
Fast and Clean:
Auditable high-performance assembly
via constraint solving
Amin Abdulrahman, Hanno Becker, Matthias J. Kannwischer, Fabien Klein
https://github.com/slothy-optimizer/slothy
6 September 2024, Conference on Cryptographic Hardware and Embedded Systems, Halifax, Canada

https://github.com/slothy-optimizer/slothy


Motivation

Good cryptographic engineering is HARD

Balancing act between ...
• Simplicity

I’ll just write C … 
easy-peasy

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 1/21



Motivation

Good cryptographic engineering is HARD

Balancing act between ...
• Simplicity
• Security

oof… I don’t like 
clever compilers

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 1/21



Motivation

Good cryptographic engineering is HARD

Balancing act between ...
• Simplicity
• Security
• Performance

It’s faster in ASM 
anyways!

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 1/21



Motivation

Good cryptographic engineering is HARD

Balancing act between ...
• Simplicity
• Security
• Performance
• More performance

… and I can apply 
µarch optimizations!

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 1/21



Motivation

Good cryptographic engineering is HARD

Balancing act between ...
• Simplicity
• Security
• Performance
• More performance
• Effort

... oof, I’ve been 
working on this for 3 

months already

… another µarch? No 
problem, just give 

me another month!

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 1/21



Motivation

Good cryptographic engineering is HARD

Balancing act between ...
• Simplicity
• Security
• Performance
• More performance
• Effort
• Audit & Maintenance

Look, I’ve done it! Ship it!
eh… no?! Who’s going to 

understand and maintain this? 

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 1/21



Motivation: What is SLOTHY?

Goal: Write µarch-independent code + automate µarch-specific changes

SLOTHY

Architecture 
Model

Microarchitecture
Model

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 2/21



Motivation: Kyber NTT

1 .macro mulmodq dst, src, const, idx0, idx1
2 sqrdmulh tmp2.8h, \src.8h, \const.h[\idx1]
3 mul \dst.8h, \src.8h, \const.h[\idx0]
4 mla \dst.8h, tmp2.8h, consts.h[0]
5 .endm
6 .macro ct_butterfly a, b, root, idx0, idx1
7 mulmodq tmp, \b, \root, \idx0, \idx1
8 sub \b.8h, \a.8h, tmp.8h
9 add \a.8h, \a.8h, tmp.8h
10 .endm
11

12 ct_butterfly data0, data8, root0, 0, 1
13 ct_butterfly data1, data9, root0, 0, 1
14 ct_butterfly data2, data10, root0, 0, 1
15 ct_butterfly data3, data11, root0, 0, 1
16 ct_butterfly data4, data12, root0, 0, 1
17 ct_butterfly data5, data13, root0, 0, 1
18 ct_butterfly data6, data14, root0, 0, 1
19 ct_butterfly data7, data15, root0, 0, 1

cycles
Cortex-A72

[BHK+22] handwritten 1200
Ours clean 1307
Ours SLOTHY 932

Cortex-A55
[BHK+22] handwritten 1245

Ours clean 1914
Ours SLOTHY 891

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 3/21

https://eprint.iacr.org/2021/986
https://eprint.iacr.org/2021/986


Contributions

• SLOTHY: Register allocation, instruction scheduling, and software pipelining as a
constraint satisfaction problem

• Implementation of SLOTHY using CP-SAT from Google’s OR-Tools
• Architecture models: MVE and Neon (partial)
• µArchitecture models: Cortex-M55, Cortex-M85, Cortex-A55, Cortex-A72

• By now: Arm Neoverse N1 and Apple M1

• Application to: complex FFT, ML-KEM NTT, ML-DSA NTT, X25519 scalar multiplication
=⇒ Performance on par or faster than state of the art

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 4/21



Contributions

• SLOTHY: Register allocation, instruction scheduling, and software pipelining as a
constraint satisfaction problem

• Implementation of SLOTHY using CP-SAT from Google’s OR-Tools
• Architecture models: MVE and Neon (partial)
• µArchitecture models: Cortex-M55, Cortex-M85, Cortex-A55, Cortex-A72

