Sample Efficient Search to Decision for kLIN

Andrej Bogdanov University of Ottawa

Alon Rosen Bocconi University

Kel Zin Tan National University of Singapore

klin (Sparse LPN)

Set sparsity $\,k=O(1)$, $\,{\cal N}\,$ variables , $\,{\cal M}\,$ equations

Set sparsity $\,k=O(1)$, $\,{\cal N}\,$ variables , $\,{\cal M}\,$ equations

Sample Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$, each row has exactly k non-zero entries

klin (Sparse LPN)

Set sparsity $\,k=O(1)$, $\,{\cal N}\,$ variables , $\,{\cal M}\,$ equations

Sample Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$, each row has exactly k non-zero entries

 $\text{Sample Secret} \qquad s \leftarrow \mathbb{F}_2^n$

Set sparsity $\,k=O(1)$, $\,{\cal N}\,$ variables , $\,{\cal M}\,$ equations

Sample Matrix
$$A \leftarrow \mathbb{F}_2^{m \times n}$$
 , each row has exactly k non-zero entries

Sample Secret
$$s \leftarrow \mathbb{F}_2^n$$

Sample Error
$$e \leftarrow \mathrm{Bern}(0.1)^m$$

Set sparsity $\,k=O(1)$, $\,{\cal N}\,$ variables , $\,{\cal M}\,$ equations

Sample Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$, each row has exactly k non-zero entries

Sample Secret $s \leftarrow \mathbb{F}_2^n$

Sample Error $e \leftarrow \mathrm{Bern}(0.1)^m$

Search: Recover S from (A, As + e)

Set sparsity $\,k=O(1)$, $\,{\cal N}\,$ variables , $\,{\cal M}\,$ equations

Sample Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$, each row has exactly k non-zero entries

Sample Secret $s \leftarrow \mathbb{F}_2^n$

Sample Error $e \leftarrow \mathrm{Bern}(0.1)^m$

Search: Recover S from (A, As + e)

Decision: Distinguish (A,As+e) and (A,u) where u is random binary vector \uparrow Null

Search: Recover \boldsymbol{S} from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Search: Recover \boldsymbol{S} from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

kLIN is related to Constraint Satisfaction Problem (CSP)

- Search: Recover ${\bf S}$ from (A,As+e)
- Decision: Distinguish (A, As + e) and (A, u)

- kLIN is related to Constraint Satisfaction Problem (CSP)
- Alternative assumption for PKE [ABW10]

Search: Recover \boldsymbol{S} from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

- kLIN is related to Constraint Satisfaction Problem (CSP)
- Alternative assumption for PKE [ABW10]
- General field kLIN for advance crypto primitives [DIJL23, DJ24, CHKV24]

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

- kLIN is related to Constraint Satisfaction Problem (CSP)
- Alternative assumption for PKE [ABW10]
- General field kLIN for advance crypto primitives [DIJL23, DJ24, CHKV24]

General Predicate kLIN (Goldreich Function)

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

- kLIN is related to Constraint Satisfaction Problem (CSP)
- Alternative assumption for PKE [ABW10]
- General field kLIN for advance crypto primitives [DIJL23, DJ24, CHKV24]

General Predicate kLIN (Goldreich Function)

Search problem is a candidate one-way function (OWF) in NC0 [Gol00]

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

- kLIN is related to Constraint Satisfaction Problem (CSP)
- Alternative assumption for PKE [ABW10]
- General field kLIN for advance crypto primitives [DIJL23, DJ24, CHKV24]

General Predicate kLIN (Goldreich Function)

- Search problem is a candidate one-way function (OWF) in NC0 [Gol00]
- Decision problem is a pseudorandom generator (PRG)

Search: Recover \boldsymbol{S} from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

- kLIN is related to Constraint Satisfaction Problem (CSP)
- Alternative assumption for PKE [ABW10]
- General field kLIN for advance crypto primitives [DIJL23, DJ24, CHKV24]

General Predicate kLIN (Goldreich Function)

- Search problem is a candidate one-way function (OWF) in NC0 [Gol00]
- Decision problem is a pseudorandom generator (PRG)
- Search to Decision reduction implies a getting PRG from OWF in NCO

Search: Recover ${\cal S}$ from (A,As+e)

Decision: Distinguish (A, As + e) and (A, u)

Learning Parity With Noise (LPN)

