H B IR TS = s s — o
OIG ZRREBEERER D¢

o BELIING KOAMAL UKVERSITY - HOKG KONG BAPTIST LIKIVERSITY I
I UMITED INTERNATIONAL COLLEGE -
L

Revisiting Keccak and Dilithium
Implementations on ARMv7-M

In TCHES 2024, Issue 2
Authors: Junhao Huang, Alexandre Adomnicai, Jipeng Zhang,
Wangchen Dal, Yao Liu, Ray C. C. Cheung, Cetin Kaya KoG
Donglong Chenx

September 5, 2024

S

Outline e

Introduction

Keccak Optimizations on
ARMv7-M

Dilithium Optimizations on

ARMv/-M

Results and Conclusions

Introduction

1.1 Background

1.2 Target Platforms

1.1.1 Quantum Computers e

Quantum computers are being developed rapidly. Shor’s algorithm in quantum
computers would break the existing public-key cryptosystem (PKC) in polynomial time.

\ (Protocols \

DNS, TLS, SSH...

e QUANTUM
ssiattosa COMPUTING Browsers

<ol Sho : Threat | | chrome, Safari,
d RSA Q
2019: Google’s 54b Edge

machine; Messagin
2021: 66b Zuchongzhi; ElGamal gng
2021: IBM’s 126b Eagle; WhatsApp,

2022: IBM’s 433b Osprey. ECC Facebook,
k / \ / \\ Wechat...

N

This prompted the cryptographic community to search for suitable alternatives to
traditional PKC.

1.1.2 NIST PQC Project B

NIST initiated a standardization project in 2016 to solicit, evaluate, and standardize the
post-quantum cryptographic algorithms (PQC).
Table 1: Round 3 and Round 4 NIST PQC finalists

Types KEM DSA KEM DSA

Kyber Dilithium

Kyber Dilithium (ML-KEM) (ML-DSA)

Saber Falcon - Falcon
Schemes -
: Sphincs+
NTRU Rainbow - (SLH-DSA)
Classic)))
McEliece

Lattice-Based Cryptography (LBC) is the most promising alternative in terms of
security and efficiency:

» Round 3: 5 out of 7 candidates belong to LBC;

» Round 4: 3 out of 4 finalists belong to LBC.

1.1.3 LBC Core Operations %I%

LBC core > Symmetric cryptographic primitives: SHA-3;
Operations » Polynomial multiplication: NTT/INTT, pointwise multiplication;

1. Symmetric cryptographic primitives SHA-3 accounts for over 70% running-time
according to pgm4. The state-of-the-art Keccak implementations on ARMv7-M is based
on the XKCP library [BDH+] by Keccak team. The most related work [BK22] studied
Keccak optimizations on AArch64. However, these techniques have not been applied to
ARMvT7-M yet.

2. (Inverse) Number Theoretic Transform (NTT) : It is a generalization of the classic
discrete Fourier transform (DFT) in finite fields. In brief, NTT can reduce the time
complexity of multiplying two n-degree polynomial a = ¥ a;x%,b = Y b;x* from
0(n?) down to O0(nlogn). The polynomial multiplication with NTT is performed as:
c=a*b=INTT(NTT(a)oNTT(b)) where o is cheap pointwise multiplication.

This work will revisit both Keccak and polynomial multiplication of Dilithium for

further optimization potential.

1.2 Target Platforms: ARMv7-M B

1 ARM Cortex-M4: Relative high power, resource and memory loT platform

» NIST’s reference 32-bit platform for evaluating PQC in 10T scenarios (a popular pgm4
repository: https://github.com/mupg/pgm4);
> 1MB flash, 192KB RAM;

» 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;

» Inline barrel shifter operation: e.g., add rd, rn, rm, asr #16, which can merge the
addition and shifting operations in 1 instruction.

» SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction
for two packed 16-bit vectors;

» 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};

> Relative expensive load/store instructions: Idr, Idrd, vidm.

https://github.com/mupq/pqm4

1.2 Target Platforms: ARMv7-M B

O ARM Cortex-M3: Low resource 10T platform
» 512KB flash, 96KB RAM;

» 14 32-bit usable general-purpose registers, no floating-point registers;

» Inline barrel shifter operation, e.g., add rd, rn, rm, asr #16, which can merge the
addition and shifting operations in 1 instruction.

