
in TCHES 2024, Issue 2

Authors: Junhao Huang, Alexandre Adomnicăi, Jipeng Zhang,

Wangchen Dai, Yao Liu, Ray C. C. Cheung, Çetin Kaya Koç,

Donglong Chen∗

September 5, 2024

1

Revisiting Keccak and Dilithium

Implementations on ARMv7-M

Outline

2

Introduction01

Keccak Optimizations on

ARMv7-M
02

Results and Conclusions04

Dilithium Optimizations on

ARMv7-M
03

3

Introduction01

1.1 Background

1.2 Target Platforms

Shor

4

1.1.1 Quantum Computers

Quantum computers are being developed rapidly. Shor’s algorithm in quantum

computers would break the existing public-key cryptosystem (PKC) in polynomial time.

This prompted the cryptographic community to search for suitable alternatives to

traditional PKC.

2019: Google’s 54b

machine;

2021: 66b Zuchongzhi;

2021: IBM’s 126b Eagle;

2022: IBM’s 433b Osprey.

RSA

ElGamal

ECC

Protocols

DNS, TLS, SSH...

Browsers

Chrome, Safari,

Edge…

Messaging

WhatsApp,

Facebook,

Wechat…

Threat

5

1.1.2 NIST PQC Project

NIST initiated a standardization project in 2016 to solicit, evaluate, and standardize the

post-quantum cryptographic algorithms (PQC).

Lattice-Based Cryptography (LBC) is the most promising alternative in terms of

security and efficiency:

➢ Round 3: 5 out of 7 candidates belong to LBC;

➢ Round 4: 3 out of 4 finalists belong to LBC.

Round Round 3 Round 4

Types KEM DSA KEM DSA

Schemes

Kyber Dilithium
Kyber

(ML-KEM)

Dilithium

(ML-DSA)

Saber Falcon - Falcon

NTRU Rainbow -
Sphincs+

(SLH-DSA)

Classic

McEliece
- - -

Table 1: Round 3 and Round 4 NIST PQC finalists

6

1.1.3 LBC Core Operations

LBC core

operations

➢ Symmetric cryptographic primitives: SHA-3;

➢ Polynomial multiplication: NTT/INTT, pointwise multiplication;

1. Symmetric cryptographic primitives SHA-3 accounts for over 70% running-time

according to pqm4. The state-of-the-art Keccak implementations on ARMv7-M is based

on the XKCP library [BDH+] by Keccak team. The most related work [BK22] studied

Keccak optimizations on AArch64. However, these techniques have not been applied to

ARMv7-M yet.

2. (Inverse) Number Theoretic Transform (NTT) : It is a generalization of the classic

discrete Fourier transform (DFT) in finite fields. In brief, NTT can reduce the time

complexity of multiplying two 𝑛-degree polynomial 𝑎 = σ 𝑎𝑖𝑥𝑖 , 𝑏 = σ 𝑏𝑖𝑥𝑖 from

𝑶(𝒏𝟐) down to 𝑶 𝒏𝒍𝒐𝒈𝒏 . The polynomial multiplication with NTT is performed as:

c=a*b=INTT(NTT(a)○NTT(b)) where ○ is cheap pointwise multiplication.

This work will revisit both Keccak and polynomial multiplication of Dilithium for

further optimization potential.

7

1.2 Target Platforms: ARMv7-M

❑ARM Cortex-M4: Relative high power, resource and memory IoT platform

➢ NIST’s reference 32-bit platform for evaluating PQC in IoT scenarios (a popular pqm4

repository: https://github.com/mupq/pqm4);

➢ 1MB flash, 192KB RAM;

➢ 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;

➢ Inline barrel shifter operation: e.g., add rd, rn, rm, asr #16, which can merge the

addition and shifting operations in 1 instruction.

➢ SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction

for two packed 16-bit vectors;

➢ 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};

➢ Relative expensive load/store instructions: ldr, ldrd, vldm.

https://github.com/mupq/pqm4

8

1.2 Target Platforms: ARMv7-M

❑ARM Cortex-M3: Low resource IoT platform

➢ 512KB flash, 96KB RAM;

➢ 14 32-bit usable general-purpose registers, no floating-point registers;

➢ Inline barrel shifter operation, e.g., add rd, rn, rm, asr #16, which can merge the

addition and shifting operations in 1 instruction.

➢ Relative expensive load/store instructions: ldr, ldrd.

➢ No SIMD extensions and limited multiplication instructions: mul, mla (1, 2 cycles).

➢ Non-constant time full multiplication instructions: umull, smull, umlal and small; So

the constant-time 32-bit modular multiplication is very expensive on Cortex-M3,

which also leads to the slow 32-bit NTT.

