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● Alternative assumption for PKE [ABW10]

● General field kLIN for advance crypto primitives [DIJL23, DJ24, CHKV24]

General Predicate kLIN  (Goldreich Function)

● Search problem is a candidate one-way function (OWF) in NC0 [Gol00]

● Decision problem is a pseudorandom generator (PRG)

● Search to Decision reduction implies a getting PRG from OWF in NC0
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Sparse Matrix

Each row has exactly k non-zero entriesEach entry in the matrix is a random bit

Currently no polynomial time algorithm for 
search and decision for m = poly(n)

Polynomial time algorithm for both search and 
decision when

Since only              unique equations

Decision: Find collision

Search: Non-trivial Idea [App16]

[BKW03, EKM17, AG11]
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We want to know whether                 or

Our Idea

Use answer from Distinguisher       to find out 

Goal

● If                ,  send Planted to 

● If                , send Null to 

Know this relationship for all                 suffices for Search

How to make this happen?
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● If                              ,   (0 … 1 … ) row is wrong, (1 … 0 …) row is correct

On expectation, half of the rows (equations) are correct, other half is wrong

  Does not know the origin of the rows, evaluated vector looks like a random vector
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1. Guess value of         , predict         for all                         by transform and send to 

2. Independence can be enforced from not using same row,                 rows suffices

3. Each prediction of        correct with some probability  

4. Amplify the probability for 

Non-Error Aware

1. Get more equations
2. Repeat procedure
3. Take majority answer

Error Aware

1. Get more equations
2. Substitute in predicted secret
3. Get more accurate secret
4. Repeat

Amplification
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Generalization

Larger Finite Field

Our Technique works for Sparse       - LPN

Sample size independent from size of Field, but time complexity affected

Goldreich Function

Assume that Decision Algorithm is secret independent

Model kLin as

Our technique works for as long as

For arbitrary        valued function 
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● Best (k-1)Lin decision algorithm requires 

● Best kLin search algorithm requires 

Our reduction shows

Best efficient 
(k-1)Lin Decision 

Exist efficient kLin 
Search

implies

Gap           from optimal

m

However, 
Best kLin 
Search

Open Question: Improve the 
reduction by a square root factor
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