
Giacomo Fenzi @

zkSNARKs in the ROM with
Unconditional UC-Security
TL;DR Micali and BCS are UC-secure in the GROM

Joint work with Alessandro Chiesa

 1

eprint.iacr.org/2024/724

https://eprint.iacr.org/2024/724

Motivation

zkSNARKs are deployed in the real world

st, π, st′

3

zkSNARKs are deployed in the real world

st, π, st′

zkSNARKs are ZKPs
where verification is
exponentially faster
than execution.

3

zkSNARKs are deployed in the real world

st, π, st′

E.g.: proof based rollups
to improve scalability

3

zkSNARKs are deployed in the real world

st, π, st′

…

Blockchain
E.g.: proof based rollups
to improve scalability

3

zkSNARKs are deployed in the real world

st, π, st′

…

Blockchain
E.g.: proof based rollups
to improve scalability

Rollup Users

u3

u1

u2

⋮
3

zkSNARKs are deployed in the real world

tx1

txn

⋮ P

st, st′

st′ := 𝖴𝗉𝖽𝖺𝗍𝖾(st, tx𝟣, …, tx𝗇)

Service operator

tx1, …, txn

π

st, π, st′

…

Blockchain
E.g.: proof based rollups
to improve scalability

Rollup Users

u3

u1

u2

⋮
3

zkSNARKs are deployed in the real world

tx1

txn

⋮ P

st, st′

st′ := 𝖴𝗉𝖽𝖺𝗍𝖾(st, tx𝟣, …, tx𝗇)

Service operator

tx1, …, txn

π

st, π, st′

…

Blockchain
E.g.: proof based rollups
to improve scalability

π, st, st′

π, st, st′

Rollup Users

u3

u1

u2

⋮
3

zkSNARKs are deployed in the real world

tx1

txn

⋮ P

st, st′

st′ := 𝖴𝗉𝖽𝖺𝗍𝖾(st, tx𝟣, …, tx𝗇)

Service operator

tx1, …, txn

π

st, π, st′

…

Blockchain

V 0/1

Validator(s)

π, st, st′

Check π

E.g.: proof based rollups
to improve scalability

π, st, st′

π, st, st′

Rollup Users

u3

u1

u2

⋮
3

Goal: Modular Security Analysis

4

Goal: Modular Security Analysis

P V Secure

4

Goal: Modular Security Analysis

P V Secure Other components secure+

4

Goal: Modular Security Analysis

P V Secure Other components secure+ ⟹ System

secure

4

Goal: Modular Security Analysis

P V Secure Other components secure+ ⟹ System

secure

UC Framework

4

Goal: Modular Security Analysis

P V Secure Other components secure+ ⟹ System

secure{
Our focus UC Framework

4

Goal: Modular Security Analysis

P V Secure Other components secure+ ⟹ System

secure{
Our focus

Which zkSNARKs are UC-secure?

UC Framework

4

This work

5

This work

Show existing zkSNARKs are UC-secure
(including deployed ones)

5

This work

Show existing zkSNARKs are UC-secure
(including deployed ones) Succinct

5

This work

Show existing zkSNARKs are UC-secure
(including deployed ones)

ROM only: transparent, post-quantum,
unconditional security

Succinct

5

This work

Show existing zkSNARKs are UC-secure
(including deployed ones)

Concrete security bounds:
useful for practitioners

ROM only: transparent, post-quantum,
unconditional security

Succinct

5

Our results

There exists a zkSNARK that is
unconditionally UC-secure in the GROM

Main Thm.

7

Let be a “UC-friendly”
argument in the ROM.

Then, is UC-secure in
the GROM

𝖠𝖱𝖦

Π[𝖠𝖱𝖦]

Lemma

8

The Micali construction is “UC-friendly” in the ROM,
provided that the underlying PCP is honest-verifier

zero knowledge and knowledge sound.

The Micali construction is UC-secure in the GROM,
when instantiated as above.

Theorem

Corollary

9

The Micali construction is “UC-friendly” in the ROM,
provided that the underlying PCP is honest-verifier

zero knowledge and knowledge sound.

The Micali construction is UC-secure in the GROM,
when instantiated as above.

Theorem

Corollary

9

Same conditions required for KS of
Micali in the ROM

The BCS construction is “UC-friendly” in the ROM,
provided that the underlying IOP is honest-verifier zero
knowledge and (state-restoration) knowledge sound.

The BCS construction is UC-secure in the GROM,
when instantiated as above.

10

Theorem

Corollary

The BCS construction is “UC-friendly” in the ROM,
provided that the underlying IOP is honest-verifier zero
knowledge and (state-restoration) knowledge sound.

The BCS construction is UC-secure in the GROM,
when instantiated as above.

10

Theorem

Corollary

Same conditions required for KS of
BCS in the ROM

Techniques

GROM [CDGLN18]

12

GROM [CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

12

GROM [CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

12

Flavor: restricted programmable and observable global random oracle

GROM

𝖦𝖱𝖮

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

12

Flavor: restricted programmable and observable global random oracle

GROM

• : as in ROM𝖰𝗎𝖾𝗋𝗒(x)

𝖦𝖱𝖮

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

12

Flavor: restricted programmable and observable global random oracle

GROM

• : as in ROM𝖰𝗎𝖾𝗋𝗒(x)

• : get all queries with prefix from adversary or
from parties with
𝖮𝖻𝗌𝖾𝗋𝗏𝖾(s) s

𝗌𝗂𝖽 ≠ s
𝖦𝖱𝖮

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

12

Flavor: restricted programmable and observable global random oracle

GROM

• : as in ROM𝖰𝗎𝖾𝗋𝗒(x)

• : get all queries with prefix from adversary or
from parties with
𝖮𝖻𝗌𝖾𝗋𝗏𝖾(s) s

𝗌𝗂𝖽 ≠ s

• : Program the GRO (maintaining consistency)𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y) 𝖦𝖱𝖮

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

12

Flavor: restricted programmable and observable global random oracle

GROM

• : as in ROM𝖰𝗎𝖾𝗋𝗒(x)

• : get all queries with prefix from adversary or
from parties with
𝖮𝖻𝗌𝖾𝗋𝗏𝖾(s) s

𝗌𝗂𝖽 ≠ s

• : Program the GRO (maintaining consistency)𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)

• : allows parties in session to check if
a has been programmed
𝖨𝗌𝖯𝗋𝗈𝗀𝗋𝖺𝗆𝗆𝖾𝖽(x) 𝗌𝗂𝖽

x = 𝗌𝗂𝖽 ∘ x′

𝖦𝖱𝖮

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

12

Flavor: restricted programmable and observable global random oracle

GROM

• : as in ROM𝖰𝗎𝖾𝗋𝗒(x)

• : get all queries with prefix from adversary or
from parties with
𝖮𝖻𝗌𝖾𝗋𝗏𝖾(s) s

𝗌𝗂𝖽 ≠ s

• : Program the GRO (maintaining consistency)𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)

• : allows parties in session to check if
a has been programmed
𝖨𝗌𝖯𝗋𝗈𝗀𝗋𝖺𝗆𝗆𝖾𝖽(x) 𝗌𝗂𝖽

x = 𝗌𝗂𝖽 ∘ x′

𝖦𝖱𝖮

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

12

Flavor: restricted programmable and observable global random oracle

GROM

• : as in ROM𝖰𝗎𝖾𝗋𝗒(x)

• : get all queries with prefix from adversary or
from parties with
𝖮𝖻𝗌𝖾𝗋𝗏𝖾(s) s

𝗌𝗂𝖽 ≠ s

• : Program the GRO (maintaining consistency)𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)

• : allows parties in session to check if
a has been programmed
𝖨𝗌𝖯𝗋𝗈𝗀𝗋𝖺𝗆𝗆𝖾𝖽(x) 𝗌𝗂𝖽

x = 𝗌𝗂𝖽 ∘ x′

𝖦𝖱𝖮

[CDGLN18]

Goal: ROM-like interface shared by all parties in the security experiment

12

Flavor: restricted programmable and observable global random oracle

Crucial: Simulator can program points without being detected!