Dense Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$

Each entry in the matrix is a random bit

kLIN (Sparse LPN)

Sparse Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$

Each row has exactly k non-zero entries

Learning Parity With Noise (LPN)

Dense Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$

Each entry in the matrix is a random bit

Currently no polynomial time algorithm for search and decision for m = poly(n)

[BKW03, EKM17, AG11]

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

kLIN (Sparse LPN)

Sparse Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$

Each row has exactly k non-zero entries

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Learning Parity With Noise (LPN)

Dense Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$

Each entry in the matrix is a random bit

Currently no polynomial time algorithm for search and decision for m = poly(n)

[BKW03, EKM17, AG11]

kLIN (Sparse LPN)

Sparse Matrix
$$A \leftarrow \mathbb{F}_2^{m \times n}$$

Each row has exactly k non-zero entries

Polynomial time algorithm for both search and decision when

$$m = \Omega(n^{k/2})$$

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Learning Parity With Noise (LPN)

Dense Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$

Each entry in the matrix is a random bit

Currently no polynomial time algorithm for search and decision for m = poly(n)

[BKW03, EKM17, AG11]

kLIN (Sparse LPN)

Sparse Matrix
$$A \leftarrow \mathbb{F}_2^{m \times n}$$

Each row has exactly k non-zero entries

Polynomial time algorithm for both search and decision when

$$m = \Omega(n^{k/2})$$

Since only $O(n^k)$ unique equations

Learning Parity With Noise (LPN)

Dense Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$

Each entry in the matrix is a random bit

Currently no polynomial time algorithm for search and decision for m = poly(n)

[BKW03, EKM17, AG11]

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

kLIN (Sparse LPN)

Sparse Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$

Each row has exactly k non-zero entries

Polynomial time algorithm for both search and decision when

$$m = \Omega(n^{k/2})$$

Since only $O(n^k)$ unique equations

Decision: Find collision

Learning Parity With Noise (LPN)

Dense Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$

Each entry in the matrix is a random bit

Currently no polynomial time algorithm for search and decision for m = poly(n)

[BKW03, EKM17, AG11]

kLIN (Sparse LPN)

Sparse Matrix $A \leftarrow \mathbb{F}_2^{m \times n}$

Each row has exactly k non-zero entries

Polynomial time algorithm for both search and decision when

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

$$m = \Omega(n^{k/2})$$

Since only $O(n^k)$ unique equations

Decision: Find collision

Search: Non-trivial Idea [App16]

Search is harder than Decision

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Search is harder than Decision

kLIN gets easier as number of equations $\, m \,$ increases

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Search is harder than Decision

kLIN gets easier as number of equations $\, m\,$ increases

Q: How does the difficulty of Search and Decision varies as $\, \mathcal{M} \,$ increases?

Search: Recover \boldsymbol{S} from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Search is harder than Decision

kLIN gets easier as number of equations $\, m\,$ increases

Q: How does the difficulty of Search and Decision varies as $\, \mathcal{M} \,$ increases?

Search to Decision Reduction gives a partial answer

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Search is harder than Decision

kLIN gets easier as number of equations $\, m\,$ increases

Q: How does the difficulty of Search and Decision varies as $\, \mathcal{M} \,$ increases?

Search to Decision Reduction gives a partial answer

• LPN and LWE has **sample preserving** poly-time reduction [BIK09, MM11]

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Search is harder than Decision

kLIN gets easier as number of equations $\, m\,$ increases

Q: How does the difficulty of Search and Decision varies as $\, \mathcal{M} \,$ increases?

Search to Decision Reduction gives a partial answer

- LPN and LWE has sample preserving poly-time reduction [BIK09, MM11]
- Polynomial difference in the difficulty of Search and Decision

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Search is harder than Decision

kLIN gets easier as number of equations $\, m\,$ increases

Q: How does the difficulty of Search and Decision varies as $\, \mathcal{M} \,$ increases?

Search to Decision Reduction gives a partial answer

- LPN and LWE has **sample preserving** poly-time reduction [BIK09, MM11]
- Polynomial difference in the difficulty of Search and Decision

Since Search and Decision of kLIN both become viable when $m=\Omega(n^{k/2})$

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Search is harder than Decision

kLIN gets easier as number of equations $\, {\it I} \! {\it$

Q: How does the difficulty of Search and Decision varies as $\, \mathcal{M} \,$ increases?