• By now: Arm Neoverse N1 and Apple M1

• Application to: complex FFT, ML-KEM NTT, ML-DSA NTT, X25519 scalar multiplication
=⇒ Performance on par or faster than state of the art

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 4/21



Contributions

• SLOTHY: Register allocation, instruction scheduling, and software pipelining as a
constraint satisfaction problem

• Implementation of SLOTHY using CP-SAT from Google’s OR-Tools
• Architecture models: MVE and Neon (partial)
• µArchitecture models: Cortex-M55, Cortex-M85, Cortex-A55, Cortex-A72

• By now: Arm Neoverse N1 and Apple M1

• Application to: complex FFT, ML-KEM NTT, ML-DSA NTT, X25519 scalar multiplication
=⇒ Performance on par or faster than state of the art

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 4/21



SLOTHY advantages

• Similar or better results
• Support multiple µarchs

• Less time-intensive development
• Algorithm-level experiments easier

• Input to SLOTHY is executable =⇒ eases testing + do not need to learn DSL
• Software pipelining (see later) allows much more compact code
• Eases maintenance, audit, and formal verification

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 5/21



SLOTHY advantages

• Similar or better results
• Support multiple µarchs

• Less time-intensive development
• Algorithm-level experiments easier

• Input to SLOTHY is executable =⇒ eases testing + do not need to learn DSL
• Software pipelining (see later) allows much more compact code
• Eases maintenance, audit, and formal verification

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 5/21



SLOTHY advantages

• Similar or better results
• Support multiple µarchs

• Less time-intensive development
• Algorithm-level experiments easier

• Input to SLOTHY is executable =⇒ eases testing + do not need to learn DSL
• Software pipelining (see later) allows much more compact code
• Eases maintenance, audit, and formal verification

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 5/21



In-order CPUs vs. out-of-order CPUs

• On in-order cores (e.g., A55 or M55) scheduling is vital for best performance
• Good scheduling essential on some OOO cores too (e.g., Cortex-A72)

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 6/21



Scheduling as constraint solving problem

Input Assembly
1 // in: src, modulus,
2 // const, const_twisted
3 mul dst, src, const
4 sqrdmulh tmp, src, const_twisted
5 mls dst, tmp, modulus
6 // out: dst

Computational Flow Graph

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 7/21



Scheduling as constraint solving problem: Correctness

Computational Flow Graph Correctness
• Program position: Integer variables
for each instruction
I1.pos, I2.pos, I3.pos

• All program positions mutually distinct
• Consumer after producer constraint
for each edge in the CFG
I3.pos > I1.pos
I3.pos > I2.pos

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 8/21



Scheduling as constraint solving problem: Correctness

Computational Flow Graph Correctness
• Program position: Integer variables
for each instruction
I1.pos, I2.pos, I3.pos

• All program positions mutually distinct
• Consumer after producer constraint
for each edge in the CFG
I3.pos > I1.pos
I3.pos > I2.pos

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 8/21



Scheduling as constraint solving problem: Correctness

Computational Flow Graph Correctness
• Program position: Integer variables
for each instruction
I1.pos, I2.pos, I3.pos

• All program positions mutually distinct
• Consumer after producer constraint
for each edge in the CFG
I3.pos > I1.pos
I3.pos > I2.pos

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 8/21



Scheduling as constraint solving problem: Register allocation

• Boolean variables (Register is output of instruction)
I1.V0, …, I1.V31 I2.V0, …, I2.V31
I3 need to use same output register as I1 (input/output)

• Register allocation constraint
Exactly one of I.V0, …, I.V31 is true

• Register usage interval (conditioned on boolean variable)
[I1.pos, I3.pos] [I2.pos, I3.pos]

• Lifetime constraint
For each register: Active usage intervals cannot overlap

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 9/21



Scheduling as constraint solving problem: Register allocation

• Boolean variables (Register is output of instruction)
I1.V0, …, I1.V31 I2.V0, …, I2.V31
I3 need to use same output register as I1 (input/output)

