Yale ENGINEERING

Quantum Circuit Reconstruction from Power Side-Channel Attacks on Quantum Computer Controllers

Computer Architecture and Security Lab (CASLAB) https://caslab.io/

Jakub Szefer

jakub.szefer@yale.edu

Why Research Security of Quantum Computing Systems?

- The field of quantum computing is undergoing rapid development
- \bullet
- How do we make quantum computers secure?

Quantum Computer Systems and their Attack Surface

We cannot clone quantum states, cannot directly "steal" information like in classical computers

Quantum Computers require extensive control equipment which itself can be vulnerable to attacks Control equipment not well studied from security perspective before

Power Side-Channel Threat Model

We consider attacker with access to collect side-channel information from the controller:

Power Side-Channel Threat Model

We consider attacker with access to collect side-channel information from the controller:

Recovery of Control Pulses

Key target for the side-channel attacks are the arbitrary waveform generators (AWGs)

Process for Running Quantum Circuits

example quantum circuits

a quantum adder circuit with width=4 (4 qubits) followed by measurement.

a victim adder circuit with width=4 **transpiled** with optimization level 3.

native gates used **(CX, ID, RZ, SX, X)**

attack scenarios based on the attacker's measurement capabilities.

check out our previous work for a taxonomy of side-channel attacks! Chuanqi Xu, Ferhat Erata, Jakub Szefer (2023). Exploration of Power Side-Channel Vulnerabilities in Quantum Computer Controllers (CCS). https://dl.acm.org/doi/10.1145/3576915.3623118

Power Side-Channels for Quantum Circuit Reconstruction

This restricts attacker to using only a single total power trace to reconstruct the quantum program

Example SX, X, and CX gate control pulses

CX pulse

examples of control pulses for the SX, X, and CX gates

an example victim circuit

a simple circuit transpiled on a 5-qubit IBM Lima machine

start	Instruction	<pre>circ = QuantumCircuit(2)</pre>			
	SX: d_1	circ.sx(1)			
0	SX: d_0	circ.sx(0)			
0	SX: d_1	circ.sx(1)			
0	$CX: d_0-d_1$	<pre>circ.cnot(0, 1)</pre>			
96	$CX: d_1-d_0$	<pre>circ.cnot(1, 0)</pre>			
32	$CX: d_0-d_1$	<pre>circ.cnot(0, 1)</pre>			

We aim to recover this table from the measured waveform from each drive channel for the **per-channel side-channel attacker**, or from the total power trace for the **total-power side-channel attacker**.

example pulse schedules

As seen from the figure, the first waveform on the drive channel d1 of CX is exactly the same pulse as in SX

You can see there are different waveforms superimposed on a same channel.

Step 1: formalize the circuit reconstruction problem

 $BG = \{\mathtt{I}, \mathtt{RZ}, \mathtt{X}, \mathtt{SX}, \mathtt{CX}\}.$

 $C = \{drive_0, drive_1, \dots, drive_{n-1}, control_0, control_1, \cdots, control_{m-1}\}$

$$L = \{(gate, C') | gate \in BG, C' \subset C\}$$

$$p_{l,c}(x) \begin{cases} \text{Not always } 0 & \text{if } x \in [0, d_l] \\ = 0 & \text{if } x \notin [0, d_l] \end{cases}$$

$$p_l(x) = \{p_{l,c}(x) | c \in l[C']\}.$$

$$P_L = \{p_l(x) | l \in L\}.$$

Step 1: formalize the circuit reconstruction problem

$$A_{P_L} = \{a_{l,t} \cdot p_l(x-t) | l \in L, a_{l,t} \in \{0,1\}, p_l(x) \in P_L\}$$

$$Power_{c}[A_{P_{L}}](x) = \sum_{A_{P_{L}}} \operatorname{Re}^{2}[a_{l,t} \cdot p_{l,c}(x-t)] + \operatorname{Im}^{2}[a_{l,t} \cdot p_{l,c}(x-t)]$$

$$Total[A_{P_L}](x) = \sum_{c \in C} Power_c[A_{P_L}](x)$$

$$\{c_1 = c_2 \land [t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}] \cap [t_2, t_2 + 1, \dots, t_2 + d_{gate_2, c_2}] = \emptyset \} \lor c_1$$

$$\implies \forall t_1 \text{ and } t_2 \in [t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_1} + a_{c, gate_2, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{gate_1, c_1}], \ a_{c, gate_1, t_2} \in \{ (t_1, t_1 + 1, \dots, t_1 + d_{ga$$

$$A_{P_L} = \operatorname*{arg\,min}_{A'_{P_L}} \sum_{c \in C} \left(d \left\{ Power_c[A'_{P_L}](x), v_c(x) \right\} \right)$$

$$A_{P_L} = \underset{A'_{P_L}}{\arg\min d} \left\{ Total[A'_{P_L}](x), v(x) \right\}$$

pulse-level circuit

per-channel power traces

total power traces are directly the summation of per-channel power traces:

channel constraint

per-channel single trace attack

total power single trace attack

Step 2: how to solve combinatorial optimization problem

Candidate Solution 1: Model the problem in Linear Mixed Integer Real Arithmetic (LIRA)