Search to Decision Reduction gives a partial answer

- LPN and LWE has sample preserving poly-time reduction [BIK09, MM11]
- Polynomial difference in the difficulty of Search and Decision

Since Search and Decision of kLIN both become viable when $m=\Omega(n^{k/2})$

Plausible to believe sample preserving reduction exists for kLIN

Search: Recover S from (A, As + e)

Decision: Distinguish (A, As + e) and (A, u)

Search is harder than Decision

kLIN gets easier as number of equations $\, m\,$ increases

Q: How does the difficulty of Search and Decision varies as $\, \mathcal{M} \,$ increases?

Search to Decision Reduction gives a partial answer

- LPN and LWE has **sample preserving** poly-time reduction [BIK09, MM11]
- Polynomial difference in the difficulty of Search and Decision

Since Search and Decision of kLIN both become viable when $m=\Omega(n^{k/2})$

Plausible to believe sample preserving reduction exists for kLIN

Gap: Improve the sample complexity

Suppose Decision Algorithm D that has constant advantage

Suppose Decision Algorithm D that has constant advantage

Search Problem with sample complexity

ullet [Appl2] $ilde{O}(m^3)$, success prob high

Reduces kLin Decision with m samples

Suppose Decision Algorithm D that has constant advantage

Search Problem with sample complexity

- ullet [Appl2] $ilde{O}(m^3)$, success prob high
- [BSV19] $ilde{O}(m^{2/k+1})$, success prob exponentially low

Reduces kLin Decision with m samples

Search Problem with sample complexity

- ullet [App12] $ilde{O}(m^3)$, success prob high
- [BSV19] $ilde{O}(m^{2/k+1})$, success prob exponentially low
- [BRT25] O(nm) , success prob high

Suppose Decision Algorithm D that has constant advantage

Search Problem with sample complexity

- ullet [App12] $ilde{O}(m^3)$, success prob high
- [BSV19] $ilde{O}(m^{2/k+1})$, success prob exponentially low
- ullet [BRT25] O(nm) , success prob high

Reduces kLin Decision with m samples

Reduces (k-1)Lin Decision with m samples

Assume that Search is hard when $m \ll n^{k/2}$

Previous Work & Results

Suppose Decision Algorithm D that has constant advantage

Search Problem with sample complexity

- ullet [App12] $ilde{O}(m^3)$, success prob high
- ullet [BSV19] $ilde{O}(m^{2/k+1})$, success prob exponentially low
- [BRT25] O(nm) , success prob high

Reduces kLin Decision with m samples

Reduces (k. 1) in Decision

(k-1)Lin Decision with m samples

Assume that Search is hard when $m \ll n^{k/2}$

• [Appl2] implies kLin Decision is hard when $m \ll n^{k/6}$

Previous Work & Results

Suppose Decision Algorithm D that has constant advantage

Search Problem with sample complexity

- ullet [App12] $ilde{O}(m^3)$, success prob high
- ullet [BSV19] $ilde{O}(m^{2/k+1})$, success prob exponentially low
- [BRT25] O(nm) , success prob high

Reduces kLin Decision with m samples

Reduces

(k-1)Lin Decision with m samples

Assume that Search is hard when $m \ll n^{k/2}$

- [App12] implies kLin Decision is hard when $m \ll n^{k/6}$
- [BRT25] implies (k-1)Lin Decision is hard when $m \ll n^{k/2-1}$

Previous Work & Results

Suppose Decision Algorithm D that has constant advantage

Search Problem with sample complexity

- ullet [App12] $ilde{O}(m^3)$, success prob high
- ullet [BSV19] $ilde{O}(m^{2/k+1})$, success prob exponentially low
- [BRT25] O(nm) , success prob high

Reduces kLin Decision with m samples

Reduces (k-1)Lin Decision with m samples

Assume that Search is hard when $m \ll n^{k/2}$

- [App12] implies kLin Decision is hard when $m \ll n^{k/6}$
- [BRT25] implies (k-1)Lin Decision is hard when $m \ll n^{k/2-1}$