• Register allocation constraint
Exactly one of I.V0, …, I.V31 is true

• Register usage interval (conditioned on boolean variable)
[I1.pos, I3.pos] [I2.pos, I3.pos]

• Lifetime constraint
For each register: Active usage intervals cannot overlap

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 9/21



Scheduling as constraint solving problem: Latencies

• µarch constraints
I3.pos > I1.pos + 3
I3.pos > I2.pos + 3

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 10/21



Scheduling as constraint solving problem: Other aspects

SLOTHY actually models a lot more details

• Allow for gaps in scheduling to account for presence of stalls
• Model multi-issue CPUs and issuing constraints
(essential for e.g., dual-issue Cortex-A55)

• Model execution units and instruction throughput
(essential for e.g. Cortex-M55 and Cortex-M85)

• Forwarding paths
• Support dependencies through memory (e.g. stack spills)

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 11/21



Scheduling as constraint solving problem: Other aspects

SLOTHY actually models a lot more details

• Allow for gaps in scheduling to account for presence of stalls
• Model multi-issue CPUs and issuing constraints
(essential for e.g., dual-issue Cortex-A55)

• Model execution units and instruction throughput
(essential for e.g. Cortex-M55 and Cortex-M85)

• Forwarding paths
• Support dependencies through memory (e.g. stack spills)

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 11/21



Scheduling as constraint solving problem: Other aspects

SLOTHY actually models a lot more details

• Allow for gaps in scheduling to account for presence of stalls
• Model multi-issue CPUs and issuing constraints
(essential for e.g., dual-issue Cortex-A55)

• Model execution units and instruction throughput
(essential for e.g. Cortex-M55 and Cortex-M85)

• Forwarding paths
• Support dependencies through memory (e.g. stack spills)

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 11/21



Software Pipelining a.k.a. periodic loop-interleaving

I1

loop:

I2

I3

I4

I5

I1

loop:

early I2

I3

I4

late I5

I1

I3

I4

I2

I1

I3

I4

I5

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 12/21



Software Pipelining a.k.a. periodic loop-interleaving

I1

I2

I3

I4

I5

I1

I2

I3

I4

I5

I1

I2

I3

I4

I5

I1

I2

I3

I4

I5

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 13/21



SLOTHY: Self-check

SLOTHY performs a simple automatic self-check after optimization

• Transform both input and output code into a data-flow graph
• Check that DFGs are isomorphic
• This is easy given the re-ordering permutation

=⇒ This is not formal verification, but it is very useful!

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 14/21



SLOTHY: Self-check

SLOTHY performs a simple automatic self-check after optimization

• Transform both input and output code into a data-flow graph
• Check that DFGs are isomorphic
• This is easy given the re-ordering permutation

=⇒ This is not formal verification, but it is very useful!

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 14/21



Selected results: NTTs on Cortex-M55 and Cortex-M85

Cortex-M55 Cortex-M85
Type Cycles Code size Cycles Code size

32-bit ML-DSA NTT
[BBMK+21] Scripted ASM 2017 7.8 KB 1980 7.8 KB
Our work
3+3+2 layers

Clean 3602 1.0 KB 3350 1.0 KB
slothy 2037 1.1 KB 1997 1.1 KB

16-bit ML-KEM NTT Our work
2+3+2 layers

Clean 1619 0.7 KB 1511 0.7 KB
slothy 942 1.0 KB 910 1.0 KB

• Comparing to https://eprint.iacr.org/2021/998

• Comparable speed to handwritten MVE assembly (only available for ML-DSA)
• 7× smaller code size due to software pipelining

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 15/21

https://eprint.iacr.org/2021/998
https://eprint.iacr.org/2021/998


Selected results: NTTs on Cortex-A55 and Cortex-A72

Cortex-A55 Cortex-A72
Type Cycles Code size Cycles Code size

32-bit ML-DSA NTT
[BHK+21] Handwritten ASM 2436 2.3 KB 2241 2.3 KB
Our work
3+5 layers

Clean 3542 1.5 KB 2250 1.1 KB
slothy 1728 2.8 KB 1766 2.1 KB

16-bit ML-KEM NTT
[BHK+21] Handwritten ASM 1245 2.7 KB 1200 2.7 KB
Our work
3+5 layers

