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Random Probing Model

• Typical side-channel attacks target a single
sensitive variable.

• Advanced attacks combine leakages of multiple
variables.

• The Random Probing Model (RPM) considers
leakages of all variables.
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Random Probing Model

In this leakage model, each variable of the (protected) circuit leaks independently
with a fixed probability p.

2 / 17



Boolean Masking

Masking circuit C includes the following three steps.

• Native inputs are n-shared, which is for a variable v to encode it with a
random n-tuple as V = (v1, . . . , vn) such that

⊕n
i=1 vi = v.

• Gates are replaced with gadgets. Gadgets work on n-sharings. For a gate
G, we denote the corresponding gadget with SG.

• To maintain security, a refresh gadget may be inserted at some gadget’s
input (or output) interface.
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Security Definition

Maximum A posteriori Probability (MAP) decision for the value of native v ∈ Fq given
RPM leakage L(n, p) is

ṽ = argmax
α∈Fq

Pr(v = α | L(n, p)).

We define the advantage of the adversary over random guessing as

Advv(n, p) ≜ Pr(ṽ = v)− 1

q
.

RPM Security

A circuit family SC that processes a native variable v is secure in the RPM framework
if there exists a threshold po such that, given leakage L(n, p) with p ≤ po, Advv(n, p)
monotonically decreases to 0 as n increases.
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Our Contribution and Related Works

We develop a framework to estimate Adv(n,p) for various
gadgets and circuits.

Open Challenges in the RPM:

• For typical masked circuits, security holds only if p decreases as n increases.
• In some works, derivation of security bound requires leak-free refresh gadget.
• Derived security bound usually depends on the complexity of SC.

Expansion Method (State-of-the-Art Approach):

• Works by iteratively masking the circuit:

C −→ SC −→ S(SC) −→ S(S(SC)) −→ . . .

• It can create a circuit secure at constant p (independent of n) leakage.

• It adds too much to the complexity of the final protected circuit.
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Linear Circuits as Building Blocks

• Linear circuit SC acts as an erasure channel with parameter ESC(n, p).

SC,L(n, p)
{

v with probability ESC(n, p),
⊥ otherwise.

Adversary

Figure: Erasure channel models leakage of linear circuit processing native v.

Relation of the Metrics

When the adversary learns nothing, it still has the opportunity to guess the value of
v. Therefore, we have:

Advv(n, p) = ESC(n, p) +
1

q
[1− ESC(n, p)]−

1

q
=

q − 1

q
ESC(n, p).
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Estimating ESC(n,p) (1/3)

We deploy a Monte Carlo approach to estimate ESC(n, p).

• For each n, there is matrix Pn such that

Pn · [v,ΣSC]
⊤ = 0,

where ΣSC is the list of intermediates of SC.
• The rows of Pn are linearly independent.

• With substituting leakage L, this system of equations transforms into:

Pr
n · [v,ΣSC]

⊤ = b,

with some known vector b.

• By finding the set of solutions, the adversary can estimate the value of v.
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Estimating ESC(n,p) (2/3)

• The system
Pr

n · [v,ΣSC]
⊤ = b,

by computing the row-echelon form, transforms into

G · [v,ΣSC]
⊤ = c.

• Since it is in a finite field, it has bounded amount of solutions.

• v is always a pivot variable in G.

• This system either uniquely determines v or gives no information about it.

• This behavior is determined by the structure of the row containing v.

• And is independent of b. Hence, it is independent of leakage values.
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Estimating ESC(n,p) (3/3)

Each instance of leakage L will result in a new matrix G. By placing v in the first
column if the first row of G has no free variables, v will be determined. Therefore, we
have the following equality:

ESC(n, p) = Pr
L←L(n,p)

[G(1, 2 : end) = 0].

Monte Carlo Method

To estimate the probability of an event e, the Monte Carlo method repeats the
procedure N times, records the number of times e occurs, and returns Ne/N . As N
increases, the error of estimation decreases.
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Alternative Way of Reporting the Results

• We can derive a 2D table of estimations (one entry for each targeted (n, p)).
• This limits the applicability of the results in more sophisticated compositions.
• For typical gadgets, estimated ESC(n, p) decays exponentially with n.