» Relative expensive load/store instructions: Idr, Idrd.

» No SIMD extensions and limited multiplication instructions: mul, mla (1, 2 cycles).

» Non-constant time full multiplication instructions: umull, smull, umlal and small; So
the constant-time 32-bit modular multiplication is very expensive on Cortex-M3,

which also leads to the slow 32-bit NTT.

Keccak Optimizations on ARMv7-M

[2.1 Keccak
[2.2 Existing Optimizations on ARMv7-M
[2.3 Keccak Optimizations on ARMv7-M

2.1 Keccak %.%

O Keccak permutation

> Keccak-p[b,n,], where b = 1600, n,. = 24 in NIST standards.

» Each state A is represented as an array of 5 x 5 lanes, each lane is w = 64 bits. A[x, y]
refers to the lane at position (x, y) and A[x, y, z] refers to the z-th bit of the lane.

» Keccak-p is an iterated permutation where each round consists of five consecutive
operations 0, p, ir, y and t, where y is the only non-linear operation.

\|# b refers to the permutation width while nr refers to the number of rounds
keccak-p[b,nr](A):
A = roundperm(A,RC[i]) for i in 0..nr-1

. return A

ol# r[x,y] refer to rotation offsets while RC refers to the round constant

7| roundperm (A,RC) :

theta step

Cclx] = A[x,0] xor Alx,1] =xor A[x,2] xor A[x,3] =xor A[x,4] for x in 0..4

D[x] = C[x-1] xor rot(C[x+1],1) for x in 0..4
Alx,y] = Alx,y] =xor D[x] for (x,y) in (0..4,0..4)
1 # rho and pi step
| Bly,2*x+3»y] = rot(Alx,yl, rlx,yl) for (x,y) in (0..4,0..4)
14 # chi step
| Alx,y] = Blx,y] xor ((not B[x+1,y)) and B[x+2,y]) for (x,y) in (0..4,0..4)

1t # iota step
| A[0,0] = A[0,0] xor RC

I8 return A

Listing 1: Pseudo-code of the Keccak-p cryptographic permutation.

2.2 Existing Optimizations on ARMv7-M 7‘3,%

O Bit interleaving

» To store 1600-bit Keccak state on 32-bit ARMv7-M, we need 50 32-bit registers, which
IS not enough on ARMv7-M and requires expensive memory accesses to load the state.
» Bit interleaving technique consists of storing bits at odd positions in one 32-bit register,
and bits at even positions in another. In this way, the 64-bit rotations can be easily
handled by two separate 32-bit rotations.
O In-place processing

» The in-place processing means that it is possible to store all processed data back into the
same memory location it was loaded from.
» The Keccak designers proposed a method that will return to its initial memory location
after 4 rounds.
O Performance analysis

| XOR__| ANDBIC

32-bit platforms 152 XORs 50 ANDs 50 NOTs 58 ROTs
32-bit ARMv7-M 152 EORSs 50 BICs - 48 RORs

These instructions theoretically takes 250 X 24 = 6000 cycles on ARMv7-M. However,
the state-of-the-art Keccak-p[1600, -] from XKCP requires 12969 cycles, meaning that

around 54% of cycles are spent in memory accesses.

2.3 Keccak Optimizations on ARMv7-M %,%

O Pipelining memory access

» The original xor5 macro (listing 2) from XKCP [CDH+] suffers memory access
pipeline stalls. We manage to relax the register pressure and group 5 Idr instructions
together (listing 3), which saves 3 cycles per macro call.