9

Keccak Optimizations on ARMv7-M02

2.1 Keccak

2.3 Keccak Optimizations on ARMv7-M

2.2 Existing Optimizations on ARMv7-M

10

2.1 Keccak

➢ Keccak-𝑝 𝑏, 𝑛𝑟 , where 𝑏 = 1600, 𝑛𝑟 = 24 in NIST standards.

➢ Each state 𝐴 is represented as an array of 5 × 5 lanes, each lane is 𝒘 = 64 bits. 𝐴[𝑥, 𝑦]
refers to the lane at position (𝑥, 𝑦) and 𝐴[𝑥, 𝑦, 𝑧] refers to the 𝑧-th bit of the lane.

➢ Keccak-𝑝 is an iterated permutation where each round consists of five consecutive

operations 𝜽, 𝝆, 𝝅, 𝝌 and 𝜾, where 𝝌 is the only non-linear operation.

❑ Keccak permutation

11

2.2 Existing Optimizations on ARMv7-M

➢ To store 1600-bit Keccak state on 32-bit ARMv7-M, we need 50 32-bit registers, which

is not enough on ARMv7-M and requires expensive memory accesses to load the state.

➢ Bit interleaving technique consists of storing bits at odd positions in one 32-bit register,

and bits at even positions in another. In this way, the 64-bit rotations can be easily

handled by two separate 32-bit rotations.

❑ Bit interleaving

➢ The in-place processing means that it is possible to store all processed data back into the

same memory location it was loaded from.

➢ The Keccak designers proposed a method that will return to its initial memory location

after 4 rounds.

❑ In-place processing

❑ Performance analysis

XOR AND/BIC NOT Rotations

32-bit platforms 152 XORs 50 ANDs 50 NOTs 58 ROTs

32-bit ARMv7-M 152 EORs 50 BICs - 48 RORs

These instructions theoretically takes 𝟐𝟓𝟎 × 𝟐𝟒 = 𝟔𝟎𝟎𝟎 cycles on ARMv7-M. However,

the state-of-the-art Keccak-𝑝[1600, ·] from XKCP requires 12969 cycles, meaning that

around 54% of cycles are spent in memory accesses.

12

2.3 Keccak Optimizations on ARMv7-M

❑ Pipelining memory access

➢ The original xor5 macro (listing 2) from XKCP [CDH+] suffers memory access

pipeline stalls. We manage to relax the register pressure and group 5 ldr instructions

together (listing 3), which saves 3 cycles per macro call.

➢ We also reordered some other instructions throughout the code. Notably, we moved str

instructions after multiple ldr instructions as much as possible.

13

2.3 Keccak Optimizations on ARMv7-M

❑ Lazy rotations

➢ The original XKCP implementation makes use of explicit rotations for the ρ step

through ror instructions, which requires 47 such instructions per round.

➢ Recently, Becker and Kannwischer [BK22] proposed that one can omit these explicit

rotations using lazy rotations and defer the explicit rotations until the 𝜽 step in the

next round (i.e. rotating the second operands using the inline barrel shifter) on

AArch64.

➢ Inspired by [BK22], we first utilize the inline barrel shifter instruction on ARMv7-M

to merge the xor and ror instructions, which also helps to reduce some cycles.

➢ We proposed two variants of Keccak implementation considering the code size effect.

➢ One has better performance but requiring larger code size: lazy rotations for all

rounds.

➢ One has smaller code size and an acceptable performance: lazy rotations for

three-quarters of the rounds.

14

Dilithium Optimizations on ARMv7-M03

3.1 CRYSTAL-Dilithium

3.3 Efficient 16-bit for 𝑐𝒔𝒊 and 𝑐𝒕𝒊

3.2 Efficient Multi-moduli NTT for 𝑐𝒕𝟎

15

3.1.1 CRYSTAL-Dilithium

❑ CRYSTAL-Dilithium

➢ One out of three DSAs standardized by NIST (FIPS-204).

➢ Its hardness is based on MLWE and MSIS problems.

➢ Parameters: 𝒏 = 𝟐𝟓𝟔, 𝒒 = 𝟖𝟑𝟖𝟎𝟒𝟏𝟕 < 𝟐𝟐𝟑, 𝑍8380417[𝑋] /(𝑋256 + 1).

16

3.1.2 Polynomial multiplication of Dilithium

❑ Small polynomial multiplications: 𝒄𝒔𝒊, 𝒄𝒕𝒊

➢ In Dilithium signature generation and verification, there exists a small polynomial 𝑐 with

at most 𝝉 nonzero coefficients (±𝟏) and the rest of coefficients are 0.