Larger Stretch For PRG

We want to know whether $s_1 = s_i$ or $s_1 \neq s_i$

We want to know whether $s_1 = s_i$ or $s_1 \neq s_i$

Know this relationship for all $i \in [2, n]$ suffices for Search

We want to know whether $s_1 = s_i$ or $s_1 \neq s_i$

Know this relationship for all $i \in [2, n]$ suffices for Search

Use answer from Distinguisher D to find out

We want to know whether $s_1 = s_i$ or $s_1 \neq s_i$

Know this relationship for all $i \in [2, n]$ suffices for Search

Use answer from Distinguisher D to find out

Goal

- If $s_1 = s_i$, send Planted to D
- If $s_1 \neq s_i$, send Null to D

We want to know whether $s_1 = s_i$ or $s_1 \neq s_i$

Know this relationship for all $i \in [2, n]$ suffices for Search

Use answer from Distinguisher D to find out

Goal

- If $s_1 = s_i$, send Planted to D
- If $s_1 \neq s_i$, send Null to D

Since D can distinguish Planted and Null, it tells the relationship

We want to know whether $s_1 = s_i$ or $s_1 \neq s_i$

Know this relationship for all $i \in [2, n]$ suffices for Search

Use answer from Distinguisher D to find out

<u>Goal</u>

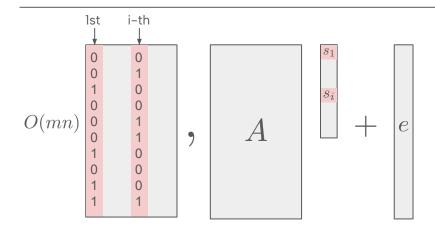
- If $s_1 = s_i$, send Planted to D
- If $s_1 \neq s_i$, send Null to D

Since D can distinguish Planted and Null, it tells the relationship

How to make this happen?

We want to know whether $s_1=s_i$ or $s_1\neq s_i$ $A\in\mathbb{F}_2^{O(mn)\times n}$

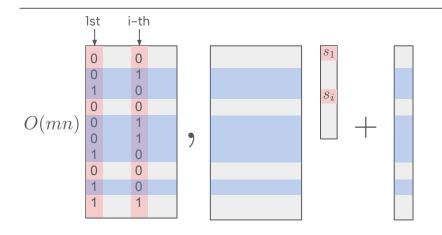
We want to know whether $s_1=s_i$ or $s_1\neq s_i$ $A\in \mathbb{F}_2^{O(mn)\times n}$



Look at 1st column and i-th column

Most of the entries in the columns will be zero due to sparsity

We want to know whether $s_1=s_i$ or $s_1\neq s_i$ $A\in \mathbb{F}_2^{O(mn)\times n}$

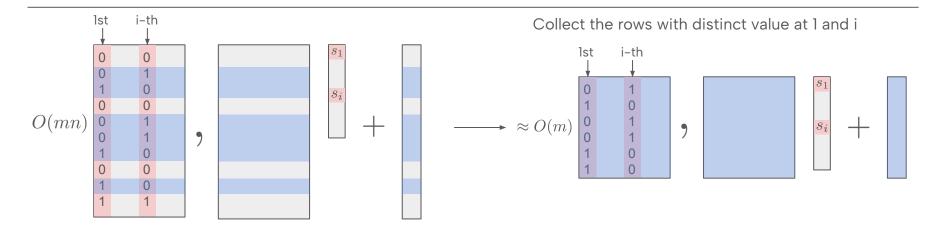


Collect the rows with distinct value at 1 and i

Look at 1st column and i-th column

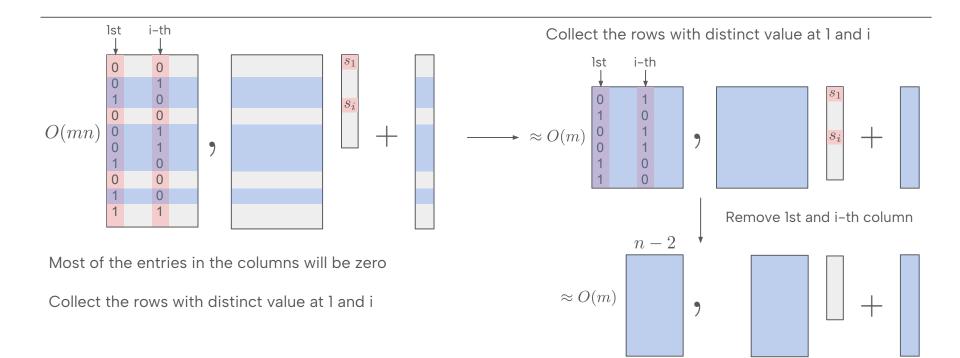
Most of the entries in the columns will be zero due to sparsity