UC with Budgets
Plain UC only models
adversaries that are
computationally bounded
using import

13

UC with Budgets

π

Plain UC only models
adversaries that are
computationally bounded
using import

13

UC with Budgets

λ1

λ2

λ*1

π

Plain UC only models
adversaries that are
computationally bounded
using import

13

UC with Budgets

λ1

λ2

λ*1

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

We consider adversaries that are
resource bounded and
computationally unbounded. We
model this introducing budgets

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

We consider adversaries that are
resource bounded and
computationally unbounded. We
model this introducing budgets

π

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

We consider adversaries that are
resource bounded and
computationally unbounded. We
model this introducing budgets

π Budgets

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

We consider adversaries that are
resource bounded and
computationally unbounded. We
model this introducing budgets

π

 queryt𝗊

Budgets

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

We consider adversaries that are
resource bounded and
computationally unbounded. We
model this introducing budgets

π

 queryt𝗊

Budgets

 programmingt𝗉

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

We consider adversaries that are
resource bounded and
computationally unbounded. We
model this introducing budgets

π

 queryt𝗊

Budgets

 programmingt𝗉

 provingℓ𝗉

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

We consider adversaries that are
resource bounded and
computationally unbounded. We
model this introducing budgets

π

 queryt𝗊

 verificationℓ𝗏

Budgets

 programmingt𝗉

 provingℓ𝗉

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

We consider adversaries that are
resource bounded and
computationally unbounded. We
model this introducing budgets

π

 queryt𝗊

 verificationℓ𝗏

Budgets

 programmingt𝗉

 provingℓ𝗉

Budget can then be spent on:

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded
using import

λout = ∑ λ*i

λin = ∑ λi

13

We consider adversaries that are
resource bounded and
computationally unbounded. We
model this introducing budgets

π

 queryt𝗊

 verificationℓ𝗏

Budgets

Prove Verify𝖦𝖱𝖮

 programmingt𝗉

 provingℓ𝗉

Budget can then be spent on:

Our main lemma

 in the
ROM

𝖠𝖱𝖦

Wrapper protocol Π[𝖠𝖱𝖦]

with
UC-secure

zkSNARK
⟹

UC-friendly
completeness

UC-friendly KS

14

UC-friendly ZK

UC-friendly UC-secure⟹

15

UC-friendly UC-secure⟹

𝖱𝖾𝖺𝗅 ≡ G0

15

UC-friendly UC-secure⟹

𝖱𝖾𝖺𝗅 ≡ G0 G4 ≡ 𝖨𝖽𝖾𝖺𝗅

15

UC-friendly UC-secure⟹

𝖱𝖾𝖺𝗅 ≡ G0 G4 ≡ 𝖨𝖽𝖾𝖺𝗅G1

≡

{

Simulator can
program

undetectably 15

UC-friendly UC-secure⟹

𝖱𝖾𝖺𝗅 ≡ G0 G4 ≡ 𝖨𝖽𝖾𝖺𝗅G1

≡

{

Simulator can
program

undetectably 15

G2

≈
ε

{
UC-friendly

completeness

UC-friendly UC-secure⟹

𝖱𝖾𝖺𝗅 ≡ G0 G4 ≡ 𝖨𝖽𝖾𝖺𝗅G3

≈
ζ

{
UC-friendly

ZK

G1

≡

{

Simulator can
program

undetectably 15

G2

≈
ε

{
UC-friendly

completeness

UC-friendly UC-secure⟹

𝖱𝖾𝖺𝗅 ≡ G0 G4 ≡ 𝖨𝖽𝖾𝖺𝗅G3

≈
ζ

{
UC-friendly

ZK

G1

≡

{

Simulator can
program

undetectably

≈
κ

{

UC-friendly

KS

15

G2

≈
ε

{
UC-friendly

completeness

UC-friendly UC-secure⟹

𝖱𝖾𝖺𝗅 ≡ G0 G4 ≡ 𝖨𝖽𝖾𝖺𝗅G3

≈
ζ

{
UC-friendly

ZK

G1

≡

{

Simulator can
program

undetectably

≈
κ

{

UC-friendly

KS

15

UC-friendly properties exactly defined for these game hops

G2

≈
ε

{
UC-friendly

completeness

UC-friendly completeness

16

Adversary should not be able to make honestly
generated proofs fail to verify.

UC-friendly completeness

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

UC-friendly completeness

Pr

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

UC-friendly completeness

Pr 𝒜

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

UC-friendly completeness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr 𝒜

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

UC-friendly completeness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr 𝒜

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)
Add π to 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly completeness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr 𝒜

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)
Add π to 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍(x, π)

UC-friendly completeness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr 𝒜

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)
Add π to 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍(x, π)

(x, π) ∈ 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍
and

UC-friendly completeness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Vf̃(x, π) ≠ 1Pr 𝒜

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)
Add π to 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍(x, π)

(x, π) ∈ 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍
and

UC-friendly completeness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Vf̃(x, π) ≠ 1Pr 𝒜

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)
Add π to 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍(x, π)

(x, π) ∈ 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍
and

 queries
programmed points

V
or

UC-friendly completeness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Vf̃(x, π) ≠ 1Pr ≤ ε𝒜

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)
Add π to 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍(x, π)

(x, π) ∈ 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍
and

 queries
programmed points

V
or

UC-friendly completeness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Vf̃(x, π) ≠ 1Pr ≤ ε𝒜

∀𝒜

16

Adversary should not be able to make honestly
generated proofs fail to verify.

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)
Add π to 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍(x, π)

(x, π) ∈ 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍
and

 queries
programmed points

V
or

Micali has UC-friendly completeness
because queries to GROM are

unpredictable!

UC-friendly ZK

17

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

UC-friendly ZK

∃S, ∀𝒜
s.t

17

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

UC-friendly ZK

Real Ideal

≈

∃S, ∀𝒜
s.t

17

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

UC-friendly ZK

Real Ideal

≈

∃S, ∀𝒜
s.t

𝒜 𝒜

0/1 0/1

17

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

UC-friendly ZK

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)

Real Ideal

≈

∃S, ∀𝒜
s.t

𝒜 𝒜

0/1 0/1

17

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

UC-friendly ZK

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x)
Program according to f̃ 𝗍𝗋

Real Ideal

≈

∃S, ∀𝒜
s.t

𝒜 𝒜

0/1 0/1

17

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

UC-friendly ZK

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x)
Program according to f̃ 𝗍𝗋

Real Ideal

≈

∃S, ∀𝒜
s.t

𝒜 𝒜

0/1 0/1

17

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

UC-friendly ZK

𝖯𝗋𝗈𝗈𝖿(x, w)
π ← Pf̃(x, w)

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x)
Program according to f̃ 𝗍𝗋

Real Ideal

≈

∃S, ∀𝒜
s.t

𝒜 𝒜

0/1 0/1

17

Adversary should not be able to distinguish real and simulated proofs,
even with access to a programming oracle.

