

A Tale of Snakes and Horses: Amplifying Correlation Power Analysis on Quadratic Maps

Conference on Cryptographic Hardware and Embedded Systems 2024

Anna Guinet¹ Georg Land¹ Gabriel Ioan Bucur² Tim Güneysu¹

¹Chair of Security Engineering, Faculty of Computer Science, Ruhr-University Bochum, Germany ²Institute for Computing and Information Sciences, Radboud University, The Netherlands

September 6, 2024

Gefördert durch

Contents

Introduction

- Correlation Power Analysis
- Permutation-based Algorithms with a Quadratic S-box
- Combined CPA or Snake Attack
- Practical Evaluation

Correlation Power Analysis - An Overview

- Power consumption varies according to activity of device components
- Correlation Power Analysis (CPA): statistical analysis of power consumption measurements (traces)

Full State Keyed Sponge-based MAC

A permutation f consists of several rounds R

- A round R consists of a linear layer λ and a non-linear one
- Non-linear layer consists of χ mappings in parallel (S-boxes)

Round-based Hardware Architecture

Round logic

Anna Guinet, Georg Land, Gabriel Ioan Bucur, Tim Güneysu | A Tale of Snakes and Horses: Amplifying Correlation Power Analysis, on Quadratic Maps | 7

Round-based Hardware Architecture

Round logic

Leakage model:

 No power consumption from round logic

RUB

- Exploit leakage from register
- Quantifying noise from somewhere in the device

First Round of First Permutation

First Round of First Permutation

First Round of First Permutation

Leakage Model

Leakage Model

• Activity of all register bits contributes to **power consumption**:

IRUB

First n Bits of Register

Refine Leakage Model

RUB

• Activity of register after a round for the first storage cell:

 $d_0(\mathcal{K}'_0,\kappa,\mu) = \mathcal{K}'_0 \oplus \mathcal{K}_0 \oplus \mu_0 \oplus (\kappa_1 \oplus \mu_1 \oplus 1)(\kappa_2 \oplus \mu_2)$

first bit of $\chi(\mu \oplus \kappa)$

Refine Leakage Model

Refine Leakage Model

Refine Leakage Model

Messages	Power consumption
$\mu_1 = \lambda(M_1)$	$P_1 = S(\mu_1) + R_1$
$\mu_2 = \lambda(M_2)$	$P_2=\mathcal{S}(\mu_2)+\mathcal{R}_2$
$\mu_3 = \lambda(M_3)$	$P_3=S(\mu_3)+R_3$
$\mu_4 = \lambda(M_4)$	$P_4 = S(\mu_4) + R_4$
$\mu_5 = \lambda(M_5)$	$P_5 = S(\mu_5) + R_5$
$\mu_6 = \lambda(M_6)$	$P_6 = S(\mu_6) + R_6$
$\mu_7 = \lambda(M_7)$	$P_7 = S(\mu_7) + R_7$
$\mu_8 = \lambda(M_8)$	$P_8 = S(\mu_8) + R_8$
$\mu_9 = \lambda(M_9)$	$P_9 = S(\mu_9) + R_9$
$\mu_{10} = \lambda(M_{10})$	$P_{10} = S(\mu_{10}) + R_{10}$
$\mu_{11} = \lambda(M_{11})$	$P_{11} = S(\mu_{11}) + R_{11}$
$\mu_{12} = \lambda(M_{12})$	$P_{12} = S(\mu_{12}) + R_{12}$
$M_{ m Many}$	$P_{ m Many}$

Partitions

RUB

Bit flip

No bit flip

Messages	Power consumption
$\mu_1 = \lambda(M_1)$	$P_1=S(\mu_1)+R_1$
$\mu_2 = \lambda(M_2)$	$P_2 = S(\mu_2) + R_2$
$\mu_3 = \lambda(M_3)$	$P_3 = S(\mu_3) + R_3$
$\mu_4 = \lambda(M_4)$	$P_4=S(\mu_4)+R_4$
$\mu_5 = \lambda(M_5)$	$P_5=S(\mu_5)+R_5$
$\mu_6 = \lambda(M_6)$	$P_6=S(\mu_6)+R_6$
$\mu_7 = \lambda(M_7)$	$P_7 = S(\mu_7) + R_7$
$\mu_8 = \lambda(M_8)$	$P_8=S(\mu_8)+R_8$
$\mu_9 = \lambda(M_9)$	$P_9=S(\mu_9)+R_9$
$\iota_{10} = \lambda(M_{10})$	$P_{10} = S(\mu_{10}) + R_{10}$
$\iota_{11} = \lambda(M_{11})$	$P_{11} = S(\mu_{11}) + R_{11}$
$\iota_{12} = \lambda(M_{12})$	$P_{12}=S(\mu_{12})+R_{12}$
$M_{ m Manv}$	P_{Manv}