V 0 V 1 V 2 V k−1 V k

SR1 SR2 SRk
. . .

Figure: Multiple gadgets cascaded.
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SR-Simple
SR-Rot
SR-SNI

Masking order n

log10[ESR→...→SR] at k = 10 and p = 0.1

• Therefore, we try to express estimations as ESC(n, p) < α(βp)γn for some α, β,
and γ < 1 constants. This expression might not hold out of the tested region.
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Compositions (1/3)

• Refresh gadget SR can help to decompose RPM security of a compound circuit
to the RPM security of the composing gadgets.

V 0 V 1
SG1 SR SG2

RPM Composition Theorem

For a bounded region of p values, the gadgets, and hence the composition, behave as
an erasure channel for which

ESG1→SR→SG2(n, p) ≤ ESG1(n, p
′) + ESR(n, p) + ESG2(n, p

′)

holds, where p′ ≥ p is a function of (n, p) and the structure of SR.
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Compositions (2/3)

• Our main technique is to process parity relations inside SR as follows:

V 0 V 1
SG1

{
L1(Σ

r
SR) = L2(V

0,r, V 1,r, v)⊕ b1,

L3(V
0,r, V 1,r, v) = b2.

SG2

Figure: Processing parity relations inside the refresh gadget.

• L1, L2, and L3 are linear relations. Superscript r denotes unknowns after
substituting leakage, b1 and b2 are constant vectors.

• Equations in L1 are independent.

• The upper subsystem has no impact on the posterior distribution of native v.

• We let the adversary learn the remaining boundary unknowns of the lower
subsystem.

• This is equivalent to some extra leakage on the input/output shares.
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Composition (3/3)

• For a SR-SNI refresh gadget, our numerical computations give an estimation as
p′ ≈ p+ 1

3p for n ≥ 3 and p ≤ 0.1.
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• For the other tested SR gadget, p′ is increasing with n for any p.
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Multiplication Gadgets (1/2)

• For SAND gadgets, we deploy linearization to derive a lower bound and
upper bound on the adversary’s post-leakage information.

X n-sharing

Y n-sharing
B n2-sharing for z Z n-sharing

MatMult Comp

Figure: Typical multiplication gadget.

• If the compression block Comp behaves as a refresh gadget, we can use
the composition theorem as:

EMatMult→Comp(n, p) ≤ EMatMult(n, p
′) + EComp(n, p).

Here, p′ exceeds p and depends on the structure of Comp.
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Multiplication Gadgets (2/2)

• MatMult is non-linear. The operations inside it can be arranged as follows.

X n-sharing
Linear

x1

xi

xn2

Y n-sharing

Linear

y1 yi yn2

bi B

• bi − xiyi = 0 is the only non-linear relation. bi is not involved in any parity
equation other than this relation.

• If we ignore leakage of bi, non-linear relations will disappear. This will reduce the
advantage of the adversary. Hence, the derived bound, denoted E−MatMult(n, p),
will be a lower bound.

• If we force both xi and yi to leak on the leakage of bi, we derive E+
MatMult(n, p).

• For SAND-Rec, E+ and E− are exponentially decaying with n for p ≤ 0.07.
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More Complex Circuits

The RPM security of AES S-Box.

v
(.)2

SR1

v2

SAND1
v3

SR2 SR3

(.)4

v12

SR4

SAND2

v15

(.)16

v240
SR5

SR6

SAND3
v252 SR7 SAND4

v254

SR8

Security Bound

Using the composition theorem, we can derive the following bound:

ESS-box(n, p) ≤ 8ESR(n, p) + 3ESAND(n, p
′) + ESAND(n, p

′′).

This bound directly depends on the complexity of the S-box.

• Unlike the bound for protected S-box, our security bound for the whole protected
AES does not depend on the number of gates in AES.
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Conclusion

• We defined a metric for RPM security and established a framework for evaluating
it.

• We demonstrated how to handle leakage of refresh gadgets. This gives a
composition theorem, which is inherent to RPM.

• Our work provides a clearer relationship between circuit complexity and RPM
security.

• However, the final numerical relations are derived with Monte Carlo estimations.

• An interesting follow-up work would be to analytically sketch these probabilities
and verify the estimations.

Thank you for your attention!
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