Micali has UC-friendly zero
knowledge, more involved but

follows closely zero-knowledge of
Micali in the ROM

UC-friendly knowledge soundness

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

UC-friendly knowledge soundness

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

UC-friendly knowledge soundness

Pr

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

UC-friendly knowledge soundness

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

ℰ

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

ℰ

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

ℰ

𝗍𝗋

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

ℰ

𝗍𝗋

w

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃Vf̃(x, π) = 1

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

ℰ

𝗍𝗋

w

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃Vf̃(x, π) = 1

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

ℰ

𝗍𝗋

w

 does not query
programmed points
V 𝖯𝗋𝗈𝗈𝖿(x, w)

π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃Vf̃(x, π) = 1

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

ℰ

𝗍𝗋

w

(x, π) ∉ 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

 does not query
programmed points
V 𝖯𝗋𝗈𝗈𝖿(x, w)

π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃Vf̃(x, π) = 1

Pr
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

ℰ

𝗍𝗋

w

(x, π) ∉ 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

 does not query
programmed points
V

(x, w) ∉ R

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃Vf̃(x, π) = 1

Pr ≤ κ
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

ℰ

𝗍𝗋

w

(x, π) ∉ 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

 does not query
programmed points
V

(x, w) ∉ R

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

UC-friendly knowledge soundness

𝖰𝗎𝖾𝗋𝗒(x)

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x, y)
f̃Vf̃(x, π) = 1

Pr ≤ κ
𝒜

∃ℰ∀𝒜

18

Adversary should not be able to generate fresh proofs
that the extractor cannot extract a witness from

(x, π)

ℰ

𝗍𝗋

w

(x, π) ∉ 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

 does not query
programmed points
V

(x, w) ∉ R

𝖯𝗋𝗈𝗈𝖿(x, w)
π, 𝗍𝗋 ← S f̃(x, w)
Program according to f̃ 𝗍𝗋
Add to (x, π) 𝖯𝗋𝗈𝗈𝖿𝖫𝗂𝗌𝗍

Similar to simulation-extractability: in
Micali it holds because Merkle trees
have strong extraction properties in

the ROM, and programming does not
help the adversary

Conclusion

Recap:
What we talked about

20

Recap:
What we talked about

• UC with budgets

20

Recap:
What we talked about

• UC with budgets

• UC-friendly security properties imply UC-security

20

Recap:
What we talked about

• UC with budgets

• UC-friendly security properties imply UC-security

• UC-friendly completeness

20

Recap:
What we talked about

• UC with budgets

• UC-friendly security properties imply UC-security

• UC-friendly completeness

• UC-friendly zero knowledge

20

Recap:
What we talked about

• UC with budgets

• UC-friendly security properties imply UC-security

• UC-friendly completeness

• UC-friendly zero knowledge

• UC-friendly knowledge soundness

20

There is more!
What we did not talk about

21

There is more!
What we did not talk about

• Concrete security bounds

21

There is more!
What we did not talk about

• Concrete security bounds

• UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKs)

21

There is more!
What we did not talk about

• Concrete security bounds

• UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKs)

• UC-friendly properties are necessary

21

There is more!
What we did not talk about

• Concrete security bounds

• UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKs)

• UC-friendly properties are necessary

• We can handle adaptive corruptions with strong UC-friendly properties

21

There is more!
What we did not talk about

• Concrete security bounds

• UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKs)

• UC-friendly properties are necessary

• We can handle adaptive corruptions with strong UC-friendly properties

• Merkle trees have (strong) UC-friendly hiding

21

There is more!
What we did not talk about

• Concrete security bounds

• UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKs)

• UC-friendly properties are necessary

• We can handle adaptive corruptions with strong UC-friendly properties

• Merkle trees have (strong) UC-friendly hiding

• Merkle trees have (strong) UC-friendly extraction

21

There is more!
What we did not talk about

• Concrete security bounds

• UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKs)

• UC-friendly properties are necessary

• We can handle adaptive corruptions with strong UC-friendly properties

• Merkle trees have (strong) UC-friendly hiding

• Merkle trees have (strong) UC-friendly extraction

• Open question: extend the result to IOPs without straightline KS
21

Conclusion

Micali BCS

These zkSNARKs are UC-secure in
the GROM Concrete security bounds!

&

22

Thank you!

Extra slides

Modelling shared functionalities

25

[BCHTZ22]

Modelling shared functionalities
Plain UC security not enough for shared setups

25

[BCHTZ22]

Modelling shared functionalities

π φ≈𝖴𝖢𝒢 𝒢

Plain UC security not enough for shared setups

25

[BCHTZ22]

Plain UC:

Modelling shared functionalities

π φ≈𝖴𝖢𝒢 𝒢 ≈𝖴𝖢⟹ ρ

π

π

π

ρ

φ

φ

φ

𝒢

𝒢

𝒢

𝒢

𝒢

𝒢

Plain UC security not enough for shared setups

25

[BCHTZ22]

Plain UC:

Modelling shared functionalities

π φ≈𝖴𝖢𝒢 𝒢 ≈𝖴𝖢⟹ ρ

π

π

π

ρ

φ

φ

φ

𝒢

𝒢

𝒢

𝒢

𝒢

𝒢

Plain UC security not enough for shared setups

25

[BCHTZ22]

Solution: UC with Global Subroutines!

Plain UC:

Modelling shared functionalities

π φ≈𝖴𝖢𝒢 𝒢

π φ≈𝖴𝖢+𝒢 𝒢

≈𝖴𝖢⟹ ρ

π

π

π

ρ

φ

φ

φ

𝒢

𝒢

𝒢

𝒢

𝒢

𝒢

Plain UC security not enough for shared setups

25

[BCHTZ22]

Solution: UC with Global Subroutines!

Plain UC:

UCGS:

Modelling shared functionalities

π φ≈𝖴𝖢𝒢 𝒢

π φ≈𝖴𝖢+𝒢 𝒢 ≈𝖴𝖢⟹ ρ

π

π

π

ρ

φ

φ

φ

𝒢 𝒢

≈𝖴𝖢⟹ ρ

π

π

π

ρ

φ

φ

φ

𝒢

𝒢

𝒢

𝒢

𝒢

𝒢

Plain UC security not enough for shared setups

25

[BCHTZ22]

Solution: UC with Global Subroutines!

Plain UC:

UCGS:

Micali has UC-friendly ZK

26

Micali has UC-friendly ZK

𝖱𝖾𝖺𝗅 ≡ G0

26

Micali has UC-friendly ZK

𝖱𝖾𝖺𝗅 ≡ G0 G3 ≡ 𝖨𝖽𝖾𝖺𝗅

26

Micali has UC-friendly ZK

𝖱𝖾𝖺𝗅 ≡ G0 G3 ≡ 𝖨𝖽𝖾𝖺𝗅G1

≈
{

FS input hard

to predict

O(2−λ)

26

Micali has UC-friendly ZK

𝖱𝖾𝖺𝗅 ≡ G0 G3 ≡ 𝖨𝖽𝖾𝖺𝗅G2

≈
ζ𝖯𝖢𝖯

{

PCP honest-verifier

ZK

G1

≈
{

FS input hard

to predict

O(2−λ)

26

Micali has UC-friendly ZK

𝖱𝖾𝖺𝗅 ≡ G0 G3 ≡ 𝖨𝖽𝖾𝖺𝗅

≈
ζ𝖬𝖳

{
Lemma: Merkle trees
have UC-friendly hiding

G2

≈
ζ𝖯𝖢𝖯

{

PCP honest-verifier

ZK

G1

≈
{

FS input hard

to predict

O(2−λ)

26

Micali has UC-friendly ZK

𝖱𝖾𝖺𝗅 ≡ G0 G3 ≡ 𝖨𝖽𝖾𝖺𝗅

≈
ζ𝖬𝖳

{
Lemma: Merkle trees
have UC-friendly hiding

G2

≈
ζ𝖯𝖢𝖯

{

PCP honest-verifier

ZK

G1

≈
{

FS input hard

to predict

O(2−λ)

26

Follows similarly to standard Micali ZK + Merkle trees are UC-friendly.

Micali’s construction I

Micali’s construction I

Canonical construction of
zkSNARK in the ROM

Micali’s construction I

Canonical construction of
zkSNARK in the ROM

Straightline black-box extractor:
compatible with UC!

Micali’s construction I

Canonical construction of
zkSNARK in the ROM

Straightline black-box extractor:
compatible with UC!