Partitions

 $\mu = 000$ $\mu = 001$ $\mu = 010$ $\mu = 011$ $\mu = 100$ $\mu = 101$ $\mu = 110$ $\mu = 111$

Correlation

• Activity $d_0(K'_0,\kappa,\mu) = K'_0 \oplus \kappa_0 \oplus \mu_0 \oplus (\kappa_1 \oplus \mu_1 \oplus 1)(\kappa_2 \oplus \mu_2)$

Correlation

- Activity $d_0(K'_0,\kappa,\mu) = K'_0 \oplus \kappa_0 \oplus \mu_0 \oplus (\kappa_1 \oplus \mu_1 \oplus 1)(\kappa_2 \oplus \mu_2)$
- Signal power consumption values S_{ref} for all (κ, μ) possibilities for K'_0

	${\cal K}_0'\oplus\kappa_0\kappa_1\kappa_2$							
$\mu_0\mu_1\mu_2$	000	001	010	011	100	101	110	111
000	+1	-1	+1	+1	-1	+1	-1	-1
001	-1	+1	+1	+1	+1	-1	-1	-1
010	+1	+1	+1	-1	-1	-1	-1	+1
011	+1	+1	-1	+1	-1	-1	+1	-1
100	-1	+1	-1	-1	+1	-1	+1	+1
101	+1	-1	-1	-1	-1	+1	+1	+1
110	-1	-1	-1	+1	+1	+1	+1	-1
111	-1	-1	+1	-1	+1	+1	-1	+1

Correlation

- Activity $d_0(K'_0, \kappa, \mu) = K'_0 \oplus \kappa_0 \oplus \mu_0 \oplus (\kappa_1 \oplus \mu_1 \oplus 1)(\kappa_2 \oplus \mu_2)$
- Signal power consumption values S_{ref} for all (κ, μ) possibilities for K'_0

	${\cal K}_0'\oplus\kappa_0\ \kappa_1\kappa_2$								
$\mu_0\mu_1\mu_2$	000	001	010	011	100	101	110	111	
000	+1	-1	+1	+1	-1	+1	-1	-1	
001	-1	+1	+1	+1	+1	-1	-1	-1	
010	+1	+1	+1	-1	-1	-1	-1	+1	
011	+1	+1	-1	+1	-1	-1	+1	-1	
100	-1	+1	-1	-1	+1	-1	+1	+1	
101	+1	-1	-1	-1	-1	+1	+1	+1	
110	-1	-1	-1	+1	+1	+1	+1	-1	
111	-1	-1	+1	-1	+1	+1	-1	+1	

▶ Pearson correlation coefficient $\rho(P, S_{ref})$: Highest correlation result $max(\rho(P, S_{ref}))$

Correlation

- Activity $d_0(K'_0, \kappa, \mu) = K'_0 \oplus \kappa_0 \oplus \mu_0 \oplus (\kappa_1 \oplus \mu_1 \oplus 1)(\kappa_2 \oplus \mu_2)$
- Signal power consumption values S_{ref} for all (κ, μ) possibilities for K'_0

	${\cal K}_0'\oplus\kappa_0\kappa_1\kappa_2$							
$\mu_0\mu_1\mu_2$	000	001	010	011	100	101	110	111
000	+1	-1	+1	+1	-1	+1	-1	-1
001	-1	+1	+1	+1	+1	-1	-1	-1
010	+1	+1	+1	-1	-1	-1	-1	+1
011	+1	+1	-1	+1	-1	-1	+1	-1
100	-1	+1	-1	-1	+1	-1	+1	+1
101	+1	-1	-1	-1	-1	+1	+1	+1
110	-1	-1	-1	+1	+1	+1	+1	-1
111	-1	-1	+1	-1	+1	+1	-1	+1

▶ Pearson correlation coefficient $\rho(P, S_{ref})$: Highest correlation result $max(\rho(P, S_{ref}))$

Correlation

- Activity $d_0(K'_0, \kappa, \mu) = K'_0 \oplus \kappa_0 \oplus \mu_0 \oplus (\kappa_1 \oplus \mu_1 \oplus 1)(\kappa_2 \oplus \mu_2)$
- Signal power consumption values S_{ref} for all (κ, μ) possibilities for K'_0

