
Optimized
homomorphic

evaluation of Boolean
functions

Nicolas Bon
Joint work with David Pointcheval and Matthieu Rivain

Outline

1 . Introduction to Fully Homomorphic Encryption

2. Introduction to the TFHE cryptosystem

3. Our contributions : a framework for fast evaluation of Boolean functions

Outline

1 . Introduction to Fully Homomorphic Encryption

2. Introduction to the TFHE cryptosystem

3. Our contributions : a framework for fast evaluation of Boolean functions

What is FHE ?

Client Server

The client wants to use the neural network on its data.

FHE is a solution to this problem

- The data is encrypted using a homomorphic scheme

- The server runs a homomorphized version of the neural network

- All computations can be performed without any decryption or information leak.

Client Server

Evaluation key

FHE is a solution to this problem

The client encrypts its data and crafts an evaluation key that will be used
in the homomorphized neural network.

Client Server

FHE is a solution to this problem

The server gets the encrypted data and the evaluation key.

Client Server

FHE is a solution to this problem

Thanks to the evaluation key, the server evaluates the neural network on
the data without decryption and gets a result in an encrypted form

Client Server

FHE is a solution to this problem

The server sends back the encrypted result to the client.

Client Server

FHE is a solution to this problem

The client can then decrypt the result !

Main challenges of FHE

Performances: Overhead in time and in memory

Noise control: risk of losing correctness

Limited set of supported homomorphic
operations

Outline

1 . Introduction to Fully Homomorphic Encryption

2. Introduction to the TFHE cryptosystem

3. Our contributions : a framework for fast evaluation of Boolean functions

TFHE : description of the scheme

Encrypted space: Clear space:

 has a size of few bits.

TFHE : description of the scheme

Natural embedding of in

TFHE : description of the scheme

Encoding of a message

TFHE : description of the scheme

Encoding of a message

Gaussian Noise

TFHE : description of the scheme

Sampling of a mask :

, , ,…

TFHE : description of the scheme

Sampling of a mask :

, , ,…

Secret key:

TFHE : description of the scheme

Construction of ciphertexts :

, , ,… ,

TFHE : description of the scheme

Construction of ciphertexts :

, , ,… ,

TFHE: available operations

- Programmable Bootstrapping

Resets the noise level

Evaluates any Look-up table on the
ciphertext

BUT very slow operation

- Sum on

- External product on by a clear constant

TFHE only allows small precisions
Timing of a PBS

Natural approach of Boolean function evaluation:
gate bootstrapping

x1

y

- See Boolean functions as Boolean circuits

- Each bit is a ciphertext

- Each gate is a 2-input Look-up table

x2 x3 x4

Natural approach of Boolean function evaluation:
gate bootstrapping

y

- See Boolean functions as Boolean circuits

- Each bit is a ciphertext

- Each gate is a 2-input Look-up table

Problem: each gate costs 1 Programmable Bootstrapping

x1 x2 x3 x4

Other approach of Boolean function evaluation:
large LUT

x1 x2 x3 x4

y

- See Boolean Function as a LUT on bits
- Pack all bits in a single ciphertext of

order
- Evaluate the function with a very large

PBS.

Problem: the PBS becomes very slow and not practical.

Outline

1 . Introduction to Fully Homomorphic Encryption

2. Introduction to the TFHE cryptosystem

3. Our contributions : a framework for fast evaluation of Boolean functions

How to represents bit in TFHE ?

Obvious (and terrible) solution:

- No 2-input LUT
- Only XOR can be

evaluated

How to represents bit in TFHE ?

Slightly better solution of the literature:

Negacyclity problem causes one
of the following:

-> Not every functions are
evaluable
-> Sum is no longer homomorphic

How to represent bit in TFHE ?

Our approach:

Negacyclicity problem vanishes!

prime

Enter the p-encodings
A p-encoding is a function

Function evaluation is made by a sum followed by a PBS

New function evaluation algorithn

Toy Example

Let be three p-encodings.

Let be a Boolean function:

Toy Example

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Toy Example

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Toy Example

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Toy Example

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 1

1 0 0

0 1 0

Toy Example

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 1

1 0 0

0 1 0

Toy Example

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 1

1 0 0 0

0 1 0

Toy Example

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 1

1 0 0 0

0 1 0

The encodings are valid if the
red and the green parts do
not overlap after all the lines
have been treated.

Advantages of the method

- One single bootstrapping to evaluate the whole function

- No need to extend the plaintext space to fit more inputs

- Scales much better that the two conventional approaches
(gate bootstrapping / packing everything in a big LUT)

Problem : for a given function, how to find a valid set of p-encodings (and the best
p) ?

=> Exhaustive search. But some restrictions have to be made in the search space.

=> We restrict the search to p-encodings with form:

with no loss of generality

Boolean function on p-encodings

with:

Another point of view on the problem

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Another point of view on the problem

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Another point of view on the problem

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Another point of view on the problem

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Another point of view on the problem

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Another point of view on the problem

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0…
…

Another point of view on the problem

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 0

1 0 0 1

0 1 0 1…
…

An other point of view on the problem

By writing all the inequations we get:

The search algorithm

The search algorithm

Pruning using the
set of constraints

The search algorithm

Pruning using the
set of constraints

The search algorithm

Pruning using the
set of constraints

The search algorithm

… until we find a
path of length

The search algorithm

- The search algorithm finds an optimal solution for a given .

- To identify relevant values for we developed an heuristic method
that finds an upper bound on the optimal

Experimental results

Use-cases includes transciphering, OPRF, …

Experimental results

Use-cases includes transciphering, OPRF, …

Extension to bigger circuits

x4x3x2x1 x8x7x6x5

y

x4x3x2x1 x8x7x6x5

y

Gadget 3

Gadget 2Gadget 1

Encoding
Switching

Encoding
Switching

AES: performances

Conclusion
- New Framework to evaluate Boolean functions in TFHE
- One bootstrapping per function, with any number of input. Fixed size.
- Optimal algorithm to find a solution for a given function
- Heuristic to split bigger circuits into evaluable functions
- Adaptation of the bootstrapping to remove the padding bit

https://eprint.iacr.org/2023/1589
For more details

Thank you !

Slides by Nicolas Bon

Mathematical figures built with Manim
(https://github.com/ManimCommunity/manim)

Icons from Flaticons