Proofs are non-malleable:
also required for UC-security!

Micali’s construction I

Canonical construction of
zkSNARK in the ROM

Straightline black-box extractor:
compatible with UC!

Proofs are non-malleable:
also required for UC-security!

Stepping stone to BCS, which
underlies deployed zkSNARKs

Micali’s construction II

28

Micali’s construction II

P𝖯𝖢𝖯(x, w)

V𝖯𝖢𝖯(x)

0/1PCP

28

Micali’s construction II

P𝖯𝖢𝖯(x, w)

V𝖯𝖢𝖯(x)

0/1PCP
+

Merkle trees

𝖢𝗈𝗆𝗆𝗂𝗍 f

𝗋𝗍, 𝖺𝗎𝗑

𝖬𝖳𝖢𝗁𝖾𝖼𝗄f(𝗋𝗍, I, ⃗a, π) = 1 ⟺
∃̃Π : 𝗋𝗍 = 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f(Π) ∧ Π |I = ⃗a

𝖬𝖳𝖮𝗉𝖾𝗇(𝗋𝗍, I, ⃗a, 𝖺𝗎𝗑) → π

28

Micali’s construction II

P𝖯𝖢𝖯(x, w)

V𝖯𝖢𝖯(x)

0/1PCP

+
Fiat Shamir =

+
Merkle trees

𝖢𝗈𝗆𝗆𝗂𝗍 f

𝗋𝗍, 𝖺𝗎𝗑

𝖬𝖳𝖢𝗁𝖾𝖼𝗄f(𝗋𝗍, I, ⃗a, π) = 1 ⟺
∃̃Π : 𝗋𝗍 = 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f(Π) ∧ Π |I = ⃗a

𝖬𝖳𝖮𝗉𝖾𝗇(𝗋𝗍, I, ⃗a, 𝖺𝗎𝗑) → π

28

Micali’s construction II

P𝖯𝖢𝖯(x, w)

V𝖯𝖢𝖯(x)

0/1PCP

+
Fiat Shamir = zkSNARK in the ROM

+
Merkle trees

𝖢𝗈𝗆𝗆𝗂𝗍 f

𝗋𝗍, 𝖺𝗎𝗑

𝖬𝖳𝖢𝗁𝖾𝖼𝗄f(𝗋𝗍, I, ⃗a, π) = 1 ⟺
∃̃Π : 𝗋𝗍 = 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f(Π) ∧ Π |I = ⃗a

𝖬𝖳𝖮𝗉𝖾𝗇(𝗋𝗍, I, ⃗a, 𝖺𝗎𝗑) → π

28

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

• Compute Π ← P𝖯𝖢𝖯(x, w)

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

• Compute Π ← P𝖯𝖢𝖯(x, w)

• Sample σ𝖬𝖳 ← {0,1}r⋅ℓ

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

• Compute Π ← P𝖯𝖢𝖯(x, w)

• Sample σ𝖬𝖳 ← {0,1}r⋅ℓ

• (𝗋𝗍, 𝗍𝖽) ← 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f𝖬𝖳(Π; σ𝖬𝖳)

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

• Compute Π ← P𝖯𝖢𝖯(x, w)

• Sample σ𝖬𝖳 ← {0,1}r⋅ℓ

• (𝗋𝗍, 𝗍𝖽) ← 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f𝖬𝖳(Π; σ𝖬𝖳)

• Sample σ ← {0,1}r

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

• Compute Π ← P𝖯𝖢𝖯(x, w)

• Sample σ𝖬𝖳 ← {0,1}r⋅ℓ

• (𝗋𝗍, 𝗍𝖽) ← 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f𝖬𝖳(Π; σ𝖬𝖳)

• Sample σ ← {0,1}r

• Set ρ := f𝖥𝖲(x, 𝗋𝗍, σ)

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

• Compute Π ← P𝖯𝖢𝖯(x, w)

• Sample σ𝖬𝖳 ← {0,1}r⋅ℓ

• (𝗋𝗍, 𝗍𝖽) ← 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f𝖬𝖳(Π; σ𝖬𝖳)

• Sample σ ← {0,1}r

• Set ρ := f𝖥𝖲(x, 𝗋𝗍, σ)

• Run to obtain
query-answers sets

VΠ
𝖯𝖢𝖯(x; ρ)

Q, a

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

• Compute Π ← P𝖯𝖢𝖯(x, w)

• Sample σ𝖬𝖳 ← {0,1}r⋅ℓ

• (𝗋𝗍, 𝗍𝖽) ← 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f𝖬𝖳(Π; σ𝖬𝖳)

• Sample σ ← {0,1}r

• Set ρ := f𝖥𝖲(x, 𝗋𝗍, σ)

• Run to obtain
query-answers sets

VΠ
𝖯𝖢𝖯(x; ρ)

Q, a

• 𝗉𝖿 := 𝖬𝖳𝖮𝗉𝖾𝗇(𝗍𝖽, Q)

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

• Compute Π ← P𝖯𝖢𝖯(x, w)

• Sample σ𝖬𝖳 ← {0,1}r⋅ℓ

• (𝗋𝗍, 𝗍𝖽) ← 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f𝖬𝖳(Π; σ𝖬𝖳)

• Sample σ ← {0,1}r

• Set ρ := f𝖥𝖲(x, 𝗋𝗍, σ)

• Run to obtain
query-answers sets

VΠ
𝖯𝖢𝖯(x; ρ)

Q, a

• 𝗉𝖿 := 𝖬𝖳𝖮𝗉𝖾𝗇(𝗍𝖽, Q)

(𝗋𝗍, σ, Q, a, 𝗉𝖿)

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

• Compute Π ← P𝖯𝖢𝖯(x, w)

• Sample σ𝖬𝖳 ← {0,1}r⋅ℓ

• (𝗋𝗍, 𝗍𝖽) ← 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f𝖬𝖳(Π; σ𝖬𝖳)

• Sample σ ← {0,1}r

• Set ρ := f𝖥𝖲(x, 𝗋𝗍, σ)

• Run to obtain
query-answers sets

VΠ
𝖯𝖢𝖯(x; ρ)

Q, a

• 𝗉𝖿 := 𝖬𝖳𝖮𝗉𝖾𝗇(𝗍𝖽, Q)

(𝗋𝗍, σ, Q, a, 𝗉𝖿)

•

• Set

𝖬𝖳𝖢𝗁𝖾𝖼𝗄f𝖬𝖳(𝗋𝗍, Q, a, 𝗉𝖿) = 1

ρ := f𝖥𝖲(x, 𝗋𝗍, σ)

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

• Compute Π ← P𝖯𝖢𝖯(x, w)

• Sample σ𝖬𝖳 ← {0,1}r⋅ℓ

• (𝗋𝗍, 𝗍𝖽) ← 𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍 f𝖬𝖳(Π; σ𝖬𝖳)

• Sample σ ← {0,1}r

• Set ρ := f𝖥𝖲(x, 𝗋𝗍, σ)

• Run to obtain
query-answers sets

VΠ
𝖯𝖢𝖯(x; ρ)

Q, a

• 𝗉𝖿 := 𝖬𝖳𝖮𝗉𝖾𝗇(𝗍𝖽, Q)

(𝗋𝗍, σ, Q, a, 𝗉𝖿)

•

• Set

𝖬𝖳𝖢𝗁𝖾𝖼𝗄f𝖬𝖳(𝗋𝗍, Q, a, 𝗉𝖿) = 1

ρ := f𝖥𝖲(x, 𝗋𝗍, σ)

V𝖯𝖢𝖯 q ∈ Q
a[q]

q ∉ Q Reject

V𝖯𝖢𝖯(x; ρ)

If
unused
∃q ∈ Q

f𝖥𝖲 f𝖬𝖳

P(x, w) V(x)

