w s.t.

(x,w) €ER Y

zkSNARKS (in the ROM)

® Zero-Knowledge
o 3S: P(x,w) ~ S/(x)

® Succinct
° |m| < W]

Claim:
| know w s.t.

(x,w) €ER Y

zkSNARKS (in the ROM)

® Zero-Knowledge
o 3S: P(x,w) ~ S/(x)

® Succinct
° |m| < W]

® Non-interactive

Claim:
| know w s.t.

(x,w) €ER Y

zkSNARKS (in the ROM)

Claim:
| know w s.t.

(x,w) €ER

® Zero-Knowledge
o 3S: P(x,w) ~ S/(x)

® Succinct
° |m| < W]

® Non-interactive

¢ Argument of Knowledge

zkSNARKS (in the ROM)

Claim:
| know w s.t.

(x,w) €ER

® Zero-Knowledge
o 3S: P(x,w) ~ S/(x)

® Succinct
° |m| < W]

® Non-interactive

¢ Argument of Knowledge
°© JE: V(x,7 < P)=1

zkSNARKS (in the ROM)

Claim:
| know w s.t.

(x,w) €ER

® Zero-Knowledge
o 3S: P(x,w) ~ S/(x)

® Succinct
° |m| < W]

® Non-interactive

¢ Argument of Knowledge
o JE: Vx,7n « P)=1
— (x, E(x, 7, trs)) €ER

What if we only care about scalability?
Dropping ZK

 Often, SNARKSs are deployed without ZK

* We consider this out of scope for this work but (at an high level) believe that:
* The techniques here would still work and can be simplified.
 Remove UC-friendly ZK and move to non-programmable GROM.

 UC-completeness then reduces to perfect completeness.

 Knowledge sound PCP/IOP suffices for Micali/BCS.

Micali has UC-friendly ZK

Gy

G

Sample p

G,

Compute IT « Ppep(x, w) Sample p
i 4t Compute IT < Pprp(x, w)
rt, aux < Commit/MT(IT) A < g p

= 9d] rt, aux « CommithT(H)

Compute [T « Ppp(x, w)

Run Vgcp(x; p) to obtain query-
answers sets 0, a

Set p 1= fes(x, rt, 0)
Program frg(x, rt,0) = p
Run VIPTCP(x; p) to obtain query-

answers sets 0, a rt, myt < SimeT(Q, a)

Run Vgcp(x; p) to obtain query-
answers sets 0, a

T = Open(rt, Q, a, aux) Program frs(x, rt,0) = p

T = Open(rt, O, a, aux)

[, +1

A(Gp, G3) < q2|0| = + S + Cpep

Compute p, 0, d@ «— Spep(X)

For G to G, we define UC-friendly hiding for vector t, 7y < SIMAT(Q, @)
commitments and show Merkle tree have It Program fq5(x, rt, 6) = p

39

Micali has UC-friendly completeness

Micali has UC-friendly completeness

UC-friendly completeness

Micali has UC-friendly completeness

 Assuming PCP perfect completeness, honest proof are rejected only if the verifier
queries a previously programmed point.

UC-friendly completeness

40

Micali has UC-friendly completeness

 Assuming PCP perfect completeness, honest proof are rejected only if the verifier
queries a previously programmed point.

UC-friendly completeness

Perfect completeness

of the PCP

40

Micali has UC-friendly completeness

 Assuming PCP perfect completeness, honest proof are rejected only if the verifier
queries a previously programmed point.

* Disallow this attack with two natural properties:

UC-friendly completeness

Perfect completeness

of the PCP

40

Micali has UC-friendly completeness

 Assuming PCP perfect completeness, honest proof are rejected only if the verifier
queries a previously programmed point.

* Disallow this attack with two natural properties:

 Monotone proofs (verifier does not query points not previously queried by the prover)

UC-friendly completeness

Perfect completeness

of the PCP

40

Micali has UC-friendly completeness

 Assuming PCP perfect completeness, honest proof are rejected only if the verifier
queries a previously programmed point.

