
Nearly Optimal Parallel
Broadcast in the Plain Public Key
Model
Ran Gelles (Bar-Ilan University), Christoph Lenzen (CISPA), Julian Loss
(CISPA), Sravya Yandamuri (Duke University and Common Prefix)

Byzantine Broadcast

Byzantine Broadcast

🧑

Sender

Byzantine Broadcast

🧑

👨🦳

👵

👨🦰

👩🦲

Sender

Receivers

Byzantine Broadcast

🧑

👨🦳

👵

👨🦰

👩🦲

Sender

Receiversm

• Setting: parties, pairwise channelsn

Byzantine Broadcast

🧑

👨🦳

👵

👨🦰

👩🦲

Sender

Receiversm

m

m

m
m

• Setting: parties, pairwise channelsn

• Goal: Sender distributes consistentlym

Byzantine Broadcast

🧑

👨🦳

👵

👨🦰

👩🦲

Sender

Receiversm

m

m

m
m

• Setting: parties, pairwise channelsn

• Goal: Sender distributes consistentlym

• Problem: Majority of parties is malicioust < n

Byzantine Broadcast

👵

👨🦰

Sender

Receiversm

m

m

m
m

😈

😈

😈

This Work: Efficient Parallel Brodcast

This Work: Efficient Parallel Brodcast

• Like Broadcast, but everybody sends consistent outputs⟹ n

This Work: Efficient Parallel Brodcast

• Like Broadcast, but everybody sends consistent outputs⟹ n

• Many applications e.g. MPC and Secret Sharing

What Makes a Protocol Efficient?

What Makes a Protocol Efficient?

• Want to run protocol in large-scale networks could be very large⟹ n

What Makes a Protocol Efficient?

• Want to run protocol in large-scale networks could be very large⟹ n

• Communication Complexity: how many bits does protocol exchange?

What Makes a Protocol Efficient?

• Want to run protocol in large-scale networks could be very large⟹ n

• Communication Complexity: how many bits does protocol exchange?

• Should scale well as function of , e.g. is better than n O(n2) O(n4)

What Makes a Protocol Efficient?

• Want to run protocol in large-scale networks could be very large⟹ n

• Communication Complexity: how many bits does protocol exchange?

• Should scale well as function of , e.g. is better than n O(n2) O(n4)

• Our work: improve communication complexity

Synchronous Network Model

👨🦰🧑

Synchronous Network Model

• Shared clock

👨🦰🧑

Synchronous Network Model

• Shared clock

👨🦰🧑
m

Synchronous Network Model

• Shared clock

👨🦰🧑
m

😈

Synchronous Network Model

• Shared clock

• Honest messages delivered in time, no dropsΔ

👨🦰🧑
m
Δ
😈

Synchronous Network Model

• Shared clock

• Honest messages delivered in time, no dropsΔ

• Up to malicious corruptionst < n/2

👨🦰
m
Δ😈

Synchronous Network Model (cont.)

🧑 👨🦰

👩🦱

Synchronous Network Model (cont.)

• Adaptive: Adversary corrupts parties at any point of execution

🧑 👨🦰

👩🦱

Synchronous Network Model (cont.)

• Adaptive: Adversary corrupts parties at any point of execution

🧑 👨🦰

😈

Synchronous Network Model (cont.)

• Adaptive: Adversary corrupts parties at any point of execution

• Rushing: Learns honest messages immediately in each round

🧑 👨🦰

😈

Synchronous Network Model (cont.)

• Adaptive: Adversary corrupts parties at any point of execution

• Rushing: Learns honest messages immediately in each round

🧑 👨🦰

m

m

😈

m′￼

m′￼

Synchronous Network Model (cont.)

• Adaptive: Adversary corrupts parties at any point of execution

• Rushing: Learns honest messages immediately in each round

🧑 👨🦰

m

m

😈

m′￼

m′￼m̂ m̂

Synchronous Network Model (cont.)

• Adaptive: Adversary corrupts parties at any point of execution

• Rushing: Learns honest messages immediately in each round

• Can not drop messages that party sent while it was still honest

🧑 👨🦰

m

m

😈

m′￼

m′￼m̂ m̂

Synchronous Network Model (cont.)