Clean 1914 1.0 KB 1307 0.8 KB
slothy 891 1.9 KB 932 1.4 KB

• Comparing to https://eprint.iacr.org/2021/986

• More compact code than state-of-the-art
• Faster code on out-of-order Cortex-A72
• Faster code on in-order Cortex-A55

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 16/21

https://eprint.iacr.org/2021/986
https://eprint.iacr.org/2021/986
https://eprint.iacr.org/2021/986


Selected results: X25519

Cortex-A55 Cortex-A53
Type Cycles Code-size Cycles Code-Size

X2
55

19 [Len19] Handwritten ASM 143849 5.8 KB 144168 5.8 KB

Our work Clean 265739 5.8 KB 270186 5.8 KB
slothy 139752 5.8 KB 140096 5.8 KB

• Comparing to hybrid scalar/vector implementation from
https://github.com/Emill/X25519-AArch64

• Faster on original target platform (Cortex-A53/Raspberry Pi3)
• Faster on Cortex-A55
• Much cleaner code =⇒ No manual interleaving of scalar and vector code needed

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 17/21

https://github.com/Emill/X25519-AArch64
https://github.com/Emill/X25519-AArch64


Conclusion

• SLOTHY can help you to write faster assembly with less work
• Try it today: https://github.com/slothy-optimizer/slothy

• We support various µarchs already
• Arm A-profile: Cortex-A55, Cortex-A72, Neoverse N1, Apple M1
• Arm M-profile: Cortex-M55, Cortex-M85

• Code studied in this work
• ML-KEM + ML-DSA NTTs
• Complex FFTs
• X25519

• We use SLOTHY for our own projects
• More crypto coming soon
• We will keep adding needed features

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 18/21

https://github.com/slothy-optimizer/slothy


Conclusion

• SLOTHY can help you to write faster assembly with less work
• Try it today: https://github.com/slothy-optimizer/slothy

• We support various µarchs already
• Arm A-profile: Cortex-A55, Cortex-A72, Neoverse N1, Apple M1
• Arm M-profile: Cortex-M55, Cortex-M85

• Code studied in this work
• ML-KEM + ML-DSA NTTs
• Complex FFTs
• X25519

• We use SLOTHY for our own projects
• More crypto coming soon
• We will keep adding needed features

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 18/21

https://github.com/slothy-optimizer/slothy


Conclusion

• SLOTHY can help you to write faster assembly with less work
• Try it today: https://github.com/slothy-optimizer/slothy

• We support various µarchs already
• Arm A-profile: Cortex-A55, Cortex-A72, Neoverse N1, Apple M1
• Arm M-profile: Cortex-M55, Cortex-M85

• Code studied in this work
• ML-KEM + ML-DSA NTTs
• Complex FFTs
• X25519

• We use SLOTHY for our own projects
• More crypto coming soon
• We will keep adding needed features

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 18/21

https://github.com/slothy-optimizer/slothy


Conclusion

• SLOTHY can help you to write faster assembly with less work
• Try it today: https://github.com/slothy-optimizer/slothy

• We support various µarchs already
• Arm A-profile: Cortex-A55, Cortex-A72, Neoverse N1, Apple M1
• Arm M-profile: Cortex-M55, Cortex-M85

• Code studied in this work
• ML-KEM + ML-DSA NTTs
• Complex FFTs
• X25519

• We use SLOTHY for our own projects
• More crypto coming soon
• We will keep adding needed features

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 18/21

https://github.com/slothy-optimizer/slothy


New results in AWS’ s2n-bignum (not done by us)

• Our X25519 got formally verified (HOL Light)
• Integrated into s2n-bignum (used by AWS-LC)
• Graviton 2: Scalar multiplication 74% faster than previous code in AWS-LC
(X25519 keygen+scalar multiplication > 3× faster than OpenSSL)

• Formal verification is made easier by using SLOTHY
1. Prove SLOTHY input correct
2. Prove optimized code is still correct

