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Our results
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Crucial: Simulator can program points without being detected!
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Our main lemma

 in the 
ROM

𝖠𝖱𝖦

Wrapper protocol Π[𝖠𝖱𝖦]

with
UC-secure


zkSNARK
⟹

UC-friendly 
completeness

UC-friendly KS
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Micali has UC-friendly completeness 
because queries to GROM are 

unpredictable!
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knowledge, more involved but 

follows closely zero-knowledge of 
Micali in the ROM
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Similar to simulation-extractability: in 
Micali it holds because Merkle trees 
have strong extraction properties in 

the ROM, and programming does not 
help the adversary
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• UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKs)

• UC-friendly properties are necessary

• We can handle adaptive corruptions with strong UC-friendly properties

• Merkle trees have (strong) UC-friendly hiding

• Merkle trees have (strong) UC-friendly extraction

• Open question: extend the result to IOPs without straightline KS
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Conclusion

Micali BCS

These zkSNARKs are UC-secure in 
the GROM Concrete security bounds!

&
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Thank you!
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Follows similarly to standard Micali ZK + Merkle trees are UC-friendly. 
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Related works
Append an encryption of the 

witness to the proof.


- Cannot be succinct |π | ≥ |w |

Compile -protocol into NIZK


+ Techniques inspired this work


- Not succinct


- Expensive compilation (non-FS)

Σ
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Succinct UC-secure zkSNARKs

First UC-secure SNARK

Combines simulation-extractable 
zkSNARK with a PCS

36

Use Fischlin-like techniques to 
achieve straight-line extraction

+ Achieves succinct proofs 

+ UC-Secure in the (non-programmable) 
observable GROM

- Expensive non-standard construction

- Focuses on asymptotic security
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What if we only care about scalability?
Dropping ZK

• Often, SNARKs are deployed without ZK


• We consider this out of scope for this work but (at an high level) believe that:


• The techniques here would still work and can be simplified.


• Remove UC-friendly ZK and move to non-programmable GROM.


• UC-completeness then reduces to perfect completeness.


• Knowledge sound PCP/IOP suffices for Micali/BCS.
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G0

Compute  





Program 

ρ, Q, ⃗a ← S𝖯𝖢𝖯(x)
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Sample 


Compute 


Run  to obtain query-
answers sets 





Program 

ρ

Π ← P𝖯𝖢𝖯(x, w)

VΠ
𝖯𝖢𝖯(x; ρ)

Q, ⃗a

𝗋𝗍, π𝖬𝖳 ← 𝖲𝗂𝗆 f𝖬𝖳(Q, ⃗a)

f𝖥𝖲(x, 𝗋𝗍, σ) = ρ

G2

Δ ≤
t𝗊 + t𝗉

2|σ| Δ ≤ ζ𝖬𝖳

Δ ≤ ζ𝖯𝖢𝖯

Δ(G0, G3) ≤
t𝗊 + t𝗉

2|σ|
+ ζ𝖬𝖳 + ζ𝖯𝖢𝖯

For  to  we define UC-friendly hiding for vector 
commitments and show Merkle tree have it

G1 G2
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