* Disallow this attack with two natural properties:

 Monotone proofs (verifier does not query points not previously queried by the prover)

UC-friendly completeness

Perfect completeness

of the PCP Monotone Proofs

40

Micali has UC-friendly completeness

 Assuming PCP perfect completeness, honest proof are rejected only if the verifier
queries a previously programmed point.

* Disallow this attack with two natural properties:
 Monotone proofs (verifier does not query points not previously queried by the prover)

* Unpredictable queries (hard to program points prover will query)

UC-friendly completeness

Perfect completeness

of the PCP Monotone Proofs

40

Micali has UC-friendly completeness

 Assuming PCP perfect completeness, honest proof are rejected only if the verifier
queries a previously programmed point.

* Disallow this attack with two natural properties:
 Monotone proofs (verifier does not query points not previously queried by the prover)

* Unpredictable queries (hard to program points prover will query)

UC-friendly completeness

Perfect completeness

of the PCP Monotone Proofs 4

Unpredictable Queries

40

Micali has UC-friendly KS

Micali has UC-friendly KS

UC-friendly KS of Micali

Micali has UC-friendly KS

 UC-friendly KS implies simulation-extractability.

UC-friendly KS of Micali

Micali has UC-friendly KS

 UC-friendly KS implies simulation-extractability.

 Merkle trees are non-malleable already.

UC-friendly KS of Micali

41

Micali has UC-friendly KS

 UC-friendly KS implies simulation-extractability.
 Merkle trees are non-malleable already.

* |n Micali, makes proofs non-malleable.

UC-friendly KS of Micali

41

Micali has UC-friendly KS

 UC-friendly KS implies simulation-extractability.
 Merkle trees are non-malleable already.
* |n Micali, makes proofs non-malleable.

 Reduce to state-restoration KS (implied by KS of PCP)

UC-friendly KS of Micali

41

Micali has UC-friendly KS

 UC-friendly KS implies simulation-extractability.
 Merkle trees are non-malleable alreadly.
* |n Micali, makes proofs non-malleable.

 Reduce to state-restoration KS (implied by KS of PCP)

UC-friendly KS of Micali

Merkle trees are UC-friendly

extractable

41

Micali has UC-friendly KS

 UC-friendly KS implies simulation-extractability.
 Merkle trees are non-malleable alreadly.
* |n Micali, makes proofs non-malleable.

 Reduce to state-restoration KS (implied by KS of PCP)

UC-friendly KS of Micali

Merkle trees are UC-friendly

PCPs are non-malleable
extractable

41

Micali has UC-friendly KS

 UC-friendly KS implies simulation-extractability.
 Merkle trees are non-malleable alreadly.
* |n Micali, makes proofs non-malleable.

 Reduce to state-restoration KS (implied by KS of PCP)

UC-friendly KS of Micali

Merkle trees are UC-friendly State-restoration KS

PCPs are non-malleable +

extractable of the PCP

41

Related
works

Known UC-secure
zkSNARKS

Related a Non-Witness Succinct
works

Known UC-secure
zkSNARKS

Related a Non-Witness Succinct
works

Known UC-secure
zkSNARKS

Withess Succinct

42

Related
works

Known UC-secure
zkSNARKS

Non-Witness Succinct

S

~

Encrypt witness J

Withess Succinct

42

Related
works

Known UC-secure
zkSNARKS

Non-Witness Succinct

COCO: A Framework for Building Composable Zero-Knowledge \

Proofs

Ahmed Kosbaf Zhichao Zhao* Andrew Miller! Yi Qiant
T-H. Hubert Chan* Charalampos Papamanthou' Rafael Passt abhi shelat®
Elaine Shit

Lift-and-Shift: Obtaining Simulation Extractable
Subversion and Updatable SNARKSs Generically™*

Behzad Abdolmaleki!, Sebastian Ramacher?, and Daniel Slamanig?