We want to know whether $s_1=s_i$ or $s_1\neq s_i$ $A\in \mathbb{F}_2^{O(mn)\times n}$

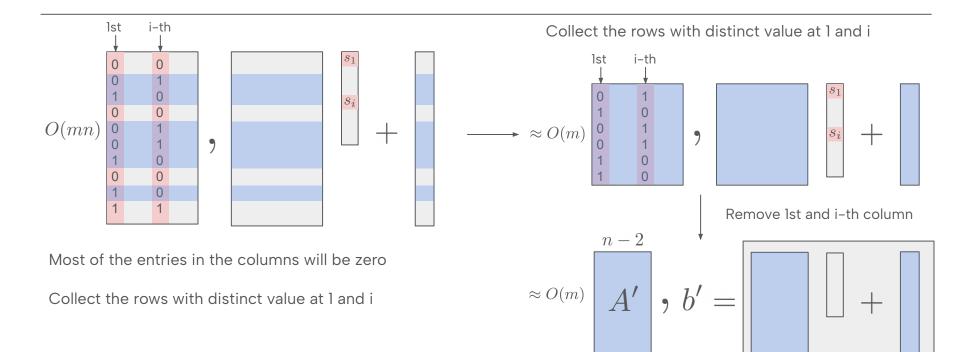


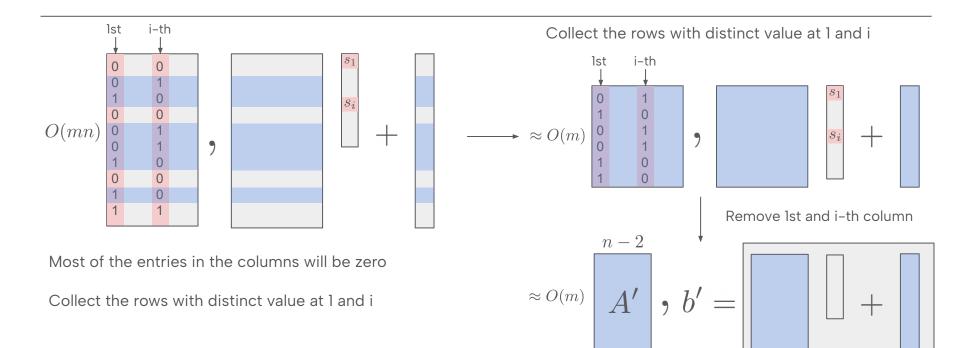
Most of the entries in the columns will be zero

We want to know whether $s_1=s_i$ or $s_1\neq s_i$ $A\in\mathbb{F}_2^{O(mn)\times n}$



We want to know whether $s_1=s_i$ or $s_1\neq s_i$ $A\in\mathbb{F}_2^{O(mn)\times n}$

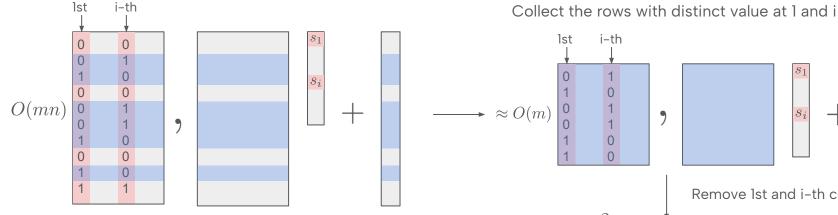




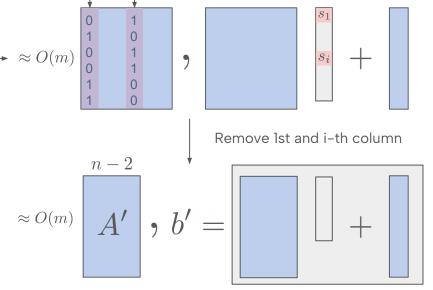
• If $s_1 = s_i = 0$, then (A', b')

distribute like Planted

(k-1)Lin with (n-2) variables



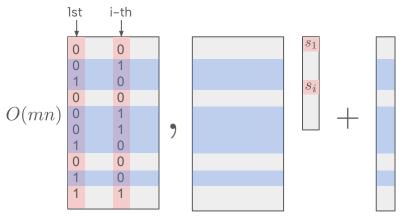
Most of the entries in the columns will be zero