We need Single **Objective Optimization**

Single-Shot Total Power-Trace

Linear Mixed Integer Real Arithmetic (LIRA)

Z3 SMT Solver

Pros: we can encode arbitrary boolean combinations of Int and Real arithmetic

Victim Circuit

Does not Scale

Step 2': how to solve combinatorial optimization problem

Candidate Solution 2: Model the problem as Mixed Integer Linear Programming (MILP)

Single-Shot Total Power-Trace

Mixed Integer Linear Programming (MILP)

Gurobi and PuLP Solvers

Cons: arbitrary combination of boolean operations are **not** supported

Victim Circuit

Step 3: From LIRA to MILP: linearize distance function

Linearization of Absolute Valued Objective Function

 $d_1: (v(x), Total_{A_p}(x)) \mapsto ||v(x), T$

If |X| is the absolute value term in our objective function, two additional constraints are added to the linear program: $X \leq Z \wedge -X \leq Z$.

The |X| term in the objective function is then replaced by Z, relaxing the original function into a collection of linear constraints.

$$\begin{aligned} Total_{A_{p}}(x) \|_{1} &= \sum_{i=1}^{n} \left\| v_{i}(x) - Total_{A_{p}}(x)_{i} \right\|_{2} \\ & \text{Sum of Absolute Differences (} \\ -x, \quad \text{if } x < 0 \\ x, \quad \text{if } x \ge 0 \end{aligned}$$

Step 3: From LIRA to MILP: linearize logical conditions

In MILP lingo, binary variables means decision variables that must take either the value 0 or the value 1, sometimes called 0/1 variables.

	Logical	Linearized
Not	$\neg x_1$	$1 - x_1$
And	$x_1 \wedge x_2$	$x_1 + x_2 = 2$
Or	$x_1 \lor x_2$	$x_1 + x_2 \ge 1$
Exclusive Or	$x_1 \oplus x_2$	$x_1 + x_2 = 1$
If-then	$x_1 \rightarrow x_2$	$x_2 \ge x_1$
If x_1 then $x_2 \vee x_3$	$ x_1 \rightarrow x_2 \lor x_3 $	$x_2 + x_3 \ge x_1$
If $x_2 \vee x_3$ then x_1	$\begin{vmatrix} x_2 \lor x_3 \rightarrow x_1 \end{vmatrix}$	$x_1 \ge x_2 \land x_1 \ge x_3$

Linearization of Logical Conditions over Binary variables

Step 3: From LIRA to MILP: Encode Pseudoboolean constraints Encoding Pseudoboolean constraints

In MILP lingo, binary variables means decision variables that must take either the value 0 or the value 1, sometimes called 0/1 variables.

At-least *c* of x_1, x_2, \cdots

At-most c of x_1, x_2, \cdots

Exactly *c* of x_1, x_2, \cdots

Linearized					
, <i>x</i> _n	$ x_1 + x_2 + \cdots + x_i \geq c$				
, <i>x</i> _n	$ x_1 + x_2 + \cdots + x_i \leq c$				
, <i>x</i> _n	$ x_1 + x_2 + \cdots + x_i = c$				

Step 3: From LIRA to MILP: Linearize Disjunctive Constraints

Linearization of Disjunctive Constraints

In order to encode the channel constraint given in Equation 10 using Big-M Reformulation

 $\sum_{i} a_i^1 x_i \le b^1 \lor \sum_{i} a_i^2 x_i \le b^2 \lor \sum_{i} a_i^3 x_i \le b^3 \lor \cdots \lor \sum_{i} a_i^k x_i \le b^k$ $\sum_{i} a_{i}^{1} x_{i} \leq b^{1} + M_{1} \left(1 - y^{1} \right) \wedge \sum_{i} a_{i}^{2} x_{i} \leq b^{2} + M_{2} \left(1 - y^{2} \right) \wedge \cdots$ $y^1 + y^2 + y^3 + \dots + y^k \ge 1 \land y^1, y^2, y^3, \dots, y^k \in \{0, 1\}$