➢ The coefficient range of 𝒔𝒊 is [−𝜂, 𝜂], then the coefficients of the product 𝑐𝒔𝒊 are smaller

than 𝜷 = 𝝉 · 𝜼 (smaller than 16-bit).

➢ The coefficient range of 𝒕𝒊 is smaller than 212 or 210, then the coefficients of the product

𝑐𝒕𝒊 are smaller than 𝜷′ = 𝝉 · 𝟐𝟏𝟐 or 𝜷′ = 𝝉 · 𝟐𝟏𝟎 (bigger than 16-bit).

➢ According to [CHK+21, Section 2.4.6], these kinds of polynomial multiplications can be

treated as multiplications over 𝑍𝑞′ 𝑋 /(𝑋𝑛 + 1) with a large prime modulus 𝑞′ > 2𝛽 or

𝑞′ > 2𝛽′. In sum, we can use 16-bit NTT for 𝑐𝒔𝒊 and 32-bit NTT for 𝑐𝒕𝒊.

Constant-time 32-bit multiplication implementation on Cortex-M3 [GKS20]

17

3.1.3 16-bit NTT vs 32-bit NTT on Cortex-M3

❑ 16-bit NTT vs 32-bit NTT on Cortex-M3

➢ Cortex-M3 does not have constant-time full multiplication, which may lead to insecure

32-bit modular multiplication implementation (side-channel attack).

➢ The constant-time 32-bit modular multiplication in [GKS20] takes 6-8 instructions.

➢ The constant-time 32-bit CT butterfly takes in [GKS20] 19 instructions, compared to 5

instructions for 16-bit CT butterfly;

➢ The 16-bit NTT with Plantard arithmetic in [HZZ+23] is at least 𝟐~𝟑 × faster than

32-bit NTT in [GKS20] on Cortex-M3.

18

3.2 The Proposed 𝑐𝒔𝒊, 𝑐𝒕𝒊 Implementations

❑ NTT over 769 for 𝑐𝒔𝒊

➢ The coefficient range of 𝑠𝑖 is [−𝜂, 𝜂], then the coefficients of the product 𝑐𝑠𝑖 are smaller

than 𝜷 = 𝝉 · 𝜼 =78, 196 and 120 for three security levels. [AHKS22] used FNT over

257 for Dilithium2 and Dilithium5, and used NTT over 769 for Dilithium3.

➢ On Cortex-M4: We reuse FNT over 257 for Dilithium2 and Dilithium5, and optimize

NTT over 769 with Plantard arithmetic.

➢ On Cortex-M3: We reuse NTT over 769 with Plantard arithmetic for all Dilithium

variants, because we can then combine it with multi-moduli NTT.

❑ Multi-moduli NTT for 𝑐𝒕𝒊

➢ The coefficient range of 𝑡𝑖 is 212 or 210, then the coefficients of the product 𝑐𝑡𝑖 are

smaller than 𝜷′ = 𝝉 · 𝟐𝟏𝟐 = 𝟐𝟒𝟓𝟕𝟔𝟎, 𝒒′ > 𝟐𝜷′ = 𝟒𝟗𝟏𝟓𝟐𝟎. We choose a composite

modulus 𝑞′ = 769 × 3329 = 2560001 and perform multiplications over 𝑍𝑞′[𝑋]/

(𝑋𝑛 + 1).

➢ On Cortex-M4: The 16-bit NTT and 32-bit NTT has not much differences. So we cannot

use multi-moduli NTT for 𝑐𝒕𝒊 on Cortex-M4.

➢ On Cortex-M3: We optimize 𝑐𝒕𝒊 with the multi-moduli NTT over the 𝒒′ = 𝟕𝟔𝟗 ×
𝟑𝟑𝟐𝟗 for all three Dilithium variants and separately optimize the 16-bit NTT over 769

and 3329 with Plantard arithmetic.

19

3.2.1 Efficient Multi-moduli NTT for 𝑐𝒕𝒊

❑ Multi-moduli NTTs for 𝒄𝒕𝒊 on Cortex-M3

20

3.2.1 Efficient Multi-moduli NTT for 𝑐𝒕𝒊

❑ Multi-moduli NTTs for 𝑐𝒕𝒊 on Cortex-M3

21

3.2.2 Efficient 16-bit NTT for 𝑐𝒔𝒊 and 𝑐𝒕𝒊

❑ Efficient 16-bit NTT with Plantard arithmetic on Cortex-M3 [HZZ+23]

➢ The 16×32-bit multiplication is implemented with mul instruction, and the effective result

lies in the higher 16-bit of 𝒓. We can merge the addition and shiftting operation using

the inline barrel shifter operation as in Step 3 of Algorithm 4.