Micali’s construction III

29

Commit to PCP string using MT,
then apply FS transform

UC Security I

30

[Canetti 2001]

UC Security I
• Motivation: Modular security analysis of protocols

30

[Canetti 2001]

UC Security I
• Motivation: Modular security analysis of protocols

• Why UC? ‘Gold-standard’ + vast literature

30

[Canetti 2001]

UC Security I
• Motivation: Modular security analysis of protocols

• Why UC? ‘Gold-standard’ + vast literature

30

Composition Theorem

[Canetti 2001]

UC Security I
• Motivation: Modular security analysis of protocols

• Why UC? ‘Gold-standard’ + vast literature

 : protocol

 : ideal functionality

 : calling protocol

π

φ

ρ

30

Composition Theorem

UC Security I
• Motivation: Modular security analysis of protocols

• Why UC? ‘Gold-standard’ + vast literature

π φ≈𝖴𝖢

 : protocol

 : ideal functionality

 : calling protocol

π

φ

ρ

30

Composition Theorem

UC Security I
• Motivation: Modular security analysis of protocols

• Why UC? ‘Gold-standard’ + vast literature

π φ≈𝖴𝖢 ρ

π

π

π

≈𝖴𝖢 ρ

φ

φ

φ

⟹

 : protocol

 : ideal functionality

 : calling protocol

π

φ

ρ

30

Composition Theorem

UC Security II

31

UC Security II
 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

31

UC Security II

π ≈𝖴𝖢 ℱ

 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

31

UC Security II

π ≈𝖴𝖢 ℱ

 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

31

Goal: Cannot distinguish protocol from idealized version.

UC Security II

π ≈𝖴𝖢 ℱ

 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

∀𝒜, ∃𝒮, ∀ℰ
⟺

31

Goal: Cannot distinguish protocol from idealized version.

UC Security II

Real π ≈𝖴𝖢 ℱ

 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

∀𝒜, ∃𝒮, ∀ℰ
⟺

31

Goal: Cannot distinguish protocol from idealized version.

UC Security II

Real Ideal

≈

π ≈𝖴𝖢 ℱ

 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

∀𝒜, ∃𝒮, ∀ℰ
⟺

31

Goal: Cannot distinguish protocol from idealized version.

UC Security II

Real Ideal

≈
π

μ1

μ3

μ2

π ≈𝖴𝖢 ℱ

 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

∀𝒜, ∃𝒮, ∀ℰ
⟺

31

Goal: Cannot distinguish protocol from idealized version.

UC Security II

Real Ideal

≈
𝖨𝖣𝖤𝖠𝖫ℱ

D

ℱ

π
μ1

μ3

μ2

π ≈𝖴𝖢 ℱ

 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

∀𝒜, ∃𝒮, ∀ℰ
⟺

31

Goal: Cannot distinguish protocol from idealized version.

UC Security II

Real

ℰ ℰ0/1 0/1

Ideal

≈
𝖨𝖣𝖤𝖠𝖫ℱ

D

ℱ

π
μ1

μ3

μ2

π ≈𝖴𝖢 ℱ

 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

∀𝒜, ∃𝒮, ∀ℰ
⟺

31

Goal: Cannot distinguish protocol from idealized version.

UC Security II

Real

ℰ ℰ0/1 0/1

Ideal

≈
𝖨𝖣𝖤𝖠𝖫ℱ

D

ℱ

𝒜
π

μ1

μ3

μ2

π ≈𝖴𝖢 ℱ

 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

∀𝒜, ∃𝒮, ∀ℰ
⟺

31

Goal: Cannot distinguish protocol from idealized version.

UC Security II

Real

ℰ ℰ0/1 0/1

Ideal

≈
𝖨𝖣𝖤𝖠𝖫ℱ

D

ℱ

𝒜
π

μ1

μ3

μ2
𝒜

𝒮

π ≈𝖴𝖢 ℱ

 : protocol

 : ideal functionality

 : dummy party

π

ℱ

D

 : environment

 : adversary

 : simulator

ℰ

𝒜

𝒮

∀𝒜, ∃𝒮, ∀ℰ
⟺

31

Goal: Cannot distinguish protocol from idealized version.

Argument functionality [LR22]

32

Argument functionality [LR22]

• Model a zkSNARK as an ideal functionality.

32

Argument functionality [LR22]

• Model a zkSNARK as an ideal functionality.
• Prover generates simulated proofs (without using the witness).

32

Argument functionality [LR22]

• Model a zkSNARK as an ideal functionality.
• Prover generates simulated proofs (without using the witness).
• Verifier aims to extract a witness from each accepting proof.

32

Argument functionality [LR22]

• Model a zkSNARK as an ideal functionality.
• Prover generates simulated proofs (without using the witness).
• Verifier aims to extract a witness from each accepting proof.
• Proofs generated in are always accepted by .𝖯𝗋𝗈𝗏𝖾 𝖵𝖾𝗋𝗂𝖿𝗒

32

ℱ⋆

Argument functionality [LR22]

• Model a zkSNARK as an ideal functionality.
• Prover generates simulated proofs (without using the witness).
• Verifier aims to extract a witness from each accepting proof.
• Proofs generated in are always accepted by .𝖯𝗋𝗈𝗏𝖾 𝖵𝖾𝗋𝗂𝖿𝗒

32

ℱ⋆
𝒮

Argument functionality [LR22]

• Model a zkSNARK as an ideal functionality.
• Prover generates simulated proofs (without using the witness).
• Verifier aims to extract a witness from each accepting proof.
• Proofs generated in are always accepted by .𝖯𝗋𝗈𝗏𝖾 𝖵𝖾𝗋𝗂𝖿𝗒

32

ℱ⋆
𝒮

𝖦𝖱𝖮

Argument functionality [LR22]

• Model a zkSNARK as an ideal functionality.
• Prover generates simulated proofs (without using the witness).
• Verifier aims to extract a witness from each accepting proof.
• Proofs generated in are always accepted by .𝖯𝗋𝗈𝗏𝖾 𝖵𝖾𝗋𝗂𝖿𝗒

32

ℱ⋆

𝖲𝖾𝗍𝗎𝗉(s)
• Get from V, S, E 𝒮

𝒮

𝖦𝖱𝖮

Argument functionality [LR22]

• Model a zkSNARK as an ideal functionality.
• Prover generates simulated proofs (without using the witness).
• Verifier aims to extract a witness from each accepting proof.
• Proofs generated in are always accepted by .𝖯𝗋𝗈𝗏𝖾 𝖵𝖾𝗋𝗂𝖿𝗒

32

ℱ⋆

𝖲𝖾𝗍𝗎𝗉(s)
• Get from V, S, E 𝒮

𝖯𝗋𝗈𝗏𝖾(x, w)
• Sim

• Program GRO according to

π, 𝗍𝗋 ← S𝖦𝖱𝖮𝗌(x)
𝗍𝗋

𝒮

𝖦𝖱𝖮

Argument functionality [LR22]

• Model a zkSNARK as an ideal functionality.
• Prover generates simulated proofs (without using the witness).
• Verifier aims to extract a witness from each accepting proof.
• Proofs generated in are always accepted by .𝖯𝗋𝗈𝗏𝖾 𝖵𝖾𝗋𝗂𝖿𝗒

32

ℱ⋆

𝖲𝖾𝗍𝗎𝗉(s)
• Get from V, S, E 𝒮

𝖯𝗋𝗈𝗏𝖾(x, w)
• Sim

• Program GRO according to

π, 𝗍𝗋 ← S𝖦𝖱𝖮𝗌(x)
𝗍𝗋

𝖵𝖾𝗋𝗂𝖿𝗒(x, π)
•

• If was generated by , accept

• If or any query in is programmed,

reject.