TIRAMISU: Black-Box Simulation Extractable
NIZKs in the Updatable CRS Model

Karim Baghery and Mahdi Sedaghat

Universally Composable NIZKs: Circuit-Succinct,
Non-Malleable and CRS-Updatable

Behzad Abdolmaleki', Noemi Glaeser!-2, Sebastian Ramacher?, and Daniel
Slamanig?

Encrypt witness J

Withess Succinct

42

Related
works

Known UC-secure
zkSNARKS

Non-Witness Succinct \

COCO: A Framework for Building Composable Zero-Knowledge \ / \
Proofs

Ahmed Kosbaf Zhichao Zhao* Andrew Miller! Yi Qiant
T-H. Hubert Chan* Charalampos Papamanthou' Rafael Passt abhi shelat®
Elaine Shit

Lift-and-Shift: Obtaining Simulation Extractable
Subversion and Updatable SNARKSs Generically™*

Behzad Abdolmaleki!, Sebastian Ramacher?, and Daniel Slamanig?

TIRAMISU: Black-Box Simulation Extractable
NIZKs in the Updatable CRS Model

Karim Baghery and Mahdi Sedaghat

Universally Composable NIZKs: Circuit-Succinct, I -
Non-Malleable and CRS-Updatable K COm pl Ie z prOtOCOI j

Behzad Abdolmaleki', Noemi Glaeser!-2, Sebastian Ramacher?, and Daniel
Slamanig?

Encrypt witness J J

Withess Succinct

42

Related
works

Known UC-secure
zkSNARKS

Non-Witness Succinct

COCO: A Framework for Building Composable Zero-Knowledge
Proofs

Ahmed Kosbaf Zhichao Zhao* Andrew Miller! Yi Qiant

T-H. Hubert Chan* Charalampos Papamanthou' Rafael Passt abhi shelat®

Elaine Shif

Lift-and-Shift: Obtaining Simulation Extractable
Subversion and Updatable SNARKSs Generically™*

Behzad Abdolmaleki!, Sebastian Ramacher?, and Daniel Slamanig?

TIRAMISU: Black-Box Simulation Extractable
NIZKs in the Updatable CRS Model

Karim Baghery and Mahdi Sedaghat

Universally Composable NIZKs: Circuit-Succinct,
Non-Malleable and CRS-Updatable

Behzad Abdolmaleki', Noemi Glaeser!-2, Sebastian Ramacher?, and Daniel
Slamanig?

Encrypt witness

~

Anna Lysyanskaya and
Leah Namisa Rosenbloom

/ Universally Composable Y-protocols in thﬁ
Global Random-Oracle Model

Efficient and Universally Composable
Non-Interactive Zero-Knowledge Proofs of
Knowledge with Security Against
Adaptive Corruptions

Anna Lysyanskaya and
Leah Namisa Rosenbloom

J

K Compile Z-protocol j

J

Withess Succinct

42

Related
works

Known UC-secure
zkSNARKS

Non-Witness Succinct

COCO: A Framework for Building Composable Zero-Knowledge
Proofs

Ahmed Kosbaf Zhichao Zhao* Andrew Miller! Yi Qiant

T-H. Hubert Chan* Charalampos Papamanthou' Rafael Passt abhi shelat®

Elaine Shif

Lift-and-Shift: Obtaining Simulation Extractable
Subversion and Updatable SNARKSs Generically™*

Behzad Abdolmaleki!, Sebastian Ramacher?, and Daniel Slamanig?

TIRAMISU: Black-Box Simulation Extractable
NIZKs in the Updatable CRS Model

Karim Baghery and Mahdi Sedaghat

Universally Composable NIZKs: Circuit-Succinct,
Non-Malleable and CRS-Updatable

Behzad Abdolmaleki', Noemi Glaeser!-2, Sebastian Ramacher?, and Daniel
Slamanig?