- If $s_1 = s_i = 0$, then (A', b')
- $\bullet \quad \text{If} \quad s_1 = s_i = 1 \quad \text{, then } (A', \mathrm{flip}(b'))$

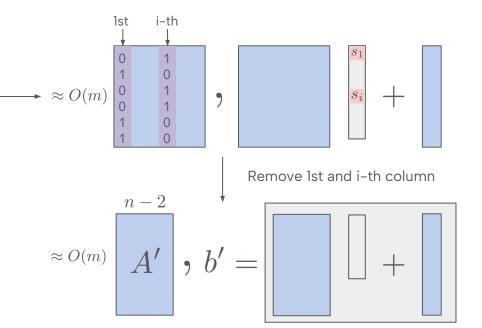
distribute like Planted distribute like Planted

(k-1)Lin with (n-2) variables



Most of the entries in the columns will be zero

Collect the rows with distinct value at 1 and i



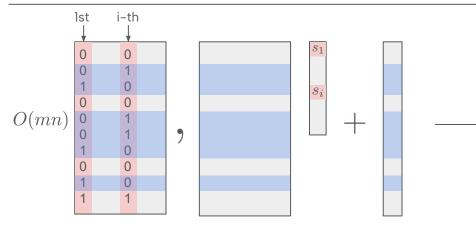
- If $s_1 = s_i = 0$, then (A', b')
- If $s_1 = s_i = 1$, then (A', flip(b'))
- If $s_1 \neq s_i$, then (A', b'), (A', flip(b'))

distribute like Planted

distribute like Planted

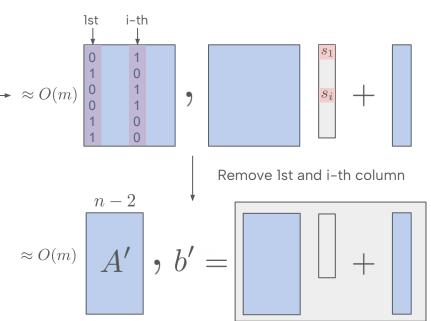
distribute like Null

(k-1)Lin with (n-2) variables



Most of the entries in the columns will be zero

Collect the rows with distinct value at 1 and i



• If $s_1 = s_i = 0$, then (A', b')

distribute like Planted

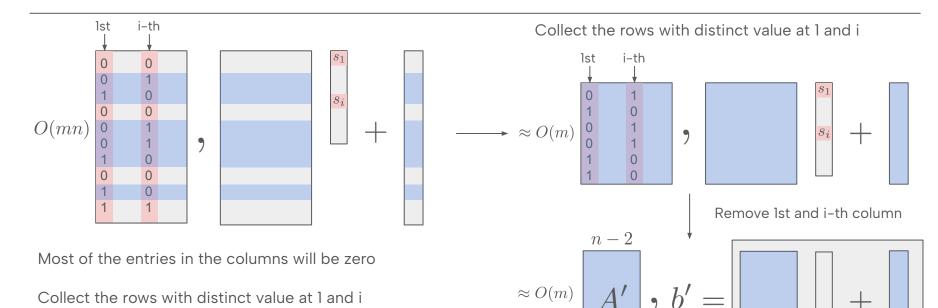
• If $s_1 = s_i = 1$, then (A', flip(b'))

distribute like Planted

(k-1)Lin with (n-2) variables

• [If $s_1 \neq s_i$, then (A',b'), $(A',\mathrm{flip}(b'))$

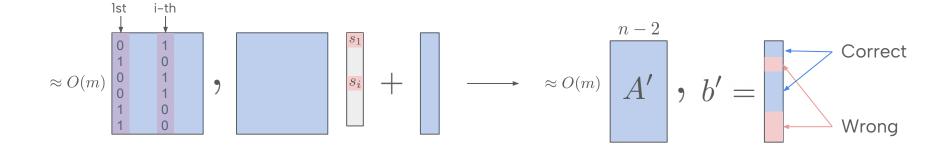
distribute like Null



If $s_1 \neq s_i$, then (A',b'), $(A',\mathrm{flip}(b'))$ distribute like Null

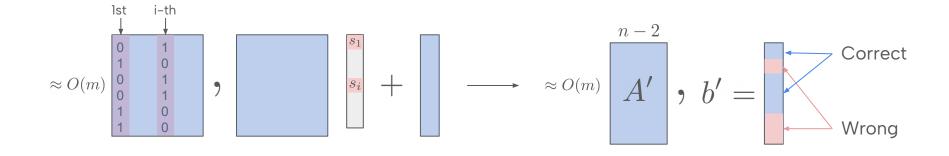
If $s_1 \neq s_i$, then (A', b'), (A', flip(b')) distribute like Null