• Obtain query-list from GRO

•

• If fail, else accept

b 𝗍𝗋V V𝖦𝖱𝖮s(x, π)
π 𝖯𝗋𝗈𝗏𝖾
b = 0 𝗍𝗋V

𝖰𝗎𝖾𝗋𝗂𝖾𝗌
w ← E𝖦𝖱𝖮s(x, π, 𝖰𝗎𝖾𝗋𝗂𝖾𝗌)

(x, w) ∉ R

𝒮

𝖦𝖱𝖮

Argument functionality [LR22]

• Model a zkSNARK as an ideal functionality.
• Prover generates simulated proofs (without using the witness).
• Verifier aims to extract a witness from each accepting proof.
• Proofs generated in are always accepted by .𝖯𝗋𝗈𝗏𝖾 𝖵𝖾𝗋𝗂𝖿𝗒

32

Wrapper protocol

33

Wrapper protocol
Converts an argument in the ROM into a protocol in the GROM𝖠𝖱𝖦 = (P, V)

33

Wrapper protocol

Π[𝖠𝖱𝖦]

Converts an argument in the ROM into a protocol in the GROM𝖠𝖱𝖦 = (P, V)

33

𝖦𝖱𝖮

Wrapper protocol

Π[𝖠𝖱𝖦]

Converts an argument in the ROM into a protocol in the GROM𝖠𝖱𝖦 = (P, V)

33

𝖲𝖾𝗍𝗎𝗉(s)
• Do nothing

𝖦𝖱𝖮

Wrapper protocol

Π[𝖠𝖱𝖦]

Converts an argument in the ROM into a protocol in the GROM𝖠𝖱𝖦 = (P, V)

33

𝖲𝖾𝗍𝗎𝗉(s)
• Do nothing

𝖦𝖱𝖮

Wrapper protocol

Π[𝖠𝖱𝖦]

𝖯𝗋𝗈𝗏𝖾(x, w)

•

• Return

π ← P𝖦𝖱𝖮s(x, w)
π

Converts an argument in the ROM into a protocol in the GROM𝖠𝖱𝖦 = (P, V)

33

𝖲𝖾𝗍𝗎𝗉(s)
• Do nothing

𝖦𝖱𝖮

Wrapper protocol

Π[𝖠𝖱𝖦]

𝖵𝖾𝗋𝗂𝖿𝗒(x, π)

•

• If or any query in is

programmed, reject. Else,
accept.

b 𝗍𝗋V V𝖦𝖱𝖮s(x, π)
b = 0 𝗍𝗋V

𝖯𝗋𝗈𝗏𝖾(x, w)

•

• Return

π ← P𝖦𝖱𝖮s(x, w)
π

Converts an argument in the ROM into a protocol in the GROM𝖠𝖱𝖦 = (P, V)

33

Recap and Goal

34

Recap and Goal

Find an in the ROM such that𝖠𝖱𝖦

34

Recap and Goal

Find an in the ROM such that𝖠𝖱𝖦

𝖦𝖱𝖮in the

34

Recap and Goal

Find an in the ROM such that𝖠𝖱𝖦

Π[𝖠𝖱𝖦] 𝖦𝖱𝖮in the

34

Recap and Goal

Find an in the ROM such that𝖠𝖱𝖦

Π[𝖠𝖱𝖦] ≈𝖴𝖢 ℱ⋆ 𝖦𝖱𝖮in the

34

Related works

35

Related works

35

Related works
Append an encryption of the

witness to the proof.

- Cannot be succinct |π | ≥ |w |

35

Related works
Append an encryption of the

witness to the proof.

- Cannot be succinct |π | ≥ |w |

35

Related works
Append an encryption of the

witness to the proof.

- Cannot be succinct |π | ≥ |w |

Compile -protocol into NIZK

+ Techniques inspired this work

- Not succinct

- Expensive compilation (non-FS)

Σ

35

Succinct UC-secure zkSNARKs

36

Succinct UC-secure zkSNARKs

First UC-secure SNARK

36

Succinct UC-secure zkSNARKs

First UC-secure SNARK

Combines simulation-extractable
zkSNARK with a PCS

36

Succinct UC-secure zkSNARKs

First UC-secure SNARK

Combines simulation-extractable
zkSNARK with a PCS

36

Use Fischlin-like techniques to
achieve straight-line extraction

Succinct UC-secure zkSNARKs

First UC-secure SNARK

Combines simulation-extractable
zkSNARK with a PCS

36

Use Fischlin-like techniques to
achieve straight-line extraction

+ Achieves succinct proofs

Succinct UC-secure zkSNARKs

First UC-secure SNARK

Combines simulation-extractable
zkSNARK with a PCS

36

Use Fischlin-like techniques to
achieve straight-line extraction

+ Achieves succinct proofs

+ UC-Secure in the (non-programmable)
observable GROM

Succinct UC-secure zkSNARKs

First UC-secure SNARK

Combines simulation-extractable
zkSNARK with a PCS

36

Use Fischlin-like techniques to
achieve straight-line extraction

+ Achieves succinct proofs

+ UC-Secure in the (non-programmable)
observable GROM

- Expensive non-standard construction

Succinct UC-secure zkSNARKs

First UC-secure SNARK

Combines simulation-extractable
zkSNARK with a PCS

36

Use Fischlin-like techniques to
achieve straight-line extraction

+ Achieves succinct proofs

+ UC-Secure in the (non-programmable)
observable GROM

- Expensive non-standard construction

- Focuses on asymptotic security

zkSNARKs (in the ROM)

37

zkSNARKs (in the ROM)

P(x, w)

37

zkSNARKs (in the ROM)

P(x, w)

V(x)

37

zkSNARKs (in the ROM)

P(x, w)

V(x)
Claim:

I know s.t. w
(x, w) ∈ R

37

zkSNARKs (in the ROM)

P(x, w)

V(x)
Claim:

I know s.t. w
(x, w) ∈ R

0/1

37

zkSNARKs (in the ROM)

P(x, w)

V(x)
πClaim:

I know s.t. w
(x, w) ∈ R

0/1

37

zkSNARKs (in the ROM)

P(x, w)

V(x)
π

f

Claim:
I know s.t. w
(x, w) ∈ R

0/1

37

zkSNARKs (in the ROM)

• Zero-Knowledge
∃S : Pf(x, w) ≈ S f(x)

P(x, w)

V(x)
π

f

Claim:
I know s.t. w
(x, w) ∈ R

0/1

37

zkSNARKs (in the ROM)

• Zero-Knowledge
∃S : Pf(x, w) ≈ S f(x)

• Succinct
|π | ≪ |w |

P(x, w)

V(x)
π

f

Claim:
I know s.t. w
(x, w) ∈ R

0/1

37

zkSNARKs (in the ROM)

• Zero-Knowledge
∃S : Pf(x, w) ≈ S f(x)

• Succinct
|π | ≪ |w |

• Non-interactive
P(x, w)

V(x)
π

f

Claim:
I know s.t. w
(x, w) ∈ R

0/1

37

zkSNARKs (in the ROM)

• Zero-Knowledge
∃S : Pf(x, w) ≈ S f(x)

• Succinct
|π | ≪ |w |

• Non-interactive

• Argument of Knowledge

P(x, w)

V(x)
π

f

Claim:
I know s.t. w
(x, w) ∈ R

0/1

37

zkSNARKs (in the ROM)

• Zero-Knowledge
∃S : Pf(x, w) ≈ S f(x)

• Succinct
|π | ≪ |w |

• Non-interactive

• Argument of Knowledge
∃E : Vf(x, π ← P̃) = 1

P(x, w)

V(x)
π

f

Claim:
I know s.t. w
(x, w) ∈ R

0/1

37

zkSNARKs (in the ROM)

• Zero-Knowledge
∃S : Pf(x, w) ≈ S f(x)

• Succinct
|π | ≪ |w |

• Non-interactive

• Argument of Knowledge
∃E : Vf(x, π ← P̃) = 1

⟹ (x, E(x, π, 𝗍𝗋P̃)) ∈ R

P(x, w)

V(x)
π

f

Claim:
I know s.t. w
(x, w) ∈ R

0/1

37

What if we only care about scalability?
Dropping ZK

• Often, SNARKs are deployed without ZK

• We consider this out of scope for this work but (at an high level) believe that:

• The techniques here would still work and can be simplified.