MILP encoding method

Evaluation Results

 $\{CX, ID, RZ, SX, X\}$

(c) ibmq_manila (Falcon r5.11L) $\{CX, ID, RZ, SX, X\}$

eference	Benchmark	Algorithm	Reference
CBSG17]	hs4	Hidden Subgroup	$[JPK^+14]$
CBSG17	bell	Logic Operation	[Dev22]
[Micnd]	\mathbf{qft}	Hidden Subgroup	[CBSG17]
[Age19]	variational	Quantum Sim.	$[MRS^+20]$
CBSG17]	vqe	Linear Equation	$[JPK^+14]$
$SLM^+21]$	vqe_uccsd	Linear Equation	$[JPK^+14]$
[Fed16]	$basis_trotter$	Quantum Sim.	[MRS+20]
[Iosnd]	qec_sm	Error Correction	[CBSG17]
[JPK ⁺ 14]	lpn	Machine Learn.	[Sam 17]
BGKS05]	qec_en	Error Correction	[Sam 17]
$\left[JPK^{+}14 \right]$	\mathbf{shor}	Hidden Subgroup	[IBMnda]
CBSG17]	pea	Hidden Subgroup	[CBSG17]
$MRS^+20]$	$\rm error_cd3$	Error Correction	$[MNW^+17]$
[TS21]	simons	Hidden Subgroup	[Age19]
$\left[JPK^{+}14 \right]$	qaoa_n6	Optimization	[Dev22]
CBSG17]	vqe_uccsd	Linear Equation	$[JPK^+14]$
$\left[JPK^{+}14 \right]$	hhl	Linear Equation	[IBMndb]

MILP encoding complexities of the benchmarks and pulse-level recovery results

Quantum Circuit	Total Qubits	Total Gates	Circ. Depth	Total dt	Real Vars	Integer Vars	Total Constrs.	Solver Time	
deutsch	2	10	7	28432	58	6032	336	0.13s	
dnn	2	306	17	31696	159	19080	756	0.51s	
grover	2	15	12	30000	106	11872	536	0.30s	
iswap	2	14	9	30096	111	12432	556	0.37s	
quantum walks	2	38	17	31600	156	39000	874	0.51s	
basis_change	3	85	45	43440	526	117824	2328	4.58s	
fredkin	3	31	32	48720	691	136818	2962	6.72s	
linearsolver	3	26	14	32688	190	23370	883	0.99s	
qaoa_n3	3	35	20	14464	412	64272	1804	4.40s	
teleportation	3	12	9	29648	95	10545	491	$0.24 \mathrm{s}$	
toffoli	3	24	20	39312	397	61535	1743	3.15s	
wstate	3	47	34	50896	759	157872	3244	6.73s	_Total # of gates incr
adder	4	33	28	57808	975	282750	4190	13.3s	complexity
basis_trotter	4	2353	469	221248	1361	1503905	2722	150.2s	
bell	4	53	18	33680	221	39780	1064	$2.27 \mathrm{s}$	
cat_state	4	6	7	32688	190	32870	933	1.12s	
hs4	4	28	12	31600	156	26520	794	$2.0\mathrm{s}$	
inverseqft	4	30	22	26928	10	200	60	0.04 s	
qft	4	50	40	57072	952	273224	4095	17.97s	
qrng	4	12	4	26768	5	50	30	0.01s	
variational	4	58	30	41200	456	97128	2037	3.92s	
vqe	4	78	24	14624	346	161928	1852	5.47s	
vqe_uccsd	4	238	198	104128	1876	1130000	3752	53.91	
$ m error_cd3$	5	249	161	96672	4017	584577	6042	98.43	
lpn	5	17	9	30352	117	23634	670	0.36s	
pea	5	126	64	73744	1473	720297	6381	40.34s	
qec_en	5	52	23	49072	702	262548	3182	12.08s	
qec_sm	5	8	19	60000	600	189600	2716	19.11s	
qaoa_n6	6	408	109	70464	2202	1212456	4404	162.27	Circuit Depth Increa
simon	6	65	54	62976	1186	849176	5460	40.95s	complexity
vqe_uccsd	6	3865	2883	2009248	62800	32872200	125600	254s	
hhl	7	565	380	265088	8288	5216264	16576	136.1s	

Quantum Circuit Reconstruction from Power Side-Channel Attacks on Quantum Computer Controllers