Encrypt witness

~

Anna Lysyanskaya and
Leah Namisa Rosenbloom

K Universally Composable Y-protocols in thm
Global Random-Oracle Model

Efficient and Universally Composable
Non-Interactive Zero-Knowledge Proofs of
Knowledge with Security Against
Adaptive Corruptions

Anna Lysyanskaya and
Leah Namisa Rosenbloom

J

S

K Compile Z-protocol j

J

Withess Succinct

Witness-Succinct
Universally-Composable SNARKs*

Chaya Ganesh!®, Yashvanth Kondi?, Claudio Orlandi?®, Mahak Pancholi?, Akira Takahashi?
Daniel Tschudi*

, and

Commit witness using PCS

42

Related
works

Known UC-secure
zkSNARKS

f Non-Witness Succinct

f COCO: A Framework for Building Composable Zero-Knowledge

Proofs

Ahmed Kosbaf Zhichao Zhao* Andrew Miller! Yi Qiant

Elaine Shif

T-H. Hubert Chan* Charalampos Papamanthou' Rafael Passt abhi shelat®

Lift-and-Shift: Obtaining Simulation Extractable
Subversion and Updatable SNARKSs Generically™*

Behzad Abdolmaleki!, Sebastian Ramacher?, and Daniel Slamanig?

TIRAMISU: Black-Box Simulation Extractable
NIZKs in the Updatable CRS Model

Karim Baghery and Mahdi Sedaghat

Universally Composable NIZKs: Circuit-Succinct,
Non-Malleable and CRS-Updatable

Behzad Abdolmaleki', Noemi Glaeser!-2, Sebastian Ramacher?, and Daniel
Slamanig?

Encrypt witness

Anna Lysyanskaya and
Leah Namisa Rosenbloom

\ K Universally Composable Y-protocols in thm
Global Random-Oracle Model

Efficient and Universally Composable
Non-Interactive Zero-Knowledge Proofs of
Knowledge with Security Against
Adaptive Corruptions

Anna Lysyanskaya and
Leah Namisa Rosenbloom

K Compile Z-protocol j

J

S

J

Withess Succinct

Chaya Ganesh!®, Yashvanth Kondi?, Claudio Orlandi?®, Mahak Pancholi?, Akira Takahashi®®, and

Witness-Succinct
Universally-Composable SNARKs*

Daniel Tschudi*

Commit witness using PCS

zKSNARKSs in the ROM with Unconditional UC-Security

Alessandro Chiesa Giacomo Fenzi
alessandro.chiesa@epfl.ch giacomo.fenzi@epfl.ch
EPFL EPFL

This work!

42

Challenge |

Challenge |

Rewinding
extractor

Challenge |

Rewinding
extractor

\Z

(x, 77)

43

Challenge |

Rewinding
extractor

\Z

(x, 77)

43

Challenge |

Rewinding
extractor

43

Challenge |

Rewinding

W Not allowed
in UC!

extractor

43

Challenge |

Rewinding a

extractor

W Not allowed
in UC!

For UC-security,
extractor must be
black-box and
straight-line, as we
cannot rewind the
environment, and

security is ASVE

43

Challenge |

Rewinding 0

extractor

W Not allowed
in UC!

For UC-security,

extractor must be

- - black-box and

Straightline straight-line, as we

(black-box) cannot rewind the
environment, and

extractor security is A8V E

43

Challenge |

Rewinding a

extractor (x,) W Not allowed
o in UC!
For UC-security,
extractor must be
, , black-box and
Straightline straight-line, as we
_ cannot rewind the
(black-box) (x, 7) environment, and
extractor security is A8V E

43

Challenge |

Rewinding a

extractor (x,) W Not allowed
o in UC!
For UC-security,
extractor must be
. . tr black-box and
Straightline straight-line, as we
_ cannot rewind the
(black-box) (X,) DR LN environment, and
extractor security is A8V E

43

Challenge I

Challenge I

Our F Ar gives access to simulated proofs.

44

Challenge I

Our F Ar gives access to simulated proofs.
Attack: The adversary could use them to “forge” new proofs.

44

Challenge I

Our F Ar gives access to simulated proofs.
Attack: The adversary could use them to “forge” new proofs.