• Remove UC-friendly ZK and move to non-programmable GROM.

• UC-completeness then reduces to perfect completeness.

• Knowledge sound PCP/IOP suffices for Micali/BCS.

Micali has UC-friendly ZK

Compute

Set

Run to obtain query-
answers sets

Π ← P𝖯𝖢𝖯(x, w)

𝗋𝗍, 𝖺𝗎𝗑 ← 𝖢𝗈𝗆𝗆𝗂𝗍 f𝖬𝖳(Π)

ρ := f𝖥𝖲(x, 𝗋𝗍, σ)

VΠ
𝖯𝖢𝖯(x; ρ)

Q, ⃗a

π𝖬𝖳 := 𝖮𝗉𝖾𝗇(𝗋𝗍, Q, ⃗a, 𝖺𝗎𝗑)

G0

Compute

Program

ρ, Q, ⃗a ← S𝖯𝖢𝖯(x)

𝗋𝗍, π𝖬𝖳 ← 𝖲𝗂𝗆 f𝖬𝖳(Q, ⃗a)

f𝖥𝖲(x, 𝗋𝗍, σ) = ρ

G4

Sample

Compute

Program

Run to obtain query-
answers sets

ρ

Π ← P𝖯𝖢𝖯(x, w)

𝗋𝗍, 𝖺𝗎𝗑 ← 𝖢𝗈𝗆𝗆𝗂𝗍 f𝖬𝖳(Π)

f𝖥𝖲(x, 𝗋𝗍, σ) = ρ

VΠ
𝖯𝖢𝖯(x; ρ)

Q, ⃗a

π𝖬𝖳 := 𝖮𝗉𝖾𝗇(𝗋𝗍, Q, ⃗a, 𝖺𝗎𝗑)

G1

Sample

Compute

Run to obtain query-
answers sets

Program

ρ

Π ← P𝖯𝖢𝖯(x, w)

VΠ
𝖯𝖢𝖯(x; ρ)

Q, ⃗a

𝗋𝗍, π𝖬𝖳 ← 𝖲𝗂𝗆 f𝖬𝖳(Q, ⃗a)

f𝖥𝖲(x, 𝗋𝗍, σ) = ρ

G2

Δ ≤
t𝗊 + t𝗉

2|σ| Δ ≤ ζ𝖬𝖳

Δ ≤ ζ𝖯𝖢𝖯

Δ(G0, G3) ≤
t𝗊 + t𝗉

2|σ|
+ ζ𝖬𝖳 + ζ𝖯𝖢𝖯

For to we define UC-friendly hiding for vector
commitments and show Merkle tree have it

G1 G2

39

Micali has UC-friendly completeness

40

Micali has UC-friendly completeness

UC-friendly completeness

40

Micali has UC-friendly completeness
• Assuming PCP perfect completeness, honest proof are rejected only if the verifier

queries a previously programmed point.

UC-friendly completeness

40

Micali has UC-friendly completeness
• Assuming PCP perfect completeness, honest proof are rejected only if the verifier

queries a previously programmed point.

Perfect completeness
of the PCP

UC-friendly completeness

40

Micali has UC-friendly completeness
• Assuming PCP perfect completeness, honest proof are rejected only if the verifier

queries a previously programmed point.

• Disallow this attack with two natural properties:

Perfect completeness
of the PCP

UC-friendly completeness

40

Micali has UC-friendly completeness
• Assuming PCP perfect completeness, honest proof are rejected only if the verifier

queries a previously programmed point.

• Disallow this attack with two natural properties:

• Monotone proofs (verifier does not query points not previously queried by the prover)

Perfect completeness
of the PCP

UC-friendly completeness

40

Micali has UC-friendly completeness
• Assuming PCP perfect completeness, honest proof are rejected only if the verifier

queries a previously programmed point.

• Disallow this attack with two natural properties:

• Monotone proofs (verifier does not query points not previously queried by the prover)

Perfect completeness
of the PCP

UC-friendly completeness

Monotone Proofs+

40

Micali has UC-friendly completeness
• Assuming PCP perfect completeness, honest proof are rejected only if the verifier

queries a previously programmed point.

• Disallow this attack with two natural properties:

• Monotone proofs (verifier does not query points not previously queried by the prover)

• Unpredictable queries (hard to program points prover will query)

Perfect completeness
of the PCP

UC-friendly completeness

Monotone Proofs+

40

Micali has UC-friendly completeness
• Assuming PCP perfect completeness, honest proof are rejected only if the verifier

queries a previously programmed point.

• Disallow this attack with two natural properties:

• Monotone proofs (verifier does not query points not previously queried by the prover)

• Unpredictable queries (hard to program points prover will query)

Perfect completeness
of the PCP

UC-friendly completeness

Monotone Proofs+ Unpredictable Queries+

40

Micali has UC-friendly KS

41

Micali has UC-friendly KS

UC-friendly KS of Micali

41

Micali has UC-friendly KS
• UC-friendly KS implies simulation-extractability.

UC-friendly KS of Micali

41

Micali has UC-friendly KS
• UC-friendly KS implies simulation-extractability.

• Merkle trees are non-malleable already.

UC-friendly KS of Micali

41

Micali has UC-friendly KS
• UC-friendly KS implies simulation-extractability.

• Merkle trees are non-malleable already.

• In Micali, makes proofs non-malleable.

UC-friendly KS of Micali

41

Micali has UC-friendly KS
• UC-friendly KS implies simulation-extractability.

• Merkle trees are non-malleable already.

• In Micali, makes proofs non-malleable.

• Reduce to state-restoration KS (implied by KS of PCP)

UC-friendly KS of Micali

41

Micali has UC-friendly KS
• UC-friendly KS implies simulation-extractability.

• Merkle trees are non-malleable already.

• In Micali, makes proofs non-malleable.

• Reduce to state-restoration KS (implied by KS of PCP)

Merkle trees are UC-friendly
extractable

UC-friendly KS of Micali

41

Micali has UC-friendly KS
• UC-friendly KS implies simulation-extractability.

• Merkle trees are non-malleable already.

• In Micali, makes proofs non-malleable.

• Reduce to state-restoration KS (implied by KS of PCP)

Merkle trees are UC-friendly
extractable

UC-friendly KS of Micali

PCPs are non-malleable+

41

Micali has UC-friendly KS
• UC-friendly KS implies simulation-extractability.

• Merkle trees are non-malleable already.

• In Micali, makes proofs non-malleable.

• Reduce to state-restoration KS (implied by KS of PCP)

Merkle trees are UC-friendly
extractable

UC-friendly KS of Micali

PCPs are non-malleable+ State-restoration KS
of the PCP+

41

Related
works

Known UC-secure

zkSNARKs

42

Non-Witness SuccinctRelated
works

Known UC-secure

zkSNARKs

42

Witness Succinct

Non-Witness SuccinctRelated
works

Known UC-secure

zkSNARKs

42

Witness Succinct

Non-Witness Succinct

Encrypt witness

Related
works

Known UC-secure

zkSNARKs

42

Witness Succinct

Non-Witness Succinct

Encrypt witness

Related
works

Known UC-secure

zkSNARKs

42

Witness Succinct

Non-Witness Succinct

Encrypt witness

Compile Σ-protocol

Related
works

Known UC-secure

zkSNARKs

42

Witness Succinct

Non-Witness Succinct

Encrypt witness

Compile Σ-protocol

Related
works

Known UC-secure

zkSNARKs

42

Witness Succinct

Non-Witness Succinct

Encrypt witness

Compile Σ-protocol

Commit witness using PCS

Related
works

Known UC-secure

zkSNARKs

42

Witness Succinct

Non-Witness Succinct

Encrypt witness

Compile Σ-protocol

Commit witness using PCS This work!