• If $s_1=1,s_i=0$, (1 ... 0 ...) row is wrong, (0 ... 1 ...) row is correct



If $s_1 \neq s_i$, then (A', b'), (A', flip(b')) distribute like Null

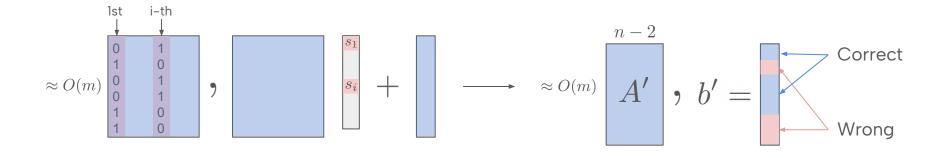
- If $s_1=1, s_i=0$, (1 ... 0 ...) row is wrong, (0 ... 1 ...) row is correct
- If $s_1 = 0, s_i = 1$, (0 ... 1 ...) row is wrong, (1 ... 0 ...) row is correct



If $s_1 \neq s_i$, then (A', b'), (A', flip(b')) distribute like Null

- If $s_1=1, s_i=0$, (1 ... 0 ...) row is wrong, (0 ... 1 ...) row is correct
- If $s_1 = 0, s_i = 1$, (0 ... 1 ...) row is wrong, (1 ... 0 ...) row is correct

On expectation, half of the rows (equations) are correct, other half is wrong

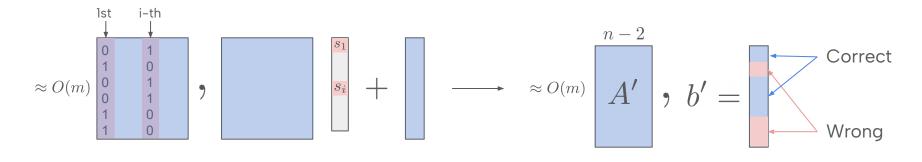


If $s_1 \neq s_i$, then (A', b'), (A', flip(b')) distribute like Null

- If $s_1=1, s_i=0$, (1 ... 0 ...) row is wrong, (0 ... 1 ...) row is correct
- If $s_1 = 0$, $s_i = 1$, (0 ... 1 ...) row is wrong, (1 ... 0 ...) row is correct

On expectation, half of the rows (equations) are correct, other half is wrong

Does not know the origin of the rows, evaluated vector looks like a random vector



1. Guess value of $\,S_1$, predict $\,S_i\,$ for all $\,i\in[2,n]\,$ by transform and send to $\,$

- 1. Guess value of $\,S_1$, predict $\,S_i$ for all $\,i\in[2,n]\,$ by transform and send to $\,$
- 2. Independence can be enforced from not using same row, O(mn) rows suffices

- 1. Guess value of $\,s_1$, predict $\,s_i\,$ for all $\,i\in[2,n]\,$ by transform and send to $\,\mathsf{D}\,$
- 2. Independence can be enforced from not using same row, O(mn) rows suffices
- 3. Each prediction of S_i correct with some probability

- 1. Guess value of $\,S_1$, predict $\,S_i$ for all $\,i\in[2,n]\,$ by transform and send to $\,$
- 2. Independence can be enforced from not using same row, O(mn) rows suffices
- 3. Each prediction of S_i correct with some probability
- 4. Amplify the probability for s_i

- 1. Guess value of $\,S_1$, predict $\,S_i$ for all $\,i\in[2,n]\,$ by transform and send to $\,$
- 2. Independence can be enforced from not using same row, O(mn) rows suffices
- 3. Each prediction of S_i correct with some probability
- 4. Amplify the probability for s_i

Amplification

Non-Error Aware

Error Aware

- 1. Guess value of $\,S_1$, predict $\,S_i\,$ for all $\,i\in[2,n]\,$ by transform and send to $\,$
- 2. Independence can be enforced from not using same row, O(mn) rows suffices
- 3. Each prediction of S_i correct with some probability
- 4. Amplify the probability for s_i