	$* \kappa_1 \kappa_2$							
$\mu_0\mu_1\mu_2$	000	001	010	011	100	101	110	111
000	+1	-1	+1	+1	-	-	-	_
001	-1	+1	+1	+1	-	-	-	-
010	+1	+1	+1	-1	-	-	-	-
011	+1	+1	-1	+1	-	-	-	-
100	-1	+1	-1	-1	-	-	-	-
101	+1	-1	-1	-1	-	-	_	-
110	-1	-1	-1	+1	-	-	-	-
111	-1	-1	+1	-1	-	-	-	_

▶ Pearson correlation coefficient $\rho(P, S_{ref})$: $max(\rho(P, S_{ref})^2)$ or $max(|\rho(P, S_{ref})|)$

Correlation

- Activity $d_0(K'_0, \kappa, \mu) = K'_0 \oplus \kappa_0 \oplus \mu_0 \oplus (\kappa_1 \oplus \mu_1 \oplus 1)(\kappa_2 \oplus \mu_2)$
- Signal power consumption values S_{ref} for all (κ, μ) possibilities for K'_0

	$* \kappa_1 \kappa_2$							
$\mu_0\mu_1\mu_2$	000	001	010	011	100	101	110	111
000	+1	-1	+1	+1	_	-	-	_
001	-1	+1	+1	+1	-	-	-	-
010	+1	+1	+1	-1	-	-	-	-
011	+1	+1	-1	+1	-	-	-	-
100	-1	+1	-1	-1	_	-	-	-
101	+1	-1	-1	-1	-	-	-	-
110	-1	-1	-1	+1	-	-	-	-
111	-1	-1	+1	-1	-	-	-	_

▶ Pearson correlation coefficient $\rho(P, S_{ref})$: $max(\rho(P, S_{ref})^2)$ or $max(|\rho(P, S_{ref})|)$

Combined CPA or Snake attack: Recovering $\boldsymbol{\kappa}$

• Activity function $d_i(K', \kappa, \mu) = K'_i \oplus \kappa_i \oplus \mu_i \oplus (\kappa_{i+1} \oplus \mu_{i+1} \oplus 1)(\kappa_{i+2} \oplus \mu_{i+2})$

RUB

n = 5 bits

1 attack

Combined CPA or Snake attack: Recovering $\boldsymbol{\kappa}$

• Activity function $d_i(K', \kappa, \mu) = K'_i \oplus \kappa_i \oplus \mu_i \oplus (\kappa_{i+1} \oplus \mu_{i+1} \oplus 1)(\kappa_{i+2} \oplus \mu_{i+2})$

RUB

n = 5 bits

1 attack

Combined CPA or Snake attack: Recovering $\boldsymbol{\kappa}$

• Activity function $d_i(K', \kappa, \mu) = K'_i \oplus \kappa_i \oplus \mu_i \oplus (\kappa_{i+1} \oplus \mu_{i+1} \oplus 1)(\kappa_{i+2} \oplus \mu_{i+2})$

n = 5 bits

1 attack

*00**	*01**	*10**	*11**
**00*	**01*	**10*	**11*
***00	***01	***10	***11
0***0	0***1	1***0	1***1
00***	01***	10***	11***

Combined CPA or Snake attack: Recovering $\boldsymbol{\kappa}$

• Activity function $d_i(K', \kappa, \mu) = K'_i \oplus \kappa_i \oplus \mu_i \oplus (\kappa_{i+1} \oplus \mu_{i+1} \oplus 1)(\kappa_{i+2} \oplus \mu_{i+2})$

n = 5 bits

1 attack

*00**	*01**	*10**	*11**
**00*	**01*	**10*	**11*
***00	***01	***10	***11
0***0	0***1	1***0	1***1
00***	01***	10***	11***

Combined CPA or Snake attack: Recovering $\boldsymbol{\kappa}$

• Activity function $d_i(K', \kappa, \mu) = K'_i \oplus \kappa_i \oplus \mu_i \oplus (\kappa_{i+1} \oplus \mu_{i+1} \oplus 1)(\kappa_{i+2} \oplus \mu_{i+2})$

n = 5 bits

1 attack

*00**	*01**	*10**	*11**
**00*	**01*	**10*	**11*
***00	***01	***10	***11
0***0	0***1	1***0	1***1
00***	01***	10***	11***