• More formally-verified ECC
• P256, P384, P521 =⇒ Integrated into s2n-bignum (used by AWS-LC)
• FV in two steps: Prove input correct + automated equivalence check in HOL Light

• RSA
• Blogpost: Formal verification makes RSA faster — and faster to deploy

https://www.amazon.science/blog/
formal-verification-makes-rsa-faster-and-faster-to-deploy

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 19/21

https://github.com/awslabs/s2n-bignum
https://github.com/aws/aws-lc
https://github.com/awslabs/s2n-bignum
https://github.com/aws/aws-lc
https://www.amazon.science/blog/formal-verification-makes-rsa-faster-and-faster-to-deploy
https://www.amazon.science/blog/formal-verification-makes-rsa-faster-and-faster-to-deploy


New results in AWS’ s2n-bignum (not done by us)

• Our X25519 got formally verified (HOL Light)
• Integrated into s2n-bignum (used by AWS-LC)
• Graviton 2: Scalar multiplication 74% faster than previous code in AWS-LC
(X25519 keygen+scalar multiplication > 3× faster than OpenSSL)

• Formal verification is made easier by using SLOTHY
1. Prove SLOTHY input correct
2. Prove optimized code is still correct

• More formally-verified ECC
• P256, P384, P521 =⇒ Integrated into s2n-bignum (used by AWS-LC)
• FV in two steps: Prove input correct + automated equivalence check in HOL Light

• RSA
• Blogpost: Formal verification makes RSA faster — and faster to deploy

https://www.amazon.science/blog/
formal-verification-makes-rsa-faster-and-faster-to-deploy

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 19/21

https://github.com/awslabs/s2n-bignum
https://github.com/aws/aws-lc
https://github.com/awslabs/s2n-bignum
https://github.com/aws/aws-lc
https://www.amazon.science/blog/formal-verification-makes-rsa-faster-and-faster-to-deploy
https://www.amazon.science/blog/formal-verification-makes-rsa-faster-and-faster-to-deploy


New results in AWS’ s2n-bignum (not done by us)

• Our X25519 got formally verified (HOL Light)
• Integrated into s2n-bignum (used by AWS-LC)
• Graviton 2: Scalar multiplication 74% faster than previous code in AWS-LC
(X25519 keygen+scalar multiplication > 3× faster than OpenSSL)

• Formal verification is made easier by using SLOTHY
1. Prove SLOTHY input correct
2. Prove optimized code is still correct

• More formally-verified ECC
• P256, P384, P521 =⇒ Integrated into s2n-bignum (used by AWS-LC)
• FV in two steps: Prove input correct + automated equivalence check in HOL Light

• RSA
• Blogpost: Formal verification makes RSA faster — and faster to deploy

https://www.amazon.science/blog/
formal-verification-makes-rsa-faster-and-faster-to-deploy

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 19/21

https://github.com/awslabs/s2n-bignum
https://github.com/aws/aws-lc
https://github.com/awslabs/s2n-bignum
https://github.com/aws/aws-lc
https://www.amazon.science/blog/formal-verification-makes-rsa-faster-and-faster-to-deploy
https://www.amazon.science/blog/formal-verification-makes-rsa-faster-and-faster-to-deploy


New results in AWS’ s2n-bignum (not done by us)

• Our X25519 got formally verified (HOL Light)
• Integrated into s2n-bignum (used by AWS-LC)
• Graviton 2: Scalar multiplication 74% faster than previous code in AWS-LC
(X25519 keygen+scalar multiplication > 3× faster than OpenSSL)

• Formal verification is made easier by using SLOTHY
1. Prove SLOTHY input correct
2. Prove optimized code is still correct

• More formally-verified ECC
• P256, P384, P521 =⇒ Integrated into s2n-bignum (used by AWS-LC)
• FV in two steps: Prove input correct + automated equivalence check in HOL Light

• RSA
• Blogpost: Formal verification makes RSA faster — and faster to deploy

https://www.amazon.science/blog/
formal-verification-makes-rsa-faster-and-faster-to-deploy

