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What is FHE ?

Client Server

The client wants to use the neural network on its data.



FHE is a solution to this problem

- The data is encrypted using a homomorphic scheme

- The server runs a homomorphized version of the neural network

- All computations can be performed without any decryption or information leak.



Client Server

Evaluation key

FHE is a solution to this problem

The client encrypts its data and crafts an evaluation key that will be used 
in the homomorphized neural network.



Client Server

FHE is a solution to this problem

The server gets the encrypted data and the evaluation key.



Client Server

FHE is a solution to this problem

Thanks to the evaluation key, the server evaluates the neural network on 
the data without decryption and gets a result in an encrypted form



Client Server

FHE is a solution to this problem

The server sends back the encrypted result to the client.



Client Server

FHE is a solution to this problem

The client can then decrypt the result !



Main challenges of FHE

Performances: Overhead in time and in memory

Noise control: risk of losing correctness

Limited set of supported homomorphic 
operations
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TFHE : description of the scheme

Encrypted space: Clear space: 

 has a size of few bits.



TFHE : description of the scheme

Natural embedding of in
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Encoding of a message



TFHE : description of the scheme

Encoding of a message

Gaussian Noise



TFHE : description of the scheme

Sampling of a mask :

, , ,…



TFHE : description of the scheme

Sampling of a mask :

, , ,…

Secret key: 
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TFHE : description of the scheme

Construction of ciphertexts :

, , ,… ,



TFHE: available operations

- Programmable Bootstrapping

Resets the noise level

Evaluates any Look-up table on the 
ciphertext

BUT very slow operation

- Sum on

- External product on        by a clear constant



TFHE only allows small precisions
Timing of a PBS



Natural approach of Boolean function evaluation: 
gate bootstrapping

x1

y

- See Boolean functions as Boolean circuits

- Each bit is a ciphertext

- Each gate is a 2-input Look-up table

x2 x3 x4



Natural approach of Boolean function evaluation: 
gate bootstrapping

y

- See Boolean functions as Boolean circuits

- Each bit is a ciphertext

- Each gate is a 2-input Look-up table

Problem: each gate costs 1 Programmable Bootstrapping

x1 x2 x3 x4



Other approach of Boolean function evaluation: 
large LUT

x1 x2 x3 x4

y

- See Boolean Function as a LUT on     bits
- Pack all bits in a single ciphertext of 

order 
- Evaluate the function with a very large 

PBS.

Problem: the PBS becomes very slow and not practical.
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How to represents bit in TFHE ?

Obvious (and terrible) solution:

- No 2-input LUT
- Only XOR can be 

evaluated 



How to represents bit in TFHE ?

Slightly better solution of the literature:

Negacyclity problem causes one 
of the following:

-> Not every functions are 
evaluable
-> Sum is no longer homomorphic



How to represent bit in TFHE ?

Our approach:

Negacyclicity problem vanishes!

prime



Enter the p-encodings
A p-encoding is a function



Function evaluation is made by a sum followed by a PBS

New function evaluation algorithn



Toy Example

Let  be three p-encodings.

Let      be a Boolean function: 



Toy Example

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0
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Toy Example

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 1

1 0 0 0

0 1 0

The encodings are valid if the 
red and the green parts do 
not overlap after all the lines 
have been treated.



Advantages of the method

- One single bootstrapping to evaluate the whole function

- No need to extend the plaintext space to fit more inputs

- Scales much better that the two conventional approaches 
(gate bootstrapping / packing everything in a big LUT)



Problem : for a given function, how to find a valid set of p-encodings (and the best 
p) ?

=> Exhaustive search. But some restrictions have to be made in the search space.

=> We restrict the search to p-encodings with form:

with no loss of generality

Boolean function on p-encodings

with:
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Another point of view on the problem

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 0

1 0 0 1

0 1 0 1…
…



An other point of view on the problem

By writing all the inequations  we get:



The search algorithm



The search algorithm

Pruning using the 
set of constraints
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The search algorithm

Pruning using the 
set of constraints



The search algorithm

… until we find a 
path of length 



The search algorithm

- The search algorithm finds an optimal solution for a given   .

- To identify relevant values for     we developed an heuristic method 
that finds an upper bound on the optimal 



Experimental results

Use-cases includes transciphering, OPRF, …
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Extension to bigger circuits

x4x3x2x1 x8x7x6x5

y

x4x3x2x1 x8x7x6x5

y

Gadget 3

Gadget 2Gadget 1

Encoding  
Switching

Encoding  
Switching



AES: performances



Conclusion
- New Framework to evaluate Boolean functions in TFHE
- One bootstrapping per function, with any number of input. Fixed size.
- Optimal algorithm to find a solution for a given function
- Heuristic to split bigger circuits into evaluable functions
- Adaptation of the bootstrapping to remove the padding bit

https://eprint.iacr.org/2023/1589
For more details

Thank you !
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