» \We also reordered some other instructions throughout the code. Notably, we moved str
instructions after multiple Idr instructions as much as possible.

i| .macro xor5 result,b,g,k,m,s

1dr \result, [r0, #\bl
1ldr r1, [ro, #\gl
idr r5, [r0, #\k]
1dr ri1, [r0, #\m]
ldr ri2, [r0, #\s]
eors \result, \result, ri
eors \result, \result, r5
eors \result, \result, rii
eors \result, \result, ri12

11| .endm

1| .macro xorb result ,b,g,k,m,s
2 ldr \result, [r0O, #\bl
3 1ldr ri, [r0, #\gl]
eors \result, \result, ri
1dr ri, [r0, #\k]
G eors \result, \result, ri
7 ldr ri, [r0, #\m]
eors \result, \result, ri
ldr ri, [r0, #\s]
eors \result, \result, ri
11| .endm
Listing 2: Original ARMvT7-

M assembly code from [BDH'] to
compute half a parity lane. Loads from
memory are not fully grouped and thus
not optimally pipelined on M3 and M4
Processors.

Listing 3: ARMv7-M assembly code
after optimization to compute half a
parity lane. Loads from memory are
now fully grouped and thus optimally
pipelined on M3 and M4 processors.

2.3 Keccak Optimizations on ARMv/7-M 7‘3,%

O Lazy rotations

>

>

The original XKCP implementation makes use of explicit rotations for the p step
through ror instructions, which requires 47 such instructions per round.
Recently, Becker and Kannwischer [BK22] proposed that one can omit these explicit
rotations using lazy rotations and defer the explicit rotations until the @ step in the
next round (i.e. rotating the second operands using the inline barrel shifter) on
AArch64.
Inspired by [BK22], we first utilize the inline barrel shifter instruction on ARMv7-M
to merge the xor and ror instructions, which also helps to reduce some cycles.
We proposed two variants of Keccak implementation considering the code size effect.
» One has better performance but requiring larger code size: lazy rotations for all
rounds.
» One has smaller code size and an acceptable performance: lazy rotations for
three-quarters of the rounds.

Dilithium Optimizations on ARMv7-M

[) 3.1 CRYSTAL-Dilithium

[) 3.2 Efficient Multi-moduli NTT for ct,
[) 3.3 Efficient 16-bit for ¢s; and ct;

3.1.1 CRYSTAL-Dilithium A

d CRYSTAL-Dilithium

» One out of three DSAs standardized by NIST (FIPS-204).
» Its hardness is based on MLWE and MSIS problems.
> Parameters: n = 256,q = 8380417 < 223, Zg3g0417[X] /(X?°© + 1).

Algorithm 2 Dilithium signature generation (sign) [DKL™ 15

Input: Secret key sk and message M

Output: ¢ = (¢.z.h))
1: A€ R,ﬁ"" = ExpandA(p) © A is generated and stored in NTT representation as A

p € {0,1}°12 := H(tr||M)

K:=0;(z;h) =1

Pl € {0.1}712 ;= H(K||pt) (or p' « {0.1}"*? for randomized signing)

_Nhile (z.h)=1 do & Pre-compute 8 := NTT (s;).8; := NTT (83), and

to := NTT (to)

6: y €S :=ExpandMask (p/, x)

. w:i= Ay b w:= INTT(A - NTT(y))

8: wj := HighBits, (w,292)

9: ¢ € {0,1}*0 := H (p||wy)

Y = WK

10: ¢ € B, := SamplelnBall (&) > Store ¢ in NTT representation as ¢ = NTT(e)
1: |z:=y+s; > Compute es; as INTT(é-8¢)
12: | rg = LowBits, (w — ¢82,272) > Compute ¢s; as INTT(é - 8;)
13: I [Z]le = 11 — B OF [Tl = 12 — 3, then (z.h) :=1

11: else

15: h := MakeHint, (—ctog, w — 82 + cty, 272) | > Compute ety as INTT (&- i.,)

16: it [cto]| = 72 or the # of I's in his greater than w, then (z,h) ;=1

17: Ki=rn+1{
18: return o = (¢.z. h)

3.1.2 Polynomial multiplication of Dilithium %:‘é

U Small polynomial multiplications: cs;, ct;

> In Dilithium signature generation and verification, there exists a small polynomial ¢ with
at most T nonzero coefficients (+1) and the rest of coefficients are 0.