Combined CPA or Snake attack: Recovering κ

• Activity function $d_i(K', \kappa, \mu) = K'_i \oplus \kappa_i \oplus \mu_i \oplus (\kappa_{i+1} \oplus \mu_{i+1} \oplus 1)(\kappa_{i+2} \oplus \mu_{i+2})$

5 attacks

Combined CPA or Snake Attack: Recovering K'

n = 5 bits

Correlation result for $i = 0$:	$K_0'\oplus\kappa_0$	κ_1	κ_2	—	—
Correlation result for $i = 1$:	_	$K_1'\oplus\kappa_1$	κ_2	κ_3	—
Correlation result for $i = 2$:	_	_	$K_2'\oplus\kappa_2$	κ_3	κ_{4}
Correlation result for $i = 3$:	κ_0	—	—	$K'_3 \oplus \kappa_3$	κ_{4}
Correlation result for $i = 4$:	κ_0	κ_1	_	_	$K'_4 \oplus \kappa_4$

Combined CPA or Snake Attack: Recovering K'

n = 5 bits

Combined CPA or Snake Attack: Recovering K'

n = 5 bits

► For each bit *i*: $K'_i = \epsilon_i \oplus \kappa_i$ with $\epsilon_i = 1$ if $\rho(P, S_{ref_i}) < 0$, otherwise $\epsilon_i = 0$. known guess

Combined CPA or Snake Attack: Recovering K'

n = 5 bits

► For each bit *i*: $K'_i = \epsilon_i \oplus \kappa_i$ with $\epsilon_i = 1$ if $\rho(P, S_{ref_i}) < 0$, otherwise $\epsilon_i = 0$. known guess

• Reduce computational complexity from 2^{2n} intermediate results to $n2^2 + n$ ones.

Ranked Probabilities of Success for One χ_3 Sequence

HER 1 ad 0.8 see 0.6 0.4 0.2 0 0 0 0 10,000 20,000 Number of Power Traces

(b) Combined CPA or *Snake* attack recovering κ . Squared correlation coefficient.

Figure: Ranked success probabilities targeting one χ_3 sequence (Xoodoo).

Ranked Probabilities of Success for One χ_3 Sequence

(b) Combined CPA or *Snake* attack recovering κ . Squared correlation coefficient.

Figure: Ranked success probabilities targeting one χ_3 sequence (Xoodoo).

n = 3 bits

Ranked Probabilities of Success for One χ_3 Sequence

(b) Combined CPA or *Snake* attack recovering κ . Squared correlation coefficient.

Probability of Success Per Rank

0.8

0.6

0.4

0.2

0

Figure: Ranked success probabilities targeting one χ_3 sequence (Xoodoo).

n = 3 bits 43,860 traces

3

20.000

10.000

Number of Power Traces

Ranked Probabilities of Success for One χ_3 Sequence

(b) Combined CPA or *Snake* attack recovering κ . Squared correlation coefficient.

n = 3 bits

RUB

Figure: Ranked success probabilities targeting one χ_3 sequence (Xoodoo).

(b) Combined CPA or *Snake* attack recovering κ . Squared correlation coefficient.

Figure: Ranked success probabilities targeting one χ_5 sequence (Keccak-p).

PUHP-UNIVERSITÄT BOCHUM

Ranked Probabilities of Success for One χ_5 Sequence

0.8

(b) Combined CPA or *Snake* attack recovering κ . Squared correlation coefficient.

n = 5 bits

RUB

Figure: Ranked success probabilities targeting one χ_5 sequence (Keccak-p).

Squared correlation coefficient.

Figure: Ranked success probabilities targeting one χ_5 sequence (Keccak-*p*).

Probability of Not Being Correct: CPA vs. Combined CPA (Snake Attack)

Figure: Comparison between CPA (dotted line) and *Snake* attack (solid line) for the probability of the correct hypothesis to *not* be rank 1.

Conclusion

- Improve the CPA computational complexity from 2^{2n} to $n2^2 + n$ intermediate results.
- Combined CPA or Snake attack has a higher probability of success than traditional CPA for the same number of power traces.

Conclusion

- ▶ Improve the CPA computational complexity from 2^{2n} to $n2^2 + n$ intermediate results.
- Combined CPA or Snake attack has a higher probability of success than traditional CPA for the same number of power traces.

Thank you for your attention

Gefördert durch
DFG
Deutsche
Forschungsgemeinschaft

Previous work

• Previous work with DPA on one χ_5 row

Samwel and Daemen. 2017. DPA on hardware implementations of Ascon and Keyak. CF'17.