Want: JE straightline s.t. V.&/

44

Challenge I

Our F Ar gives access to simulated proofs.
Attack: The adversary could use them to “forge” new proofs.

Want: JE straightline s.t. V.&/

Pr

44

IN

Challenge I

Our F Ar gives access to simulated proofs.
Attack: The adversary could use them to “forge” new proofs.

Want: JE straightline s.t. V.&/

Pr

44

IN

Challenge I

Our F Ar gives access to simulated proofs.
Attack: The adversary could use them to “forge” new proofs.

Want: JE straightline s.t. V.&/

Pr <]>

44

IN

Challenge I

Our F Ar gives access to simulated proofs.
Attack: The adversary could use them to “forge” new proofs.

Want: JE straightline s.t. V.&/

Pr <]>

44

IN

Challenge I

Our F Ar gives access to simulated proofs.
Attack: The adversary could use them to “forge” new proofs.

Want: JE straightline s.t. V.&/

Sim(x)
mtr, — S'(x), 0 = QU {r)

Program f according to tr,

Pr u @

44

IN

Challenge I

Our F Ar gives access to simulated proofs.
Attack: The adversary could use them to “forge” new proofs.

Want: JE straightline s.t. V.&/

Sim(x)
mtr, — S'(x), 0 = QU {r)

Program f according to tr,

Pr “ @

(x, 7)

44

IN

Challenge I

Our F Ar gives access to simulated proofs.

Attack: The adversary could use them to “forge” new proofs.

Want: JE straightline s.t. V.&/

Sim(x)
mtr, — S'(x), 0 = QU {r)

Program f according to tr,

<P

tr

Pr

\4

E

>

44

IN

Challenge I

Our F Ar gives access to simulated proofs.

Attack: The adversary could use them to “forge” new proofs.

Want: JE straightline s.t. V.&/

Sim(x)
mtr, — S'(x), 0 = QU {r)

Program f according to tr,

<P

tr

Pr (x,w) & R
T & Q

\4

E

>

44

IN

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

45

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

T

45

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

45

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

45

UC with Budgets

Plain UC only models
adversaries that are
computationally bounded

timE(ﬂ') < p(/lin — /10ut)

45

UC W|th Budgets We consider adversaries that are

resource bounded and
computationally unbounded
Plain UC only models
adversaries that are
computationally bounded

timE(ﬂ') < p(/lin — /10ut)

45

UC W|th Budgets We consider adversaries that are

resource bounded and
computationally unbounded

Plain UC only models
adversaries that are
computationally bounded

v/

B = %start T Z %in

B =l 1,0, C)

timE(ﬂ') < p(/lm — /10ut)

45

UC W|th Budgets We consider adversaries that are

resource bounded and
computationally unbounded
Plain UC only models
adversaries that are

computationally bounded B 20

v/

‘gg — %start + Z %in

B = (tq’ tp, fp’ fv)

timE(ﬂ') < p(/lm — /10ut)

45

UC W|th Budgets We consider adversaries that are

resource bounded and
computationally unbounded

Plain UC only models
adversaries that are

computationally bounded B 20

B =l 1,0, C)

timE(ﬂ') < p(/lm — /10ut)

45

UC W|th Budgets We consider adversaries that are

resource bounded and

computationally unbounded
Plain UC only models
adversaries that are
computationally bounded

B >0

Query [)
dec(HByltyl)
" GRO
B=(t.t .t C rogram
(q PP V) dec(ggout[tp])\ J

dec(x) i =x <« x—1

timE(ﬂ') < p(/lm — /10ut)

45

UC W|th Budgets We consider adversaries that are

resource bounded and
computationally unbounded

Plain UC only models
adversaries that are

computationally bounded B 20

v/

B Query ([)
B = By +) By, I GRO
Zin - (1, £) AR
dec(By l1,) = J

dec(A|C p])

e Ce

timE(ﬂ') < p(/lm — /10ut)

Verify

45