Amplification

Non-Error Aware

Error Aware

- 1. Get more equations
- 2. Repeat procedure
- 3. Take majority answer

- 1. Guess value of $\,{s}_1$, predict $\,{s}_i$ for all $\,i\in[2,n]\,$ by transform and send to $\,{f D}$
- 2. Independence can be enforced from not using same row, O(mn) rows suffices
- 3. Each prediction of S_i correct with some probability
- 4. Amplify the probability for s_i

Amplification

Non-Error Aware

- 1. Get more equations
- 2. Repeat procedure
- 3. Take majority answer

Error Aware

- 1. Get more equations
- 2. Substitute in predicted secret
- Get more accurate secret
- 4. Repeat

Larger Finite Field

Our Technique works for Sparse \mathbb{F}_q - LPN

Sample size independent from size of Field, but time complexity affected

Larger Finite Field

Our Technique works for Sparse \mathbb{F}_q - LPN

Sample size independent from size of Field, but time complexity affected

Larger Finite Field

Our Technique works for Sparse \mathbb{F}_q - LPN

Sample size independent from size of Field, but time complexity affected

Goldreich Function

Model kLin as
$$P(s_{i_1}, s_{i_2}, \dots, s_{i_k}) = s_{i_1} + s_{i_2} + \dots + s_{i_k} + e$$

Larger Finite Field

Our Technique works for Sparse \mathbb{F}_q – LPN

Sample size independent from size of Field, but time complexity affected

Goldreich Function

Model kLin as
$$P(s_{i_1}, s_{i_2}, \dots, s_{i_k}) = s_{i_1} + s_{i_2} + \dots + s_{i_k} + e$$

Our technique works for as long as $P(s_{i_1},s_{i_2},\ldots,s_{i_k})=s_{i_1}+Q(s_{i_2},\ldots,s_{i_{k-1}})$

For arbitrary \mathbb{F}_2 valued function Q

Assume that Decision Algorithm is secret independent

Currently, efficient algorithm exists only with sample $\,\Omega(n^{k/2})\,$

Currently, efficient algorithm exists only with sample $\,\Omega(n^{k/2})\,$

- ullet Best (k-1)Lin decision algorithm requires $\,\Omega(n^{(k-1)/2})\,$
- ullet Best kLin search algorithm requires $\,\Omega(n^{k/2})\,$

Currently, efficient algorithm exists only with sample $\,\Omega(n^{k/2})\,$

- ullet Best (k-1)Lin decision algorithm requires $\,\Omega(n^{(k-1)/2})\,$
- ullet Best kLin search algorithm requires $\,\Omega(n^{k/2})\,$

$$\begin{array}{ccc} \text{Best efficient} & & & & \\ \text{(k-1)Lin Decision} & & & & \\ \end{array} & & & & \\ & & & \\ \end{array} & \begin{array}{c} \text{Exist efficient kLin} \, \Omega\big(\underline{n^{(k-1)/2}} \, \times n\big) = \Omega\big(n^{(k+1)/2}\big) \\ & & \\ \end{array} & \\ & & \\ \end{array}$$

Currently, efficient algorithm exists only with sample $\,\Omega(n^{k/2})\,$

- ullet Best (k-1)Lin decision algorithm requires $\,\Omega(n^{(k-1)/2})\,$
- ullet Best kLin search algorithm requires $\,\Omega(n^{k/2})\,$

$$\Omega(n^{(k-1)/2}) \qquad \text{Exist efficient kLin} \ \Omega(n^{(k-1)/2} \times n) = \Omega(n^{(k+1)/2}) \\ \text{Search} \\ \text{However,} \\ \text{Best kLin} \\ \text{Search} \\ \Omega(n^{(k-1)/2})$$

Currently, efficient algorithm exists only with sample $\,\Omega(n^{k/2})\,$

- ullet Best (k-1)Lin decision algorithm requires $\,\Omega(n^{(k-1)/2})\,$
- ullet Best kLin search algorithm requires $\,\Omega(n^{k/2})\,$

Currently, efficient algorithm exists only with sample $\,\Omega(n^{k/2})\,$

- ullet Best (k-1)Lin decision algorithm requires $\,\Omega(n^{(k-1)/2})\,$
- ullet Best kLin search algorithm requires $\,\Omega(n^{k/2})\,$

