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Main Thm.
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Our main lemma
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UC-friendly
completeness
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What we did not talk about

» Concrete security bounds

 UC-security of Micali & BCS (leads to UC-security of deployed zkSNARKS)
 UC-friendly properties are necessary

 We can handle adaptive corruptions with strong UC-friendly properties

* Merkle trees have (strong) UC-friendly hiding

* Merkle trees have (strong) UC-friendly extraction

 Open question: extend the result to IOPs without straightline KS
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Conclusion

8.6 UC-secure zkSNARKS from Micali

We combine the results in Sections 8.3 to 8.5 to show that, when instantiated with a suitable PCP, the Micali
construction yields a UC-secure zZkSNARK.

Theorem 8.14. Let PCP be a probabilistically checkable proof with:
* (resp. strong) honest-verifier zero knowledge (Definition 8.3) with error (pcp.

* knowledge soundness (Definition 8.2) with error Kpcp.

Set MT := MT[\, X, |, ryr] and ARG := Micali[PCP, r]. ThenI1,[ARG] (%, t,,4,,£,)-UC-realizes F,sgc in

qy Yps Lpo

the GRO-hybrid model with simulation overhead {, - (I(n),l(n) - q(n) + 1) and error

Ruc (EARG’ CarGs Karas Ay T, g, o, Ep’ gv)
In the above we let:

° zUC(eARGa CARG) KJARG) )‘7 ’I’L, tqa tp) Epa fv) = 6ARG()‘a na tqa tpa gpa Ev)+<ARG()\) ’I’L, tqa tp) Ep)""{'ARG()‘a n) tqv tpa fp, Bv)
as in Theorem 6.1,

* exrc( A n,ty,t,, 4, 4,) as in Lemma 8.7.

* Carc(A,n,tg, t,, 2., 0,) as in Lemma 8.11,

* karc(A,n,tg,t,, L5, 4,) as in Lemma 8.13.

s gy Upy Tpy

These zkSNARKSs are UC-secure In
the GROM Concrete security bounds!
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COMPUTATIONALLY SOUND PROOFS*

SILVIO MICALIt

Canonical construction of Straightline black-box extractor:
zkSNARK in the ROM compatible with UC!
Proofs are non-malleable: Stepping stone to BCS, which

also required for UC-security! underlies deployed zkSNARKSs
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 Model a zkSNARK as an ideal functionality.
* Prover generates simulated proofs (without using the witness).
» \erifier aims to extract a withess from each accepting proof.

» Proofs generated in Prove are always accepted by Verify.
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o
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II[ARG]
Setup(s) Prove(x, w)
* Do nothing . T PGROS(X, W)
Verify(x, ) . Return
« b & VORO(x, 7 p 1 .
e If b =0 oranyqueryintryis
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accept. T GRO
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What if we only care about scalability?
Dropping ZK

 Often, SNARKSs are deployed without ZK

* We consider this out of scope for this work but (at an high level) believe that:
* The techniques here would still work and can be simplified.
 Remove UC-friendly ZK and move to non-programmable GROM.

 UC-completeness then reduces to perfect completeness.

 Knowledge sound PCP/IOP suffices for Micali/BCS.



Micali has UC-friendly ZK

Gy

G

Sample p

G,

Compute IT « Ppep(x, w) Sample p
i 4t Compute IT < Pprp(x, w)
rt, aux < Commit/MT(IT) A < g p

= 9d] rt, aux « CommithT(H)

Compute [T « Ppp(x, w)

Run Vgcp(x; p) to obtain query-
answers sets 0, a

Set p 1= fes(x, rt, 0)
Program frg(x, rt,0) = p
Run VIPTCP(x; p) to obtain query-

answers sets 0, a rt, myt < SimeT(Q, a)

Run Vgcp(x; p) to obtain query-
answers sets 0, a

T = Open(rt, Q, a, aux) Program frs(x, rt,0) = p

T = Open(rt, O, a, aux)

[, +1

A(Gp, G3) < q2|0| = + S + Cpep

Compute p, 0, d@ «— Spep(X)

For G to G, we define UC-friendly hiding for vector t, 7y < SIMAT(Q, @)
commitments and show Merkle tree have It Program fq5(x, rt, 6) = p
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Unpredictable Queries
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