» The coefficient range of s; is [—n, n], then the coefficients of the product cs; are smaller
than B = = - p (smaller than 16-bit).

> The coefficient range of t; is smaller than 212 or 219, then the coefficients of the product
ct; are smaller than B’ = = - 2% or B’ = = - 219 (bigger than 16-bit).

» According to [CHK+21, Section 2.4.6], these kinds of polynomial multiplications can be
treated as multiplications over Z,, [X]/(X™ + 1) with a large prime modulus q" > 2/ or
q' > 2B'. Insum, we can use 16-bit NTT for cs; and 32-bit NTT for ct;.

Table 1: Dilithium parameters [DKL™ 18]

NIST security level 2 3 5
¢ [modulus] 8380417 8380417 8380417
n [the order of polynomial] 256 256 256
d [drop bits from t| 13 13 13
T [# of £1's in] 39 49 60
71 |y coefficient range] 217 i 249
72 [low-order rounding range] (¢ —1)/88 (¢ —1)/32 (q—1)/32
(k.,1) [dimensions of A] (4.4) (6.5) (8,7)
1 [secret key range 2 4 2
3 =71 [es; coefficient range| 78 196 120
ty coefficient range 212 912 912
t, coefficient range 210 210 e

3.1.3 16-bit NTT vs 32-bit NTT on Cortex-M8}&:

0 16-bit NTT vs 32-bit NTT on Cortex-M3

» Cortex-M3 does not have constant-time full multiplication, which may lead to insecure
32-bit modular multiplication implementation (side-channel attack).

» The constant-time 32-bit modular multiplication in [GKS20] takes 6-8 instructions.

» The constant-time 32-bit CT butterfly takes in [GKS20] 19 instructions, compared to 5
instructions for 16-bit CT butterfly;

» The 16-bit NTT with Plantard arithmetic in [HZZ+23] is at least 2~3 X faster than
32-bit NTT in [GKS20] on Cortex-Ms3.

Listing 5 Schoolbook SMULL (SBSMULL) Listing 6 Schoolbook SMLAL (SBSMLAL)
; Input: a = a0 + al*2716 1 ; Input: a = a0 + al*2716

: b= b0 + bl*2716 2 - b = b0 + bi*2716

; Output: ¢ = a*b = c0 + c1%2732 a 2 c = cO + c1%2732

mul <¢O, a0, bO 1 ; Output: ¢ = ¢ + ax*b

mul c¢l1l, al, bl 5 . = ¢c0 + c1%2732

mul tmp, al, b0 « mul tmp, a0, bO

mla tmp, a0, bl, tmp r adds c0, cO, tmp

adds c0, cO, tmp, 1lsl #16 s mul tmp, al, bl

adc «c¢1, c1, tmp, asr #16 o adc cl, cil, tmp

i mul tmp, al, bO

11 mla tmp, a0, bl, tmp

12 adds c0, cO, tmp, 1lsl #16
13 adc cl, cl, tmp, asr #16

Constant-time 32-bit multiplication implementation on Cortex-M3 [GKS20]

3.2 The Proposed cs;, ct; Implementations 3E

O NTT over 769 for cs;

» The coefficient range of s; is [—n, 1], then the coefficients of the product cs; are smaller
than g = -1 =78, 196 and 120 for three security levels. [AHKS22] used FNT over
257 for Dilithium2 and Dilithium5, and used NTT over 769 for Dilithium3.

» On Cortex-M4: We reuse FNT over 257 for Dilithium2 and Dilithium5, and optimize
NTT over 769 with Plantard arithmetic.

» On Cortex-M3: We reuse NTT over 769 with Plantard arithmetic for all Dilithium
variants, because we can then combine it with multi-moduli NTT.

O Multi-moduli NTT for ct;

> The coefficient range of t; is 212 or 219, then the coefficients of the product ct; are
smaller than B’ = ©- 21?2 = 245760,q" > 2’ = 491520. We choose a composite
modulus q" = 769 x 3329 = 2560001 and perform multiplications over Z,, [X]/
X"+ 1).