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 19/21

https://github.com/awslabs/s2n-bignum
https://github.com/aws/aws-lc
https://github.com/awslabs/s2n-bignum
https://github.com/aws/aws-lc
https://www.amazon.science/blog/formal-verification-makes-rsa-faster-and-faster-to-deploy
https://www.amazon.science/blog/formal-verification-makes-rsa-faster-and-faster-to-deploy


Ongoing work

• Keccak for AArch64
• Our previous work: Hybrid scalar/vector implementations of Keccak and SPHINCS+ on
AArch64, https://eprint.iacr.org/2022/1243

• SLOTHY can automate the majority of this work
• Very useful for FIPS203, FIPS204, and FIPS205, too

• Arm Cortex-M7
• Dual-issue CPU implementing Armv7E-M
• Existing Cortex-M4 code performs very poorly
• We are looking at Keccak and ML-KEM + ML-DSA NTTs

• Register spilling
• Symbolic registers =⇒ SLOTHY will find a register allocation
• Before: Fixed instruction =⇒ If there are not enough registers, SLOTHY will fail
• Recently added support for rudimentary register spilling

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 20/21

https://eprint.iacr.org/2022/1243


Ongoing work

• Keccak for AArch64
• Our previous work: Hybrid scalar/vector implementations of Keccak and SPHINCS+ on
AArch64, https://eprint.iacr.org/2022/1243

• SLOTHY can automate the majority of this work
• Very useful for FIPS203, FIPS204, and FIPS205, too

• Arm Cortex-M7
• Dual-issue CPU implementing Armv7E-M
• Existing Cortex-M4 code performs very poorly
• We are looking at Keccak and ML-KEM + ML-DSA NTTs

• Register spilling
• Symbolic registers =⇒ SLOTHY will find a register allocation
• Before: Fixed instruction =⇒ If there are not enough registers, SLOTHY will fail
• Recently added support for rudimentary register spilling

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 20/21

https://eprint.iacr.org/2022/1243


Ongoing work

• Keccak for AArch64
• Our previous work: Hybrid scalar/vector implementations of Keccak and SPHINCS+ on
AArch64, https://eprint.iacr.org/2022/1243

• SLOTHY can automate the majority of this work
• Very useful for FIPS203, FIPS204, and FIPS205, too

• Arm Cortex-M7
• Dual-issue CPU implementing Armv7E-M
• Existing Cortex-M4 code performs very poorly
• We are looking at Keccak and ML-KEM + ML-DSA NTTs

• Register spilling
• Symbolic registers =⇒ SLOTHY will find a register allocation
• Before: Fixed instruction =⇒ If there are not enough registers, SLOTHY will fail
• Recently added support for rudimentary register spilling

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 20/21

https://eprint.iacr.org/2022/1243


Future work

SLOTHY could automate the application of constraints avoiding pipeline leakage.
=⇒ Promising future direction for research

(PoMMES: Prevention of Micro-architectural Leakages in Masked Embedded Software – CHES 2024)

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein 21/21



Thank you very much for your attention!
matthias@chelpis.com

https://github.com/slothy-optimizer/slothy
https://eprint.iacr.org/2022/1303

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein

mailto:matthias@chelpis.com
https://github.com/slothy-optimizer/slothy
https://eprint.iacr.org/2022/1303


Results: Complex FFTs

Cortex-M55 Cortex-M85
Type Cycles

Butterfly
Cycles

Butterfly

CF
FT

Q.
31

Intrinsics 30 (+16%) 29 (+13%)

Handwritten 28 (+10%) 26 (+3%)

slothy 25 25

CF
FT

FP
32

Intrinsics 33 (+15%) 34 (+20%)

Handwritten 29 (+3%) 29 (+6%)

slothy 28 27

• MVE intrinics and assembly of fixed- and floating-point FFTs from Arm EndpointAI
• SLOTHY finds stall-free scheduling =⇒ 3 - 10% fewer cycles
• M55: 7 early instructions; M85: 1 early instruction
• Sent the optimized code to Arm =⇒ Now merged into EndpointAI

6 September 2024 Abdulrahman, Becker, Kannwischer, Klein

https://github.com/ARM-Software/EndpointAI

	Appendix

