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o Setting: n parties, pairwise channels

o Goal: Sender distributes m consistently

 Problem: Majority of 1 < n parties is malicious
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« |ike Broadcast, but everybody sends — n consistent outputs

 Many applications e.g. MPC and Secret Sharing
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What Makes a Protocol Efficient?

 \Want to run protocol in large-scale networks = n could be very large

« Communication Complexity: how many bits does protocol exchange?

. Should scale well as function of n, e.g. O(n?) is better than O(n*)

 Our work: improve communication complexity
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 Shared clock
» Honest messages delivered in A time, no drops

« Up to f < n/2 malicious corruptions
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 Adaptive: Adversary corrupts parties at any point of execution
 Rushing: Learns honest messages immediately in each round
* Can not drop messages that party sent while it was still honest

* Can not corrupt during atomic send operation
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sky, pk;

* Only allows for basic crypto’ (hash functions, signatures, public/secret key encryption)
* Parties generate their own keys, post them to public bulletin board before start of execution
* Pro: Crypto compatible with DY model is simple and very efficient

 Con: Harder to construct asymptotically efficient protocols
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Some Notation

e K :normalized cryptographic parameter size (hashes, signatures etc.)

. ) : statistical security parameter; want security with probability 1 — 27
e 1 :number of parties, t < n parties are malicious

» Typical values: 4 ~ 100, x =~ 256

e N 2>K2>A

» A and k factors matter in practice!
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Our Result: New Protocol in DY Model

e Resilience: r < n/2 in DY model

. Communication: O(n” - £ - log(n) + n - k - log*(n))
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Fundamental Operation: Distributing Certificate

» Certificate C is a list of 7 + 1 signatures on some message

e DY model = C has size O(t - k) = O(n - k)

. Naive echoing: O(n° - k) bits
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ldea: Replace Send-to-All with Gossip

 Gossip: Tell message to few neighbours (only once), they do the same

 Everybody learns the message in log(7) rounds with O(n) complexity
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 Adaptive adversary can eclipse the sender

* Shuts down the process before the message spreads
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Key idea: Cover Traffic (T simos et al. CRYPTO 22)

c; = Enc (m3)

Cyp = Enc m4 Cy = E”C mz

C3 — EnC m3

C| = Enc ml

/;2 — EnC mZ
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PBC inherently costs O(nz) communication =— all-to-all communication is ok!

ldea: run n gossip instances in parallel (one per sender)
Send same sized ciphertext to every party in every gossip round

Instances provide cover traffic for each other

Still costs O(n%x]) bits
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Two-Step Approach

« Step 1: Reduce PBC to Binary Consensus

. Step 2: Binary consensus in O(n” - k) bits using novel DY-based gossip
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Issue with Naive Pulling

P will never query for a
signature from P, again

—> P, never learns C’ from
an honest party! °.°

» Naive attempt: pull O(1) missing indices
» Issue: Certificate could exist for any message m’ #= m
» 0,(m’) for m" # m is never pulled

* Prevents signatures in certificate from spreading

C' = {6,(m'), 03(m’), o65(m’) }
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» Test for new information before pulling = O(log(k)) extra bits per index

* Pull only if test indicates a different signature

* Jechnical issue: signatures on same message can be syntactically different
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P’ P
Incomplete certificate C’; missing single index
Complete C; has different signatures on superset of indices in C’' on same message m
Naive: P’ tests for O(4) random indices missing from C’ per gossip round

All tests positive = missing index is pulled with probability 1/x

A rounds to learn missing index with probability 1 — 27 = still costs O(n” - k - 1) bits
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Increasing the Probability of Pulling
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(' is a full certificate
P. P for m

« Foreach P;:

» P samples O(A) signatures in C

» P finds (via testing) O(1) signatures among sample that P; doesn’t have
» P, pulls missing index with probability O(4/n) (improved from naive O(1/n) probability)

« Per round, A honest parties learn a new signature from P with probability 1 — 24
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« Initially, ensures that O(n) parties each learn O(1) signatures from C with probability 1 — 27 > 1 — 274
. Later on, ensures A parties learn some new signatures from C with probability 1 — 27
e Push random O(1) indices to all parties

* Increases spread of signatures by constant factor with probability 1 — 2~4 due to concentration over at least A parties
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Open Questions

* Apply pull-based gossip for the t < n regime (in progress)

« Better round efficiency; can gossip run 'in the background’?

 Applications to the information theoretic case with t < n/3
* Improvements to VSS?

* Pulling-based gossip in the asynchronous model

 Asynchronous common subset In O(n2 - £) in the DY model?