» On Cortex-M4: The 16-bit NTT and 32-bit NTT has not much differences. So we cannot
use multi-moduli NTT for ct; on Cortex-M4.

» On Cortex-M3: We optimize ct; with the multi-moduli NTT over the q¢' = 769 X
3329 for all three Dilithium variants and separately optimize the 16-bit NTT over 769

and 3329 with Plantard arithmetic.

3.2.1 Efficient Multi-moduli NTT for ct; %,%

O Multi-moduli NTTs for ct; on Cortex-M3
Lgoqy = Lgg X Lgy;
Zgo [X1/ (X7 +1) = Z,, [X]/(X? =),5 = 1,3,5,... ., 255;
Zg, [X]/(X* +1) 2 Z, [X]/(X? = {]),5 = 1,3,5,. .., 255;

3.2.1 Efficient Multi-moduli NTT for ct;

O Multi-moduli NTTs for ct; on Cortex-M3

Algorithm 4 Multi-moduli NTT for computing 32-bit NTT on Cortex-M3

Input: Declare arrays: 1nt32 _t c_32[256],t_32[256],tmp_32[256] ,res_32[256]

Input: Declare pointers: ¢

NS A®

10:
11:
12:

intl16_t
intl16_t
int16_t
intl6_t
intl6_t
inti6_t

: ¢1_16[256] < ¢,ch_ 16[256] —c

c_32 as 16-bit arrays
tl_16[256] < t,th_16[256] + 1
t_32 as 16-bit arrays

cl_16=(int16_t)c_32;
ch_16=(int16_t)&c_32[128];
t1_16=(int16_t)t_32;
th_16=(int16_t)&t_32[128];
tmpl_16=(int16_t)tmp_32;
tmph_16=(int16_t)&tmp_32[128];

> Pre-store ¢ in the bottom and top halves of

> Pre-store ¢ in the bottom and top halves of

cl_16[256] = NTT,,(c1_16) > o = NTTy,(¢)
ch_16[256] = NTT,, (ch_16) > é = NTT, (c)
t1_16[256] = NTT,,(t1_16) > {o = NTTg, (t)
th_16[256] = NTT,, (th_16) bt = NTT,, (t)
tmpl_16[256] = basemul,,(c1_16,t1_16) > ¢ - 10 = basemul, (¢o, to)
tmph_16[256] = basemul,, (ch_16,th_16) b é ity = basemul,, (¢4, Il)
tmpl_16[256] = INTT,, (tmpl_16) > INTT,, (¢o - to)
tmph_16[256] = INTT,, (tmph_16) > INTT,, (é - 1)
res_32[256] = CRT(tmpl_16, tmph_16) > CRT(INTT,, (éo - o), INTT,, (& - £1))

return res_32

3.2.2 Efficient 16-bit NTT for cs; and ct; “3&

O Efficient 16-bit NTT with Plantard arithmetic on Cortex-M3 [HZZ+23]

» The 16x32-bit multiplication is implemented with mul instruction, and the effective result
lies in the higher 16-bit of . We can merge the addition and shiftting operation using
the inline barrel shifter operation as in Step 3 of Algorithm 4.

» The Plantard implementation is 1-multiplication faster than the Montgomery’s.

» No modular reduction in INTT over 769 and 3329 at all.

Algorithm 3 Plantard multiplication with enlarged input range

Input: Two signed integers a,b such that ab ¢ |qz'
q2!te, 22 q‘.!'“') q <2721 o — g~V mod* 2%
Output: r — ab(—2"%)mod™ ¢ where r € | -“—'. 2)

I r= I([[ubq]),)ql

2: return r

Algorithm 5 Efficient Plantard multiplication by a constant for 16-bit modulus ¢; on
Cortex-M3 [HZZ ' 23]

Input: Two signed integers a, b such that a € (,2'% — ¢, 21912 252 _ 4,21009) 4 precom-
puted 32-bit integer bg! where b is a constant and ¢/ = ¢, ' mod™ 2%
Output: r = ab(-2 *)mod” ¢ 7
!