Related
works

Known UC-secure

zkSNARKs

42

Challenge I

43

Challenge I

Rewinding

extractor

43

Challenge I

𝒜
(x, π)

f
Rewinding

extractor

43

Challenge I

E

𝒜
(x, π)

f
Rewinding

extractor

43

Challenge I

E

𝒜
(x, π)

f

ρ𝒜
𝒜

w

Rewinding

extractor

43

Challenge I

E

𝒜
(x, π)

f

ρ𝒜
𝒜

w

Rewinding

extractor

43

Not allowed
in UC!

Challenge I

E

𝒜
(x, π)

f

ρ𝒜
𝒜

w

Rewinding

extractor

43

Not allowed
in UC!

For UC-security,
extractor must be
black-box and
straight-line, as we
cannot rewind the
environment, and
security is ∃𝒮∀ℰ

Challenge I

E

𝒜
(x, π)

f

ρ𝒜
𝒜

w

Rewinding

extractor

Straightline

(black-box)

extractor

43

Not allowed
in UC!

For UC-security,
extractor must be
black-box and
straight-line, as we
cannot rewind the
environment, and
security is ∃𝒮∀ℰ

Challenge I

E

𝒜
(x, π)

f

𝒜
(x, π)

f

ρ𝒜
𝒜

w

Rewinding

extractor

Straightline

(black-box)

extractor

43

Not allowed
in UC!

For UC-security,
extractor must be
black-box and
straight-line, as we
cannot rewind the
environment, and
security is ∃𝒮∀ℰ

Challenge I

E

𝒜
(x, π)

f

𝒜
(x, π)

f

wE

𝗍𝗋

ρ𝒜
𝒜

w

Rewinding

extractor

Straightline

(black-box)

extractor

43

Not allowed
in UC!

For UC-security,
extractor must be
black-box and
straight-line, as we
cannot rewind the
environment, and
security is ∃𝒮∀ℰ

Challenge II

44

Challenge II
Our gives access to simulated proofs. ℱARG

44

Challenge II
Our gives access to simulated proofs. ℱARG
Attack: The adversary could use them to “forge” new proofs.

44

Challenge II
Our gives access to simulated proofs. ℱARG
Attack: The adversary could use them to “forge” new proofs.
Want: ∃E straightline s.t. ∀𝒜

44

Challenge II
Our gives access to simulated proofs. ℱARG
Attack: The adversary could use them to “forge” new proofs.
Want: ∃E straightline s.t. ∀𝒜

44

Pr ≤ κ

Challenge II
Our gives access to simulated proofs. ℱARG
Attack: The adversary could use them to “forge” new proofs.
Want: ∃E straightline s.t. ∀𝒜

44

𝒜Pr ≤ κ

Challenge II
Our gives access to simulated proofs. ℱARG
Attack: The adversary could use them to “forge” new proofs.
Want: ∃E straightline s.t. ∀𝒜

44

𝒜
f

Pr ≤ κ

Challenge II
Our gives access to simulated proofs. ℱARG
Attack: The adversary could use them to “forge” new proofs.
Want: ∃E straightline s.t. ∀𝒜

44

𝒜
f

Pr ≤ κ

Challenge II
Our gives access to simulated proofs. ℱARG
Attack: The adversary could use them to “forge” new proofs.
Want: ∃E straightline s.t. ∀𝒜

44

𝒜
f

Pr ≤ κ

π, 𝗍𝗋π ← S f(x), 𝒬 := 𝒬 ∪ {π}
Sim(x)

Program according to f 𝗍𝗋π

Challenge II
Our gives access to simulated proofs. ℱARG
Attack: The adversary could use them to “forge” new proofs.
Want: ∃E straightline s.t. ∀𝒜

44

𝒜

(x, π)

f

Pr ≤ κ

π, 𝗍𝗋π ← S f(x), 𝒬 := 𝒬 ∪ {π}
Sim(x)

Program according to f 𝗍𝗋π

Challenge II
Our gives access to simulated proofs. ℱARG
Attack: The adversary could use them to “forge” new proofs.
Want: ∃E straightline s.t. ∀𝒜

44

𝒜

(x, π)

𝗍𝗋

E w

f

Pr ≤ κ

π, 𝗍𝗋π ← S f(x), 𝒬 := 𝒬 ∪ {π}
Sim(x)

Program according to f 𝗍𝗋π

Challenge II
Our gives access to simulated proofs. ℱARG
Attack: The adversary could use them to “forge” new proofs.
Want: ∃E straightline s.t. ∀𝒜

44

𝒜

(x, π)

𝗍𝗋

E w

f

Vf(x, π) = 1

(x, w) ∉ R

π ∉ 𝒬

Pr ≤ κ

π, 𝗍𝗋π ← S f(x), 𝒬 := 𝒬 ∪ {π}
Sim(x)

Program according to f 𝗍𝗋π

UC with Budgets
Plain UC only models
adversaries that are
computationally bounded

ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)

45

UC with Budgets

π

Plain UC only models
adversaries that are
computationally bounded

ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)

45

UC with Budgets

λ1

λ2

λ*1

π

Plain UC only models
adversaries that are
computationally bounded

ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)

45

UC with Budgets

λ1

λ2

λ*1

π

Plain UC only models
adversaries that are
computationally bounded

ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)λout = ∑ λ*i

λin = ∑ λi

45

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded

ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)λout = ∑ λ*i

λin = ∑ λi

45

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded

ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)λout = ∑ λ*i

λin = ∑ λi

45

We consider adversaries that are
resource bounded and
computationally unbounded

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded

π
ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)λout = ∑ λ*i

λin = ∑ λi

45

We consider adversaries that are
resource bounded and
computationally unbounded

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded

π
ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)

ℬ ≥ 0

λout = ∑ λ*i

λin = ∑ λi

45

We consider adversaries that are
resource bounded and
computationally unbounded

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded

π
ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)

ℬ ≥ 0

ℬin

ℬstart

λout = ∑ λ*i

λin = ∑ λi

45

We consider adversaries that are
resource bounded and
computationally unbounded

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded

π
ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)

ℬ ≥ 0

ℬin

ℬstart

𝖦𝖱𝖮
dec(ℬout[t𝗉])

𝖰𝗎𝖾𝗋𝗒

𝖯𝗋𝗈𝗀𝗋𝖺𝗆

dec(ℬout[t𝗊])

dec(x) := x ← x − 1

λout = ∑ λ*i

λin = ∑ λi

45

We consider adversaries that are
resource bounded and
computationally unbounded

UC with Budgets

λ1

λ2

λ*1

𝗍𝗂𝗆𝖾(π) ≤ p(λin − λout)

π

Plain UC only models
adversaries that are
computationally bounded

π
ℬ = ℬstart + ∑ ℬin

ℬ = (t𝗊, t𝗉, ℓ𝗉, ℓ𝗏)

𝖯𝗋𝗈𝗏𝖾 𝖵𝖾𝗋𝗂𝖿𝗒

dec(ℬ[ℓ𝗉]) dec(ℬout[ℓ𝗏])

ℬ ≥ 0

ℬin

ℬstart

𝖦𝖱𝖮
dec(ℬout[t𝗉])

𝖰𝗎𝖾𝗋𝗒

𝖯𝗋𝗈𝗀𝗋𝖺𝗆

dec(ℬout[t𝗊])

dec(x) := x ← x − 1

λout = ∑ λ*i

λin = ∑ λi

45

We consider adversaries that are
resource bounded and
computationally unbounded