➢ The Plantard implementation is 1-multiplication faster than the Montgomery’s.

➢ No modular reduction in INTT over 769 and 3329 at all.

22

3.2.2 Efficient 16-bit NTT for 𝑐𝒔𝒊 and 𝑐𝒕𝒊

❑ The explicit CRT implementation with Plantard arithmetic

➢ The constant 𝒎𝟏 = 𝒒𝟎
−𝟏 𝒎𝒐𝒅± 𝒒𝟏 in CRT computation can be precomputed as (m1

′ = 𝑚1 ·
−232 𝑚𝑜𝑑 𝑞1 · 𝑞1

−1 𝑚𝑜𝑑 232 𝑚𝑜𝑑 232) and speeded up with the efficient Plantard

multiplication by a constant.

➢ The implementation is 1-multiplication faster than the Montgomery’s.

23

Results and Conclusions04

4.1 Results and Comparisons

4.2 Conclusions

4.3 References

24

4.1 Results and Comparisons

❑ Keccak results

➢ Setup: Cortex-M3: ATSAM3X8E; Cortex-M4: STM32F407VG.

➢ The pipelining memory access optimization results in 17.13% and 12.84% speedups on

Cortex-M3 and M4, respectively.

➢ When combined with the lazy rotation technique, we achieve up to 24.78% and 21.4%

performance boosts on Cortex-M3 and M4, respectively.

25

4.1 Results and Comparisons

➢ Using the Plantard arithmetic, the 16-bit NTT, INTT, and pointwise multiplication on

Cortex-M3 are 4.22×, 4.29×, and 2.14× faster than the constant-time 32-bit NTT,

INTT, and pointwise multiplication in [GKS20], respectively. Compared to the 32-bit

variable-time NTT, INTT, and pointwise multiplication, the speed ups are 2.48×, 2.46×,

and 1.24×, respectively.

➢ The proposed multi-moduli NTT, INTT and pointwise multiplication

implementations yield 52.76% ∼ 54.76% performance improvements compared to the

constant-time 32-bit NTT in [GKS20]. And over 19.47% and 19.07% speed-ups

compared with the variable-time 32-bit NTT and INTT in [GKS20].

❑ NTT results on Cortex-M3

26

4.1 Results and Comparisons

❑ Dilithium results on Cortex-M3

27

4.1 Results and Comparisons

❑ Kyber and Dilithium hash profiling on Cortex-M4

28

4.2 Conclusions

➢ We significantly improved Keccak’s efficiency using two optimized techniques on

ARMv7-M.

➢ We explored efficient multi-moduli NTT and small NTT implementation with Plantard

arithmetic for Dilithium on Coretx-M3.

➢ Open-source (https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli) and merge

into pqm4 (PR#254 and PR#338).

❑ Optimized Keccak and Dilithium on ARMv7-M

https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli
https://github.com/mupq/pqm4/pull/254
https://github.com/mupq/pqm4/pull/338

29

4.3 References

[BDH+] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,and Ronny

Van Keer. XKCP: eXtended Keccak Code Package.https://github.com/XKCP/XKCP. commit 7fa59c0.

[BK22] Hanno Becker and Matthias J. Kannwischer. Hybrid Scalar/Vector Im-plementations of

Keccak and SPHINCS+ on AArch64. In Takanori Isobeand Santanu Sarkar, editors,Progress in

Cryptology – INDOCRYPT 2022,pages 272–293, Cham, 2022. Springer International

Publishing.https://eprint.iacr.org/2022/1243.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, GregorSeiler, Cheng-

Jhih Shih, and Bo-Yin Yang. NTT Multiplication for NTT-unfriendly Rings New Speed Records for

Saber and NTRU on Cortex-M4 andAVX2.IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):159–

188, 2021.

[HZZ+23] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou, RayC. C. Cheung,

Çetin Kaya Koç, and Donglong Chen. Yet another Improvementof Plantard Arithmetic for Faster

Kyber on Low-end 32-bit IoT Devices. IEEE Transactions on Information Forensics and Security,

2024.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and AmberSprenkels.

Faster Kyber and Dilithium on the Cortex-M4. In Giuseppe Atenieseand Daniele Venturi,

editors,Applied Cryptography and Network Security -20th International Conference, ACNS 2022,

Rome, Italy, June 20-23, 2022,Proceedings, volume 13269 ofLecture Notes in Computer Science,

pages 853–871.Springer, 2022.

[GKS20]Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels.Compact Dilithium

Implementations on Cortex-M3 and Cortex-M4.IACRTrans. Cryptogr. Hardw. Embed. Syst.,

2021(1):1–24, Dec. 2020

30

Thanks for listening！