; ! 4. 1 02 P

1: by, + bg, " mod2 & precomputed
mul r, a, by!
add r, 2, r, asr#16
mul »,r, g,
asr r,r, #16
6: return r

A

3.2.2 Efficient 16-bit NTT for cs; and ct; “3&

O The explicit CRT implementation with Plantard arithmetic

> The constant m; = q, ' mod?* q, in CRT computation can be precomputed as (m} = m, -
(—232 mod q,) - (q7* mod 232) mod 23?) and speeded up with the efficient Plantard
multiplication by a constant.

» The implementation is 1-multiplication faster than the Montgomery’s.

Algorithm 6 The explicit CRT with Plantard arithmetic on Cortex-M3

Input: uy = uwmod qy,u; = vwmod q,m; = q, ' mod* q1.m) = my - (—=2*2 mod ¢q,) -
(q, b med 29%) mod 294, g, 27 < 2P

Output: u = uy + ((u, — uy)m, mod’ q1)q0

. sub £, uy, u

mul £, 1, m]

add ¢, 2, t, asr#16

mul £, 1, q,

asr I, 1, #16 >t (uy — ug)my mod™* 7

6: mla u,t, gy, ug D> u < ug + tqo

7: return u

IS B

Results and Conclusions

[4.1 Results and Comparisons
[4.2 Conclusions
[4.3 References

4.1 Results and Comparisons %.‘é

1 Keccak results

» Setup: Cortex-M3: ATSAM3XS8E; Cortex-M4: STM32F407VG.

» The pipelining memory access optimization results in 17.13% and 12.84% speedups on
Cortex-M3 and M4, respectively.

» When combined with the lazy rotation technique, we achieve up to 24.78% and 21.4%
performance boosts on Cortex-M3 and M4, respectively.

Table 2: Keccak-p[1600, 24] benchmark on Cortex-M3 and M4.

Ref Implementation characteristics™ Speed (clock cycles) Code size RAM
ef.
ldr/str lazy ror M3 M4 (bytes) (bytes)
XKCP mostly grouped X 13015 11725 5576 264
grouped X 10785 10219 HT72 264
This work grouped v (3/4) 9981 9415 6556 264
grouped v (4/4) 9789 9218 9536 264

*All listed implementations take advantage of the in-place processing and bit-interleaving techniques.

4.1 Results and Comparisons B

I NTT results on Cortex-M3

» Using the Plantard arithmetic, the 16-bit NTT, INTT, and pointwise multiplication on
Cortex-M3 are 4.22x, 4.29x%, and 2.14 x faster than the constant-time 32-bit NTT,
INTT, and pointwise multiplication in [GKS20], respectively. Compared to the 32-bit
variable-time NTT, INTT, and pointwise multiplication, the speed ups are 2.48x, 2.46 %,
and 1.24x, respectively.

» The proposed multi-moduli NTT, INTT and pointwise multiplication
implementations yield 52.76% ~ 54.76% performance improvements compared to the
constant-time 32-bit NTT in [GKS20]. And over 19.47% and 19.07% speed-ups
compared with the variable-time 32-bit NTT and INTT in [GKS20].

Platform Prime Ref. NTT INTT Pointwise CRT
8380417 [GKS20] constant-time 33077 36661 8 528 X
8380417 [GKS20] variable-time 19405 21051 4944 X

M3 3329 x 7681 [ACCT22] 16770 19056 11927 4637
769 This work 7830 8543 3989 X

769 x 3329 This work 15626 17037 8061 3735

4.1 Results and Comparisons %.‘é

O Dilithium results on Cortex-M3

s

Dilithium?2 Dilithium3 Dilithium5

Platform Operation

[GKS20] This work| [GKS20] This work [GKS20] This work

csq 346k 106k 424k 128k 580k 172k
M3 cS2 346k 106k 502k 150k 658k 194k
cto 269k 195k 328k 284k 446k 372k
cty 213k 195k 311k 284k 409k 372k

Table 5: Performance of Dilithium on Cortex-M3. Averaged over 1000 executions.

Ercration Dilithium2 Dilithium3 Dilithium5
[GKS20] This work| [GKS20] This work [GKS20] This work
keygen 2059k 1739k 3594k 3011k X 5034k
sign 7139k 5 582k 11916k 9087k X 20193k
verify 1949k 1 648k 3 283k 2755k X 4694k

4.1 Results and Comparisons e

O Kyber and Dilithium hash profiling on Cortex-M4

Table 6: Performance and hash profiling of Kyber and Dilithium on the Cortex-M4 using
the pgmd framework. Averaged over 1000 executions.

keygen sign/encaps verify /decaps
Scheme Keccak Impl. yE gn/ B y/ P
speed hashing speed hashing speed hashing

Dilithium2 XKCP 1595k 83.47% 4052k 64.53% 1576k 80.47%
This work 1357k 80.57% 3487k 60.02% 1350k 77.2%
Dilithium3 XKCP 2828k 85.54% 6523k 62.95% 2702k 82.62%
This work 2394k 82.92% 5574k 58.97% 2302k 79.61%
Dilithium5 XKCP 4817k 86.6% 8534k 68.08% 4714k 84.69%
This work 41069k 84.14% 7730k 63.05% 3998k 81.95%
Kyber512 XKCP 432k 80.12% 527k 82.86% 472k 73.76%
This work 369k 76.75% 448k 79.85% 409k 69.74%
Kyber768 XKCP 704k 79.04% 860k 82.38% Ti8k T4.75%
This work 604k 75.59% 732k 79.32% 674k 70.84%
Kyber1024 XKCP 1122k 79.58% 1314k 82.46% 1208k 76.07%

This work 962k 76.18% 1119k 79.41% 1043k 72.29%

i > L2
4.2 Conclusions A

 Optimized Keccak and Dilithium on ARMv7-M

» We significantly improved Keccak’s efficiency using two optimized techniques on
ARMvV7-M.

» We explored efficient multi-moduli NTT and small NTT implementation with Plantard
arithmetic for Dilithium on Coretx-M3.

» Open-source (https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli) and merge
into pqm4 (PR#254 and PR#338).

https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli
https://github.com/mupq/pqm4/pull/254
https://github.com/mupq/pqm4/pull/338

4.3 References "

[BDH+] Guido Bertoni, Joan Daemen, Seth Hoffert, Micha& Peeters, Gilles Van Assche,and Ronny
Van Keer. XKCP: eXtended Keccak Code Package.https://github.com/XKCP/XKCP. commit 7fa59c0.
[BK22] Hanno Becker and Matthias J. Kannwischer. Hybrid Scalar/\ector Im-plementations of
Keccak and SPHINCS+ on AArch64. In Takanori Isobeand Santanu Sarkar, editors,Progress in
Cryptology — INDOCRYPT 2022,pages 272—293, Cham, 2022. Springer International
Publishing.https://eprint.iacr.org/2022/1243.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, GregorSeiler, Cheng-
Jhih Shih, and Bo-Yin Yang. NTT Multiplication for NTT-unfriendly Rings New Speed Records for
Saber and NTRU on Cortex-M4 andAVX2.1ACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):159—
188, 2021.

[HZZ+23] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou, RayC. C. Cheung,
Cetin Kaya Kog and Donglong Chen. Yet another Improvementof Plantard Arithmetic for Faster
Kyber on Low-end 32-bit 10T Devices. IEEE Transactions on Information Forensics and Security,
2024.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and AmberSprenkels.
Faster Kyber and Dilithium on the Cortex-M4. In Giuseppe Atenieseand Daniele Venturi,
editors,Applied Cryptography and Network Security -20th International Conference, ACNS 2022,
Rome, Italy, June 20-23, 2022,Proceedings, volume 13269 ofLecture Notes in Computer Science,
pages 853-871.Springer, 2022.

[GKS20]Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels.Compact Dilithium
Implementations on Cortex-M3 and Cortex-M4.IACRTrans. Cryptogr. Hardw. Embed. Syst.,

2021(1):1-24, Dec. 2020

0'6 Srnais ke EFREFE T 2

o uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu l
I UNITED IHTEFINATIDNALCULLEGE

Thanks for listening!