• Adaptive: Adversary corrupts parties at any point of execution

• Rushing: Learns honest messages immediately in each round

• Can not drop messages that party sent while it was still honest

• Can not corrupt during atomic send operation

🧑 👨🦰

m

m

😈

m′￼

m′￼m̂ m̂

Dolev-Yao Model

👨🦰

👵🧑

👨🦳

Dolev-Yao Model

• Only allows for `basic crypto’ (hash functions, signatures, public/secret key encryption)

👨🦰

👵🧑
sk1, pk1

sk2, pk2

sk4, pk4

sk3, pk3

👨🦳

Dolev-Yao Model

• Only allows for `basic crypto’ (hash functions, signatures, public/secret key encryption)

• Parties generate their own keys, post them to public bulletin board before start of execution

👨🦰

👵🧑
sk1, pk1

sk2, pk2

sk4, pk4

sk3, pk3

👨🦳

Dolev-Yao Model

• Only allows for `basic crypto’ (hash functions, signatures, public/secret key encryption)

• Parties generate their own keys, post them to public bulletin board before start of execution

👨🦰

👵🧑
sk1, pk1

sk2, pk2

sk4, pk4

sk3, pk3

pk4

pk3pk2

pk1

👨🦳

Dolev-Yao Model

• Only allows for `basic crypto’ (hash functions, signatures, public/secret key encryption)

• Parties generate their own keys, post them to public bulletin board before start of execution

• Pro: Crypto compatible with DY model is simple and very efficient

👨🦰

👵🧑
sk1, pk1

sk2, pk2

sk4, pk4

sk3, pk3

pk4

pk3pk2

pk1

👨🦳

Dolev-Yao Model

• Only allows for `basic crypto’ (hash functions, signatures, public/secret key encryption)

• Parties generate their own keys, post them to public bulletin board before start of execution

• Pro: Crypto compatible with DY model is simple and very efficient

• Con: Harder to construct asymptotically efficient protocols

👨🦰

👵🧑
sk1, pk1

sk2, pk2

sk4, pk4

sk3, pk3

pk4

pk3pk2

pk1

👨🦳

Some Notation

Some Notation

• : normalized cryptographic parameter size (hashes, signatures etc.)κ

Some Notation

• : normalized cryptographic parameter size (hashes, signatures etc.)κ

• : statistical security parameter; want security with probability λ 1 − 2−λ

Some Notation

• : normalized cryptographic parameter size (hashes, signatures etc.)κ

• : statistical security parameter; want security with probability λ 1 − 2−λ

• : number of parties, parties are maliciousn t < n

Some Notation

• : normalized cryptographic parameter size (hashes, signatures etc.)κ

• : statistical security parameter; want security with probability λ 1 − 2−λ

• : number of parties, parties are maliciousn t < n

• Typical values: , λ ≈ 100 κ ≈ 256

Some Notation

• : normalized cryptographic parameter size (hashes, signatures etc.)κ

• : statistical security parameter; want security with probability λ 1 − 2−λ

• : number of parties, parties are maliciousn t < n

• Typical values: , λ ≈ 100 κ ≈ 256

• n ≥ κ ≥ λ

Some Notation

• : normalized cryptographic parameter size (hashes, signatures etc.)κ

• : statistical security parameter; want security with probability λ 1 − 2−λ

• : number of parties, parties are maliciousn t < n

• Typical values: , λ ≈ 100 κ ≈ 256

• n ≥ κ ≥ λ

• and factors matter in practice!λ κ

Our Result: New Protocol in DY Model

Our Result: New Protocol in DY Model

Our Result: New Protocol in DY Model

• Resilience: in DY modelt < n/2

Our Result: New Protocol in DY Model

• Resilience: in DY modelt < n/2

• Communication: O(n2 ⋅ ℓ ⋅ log(n) + n ⋅ κ ⋅ log4(n))

Fundamental Operation: Distributing Certificate

👵

👨🦰

👩🦱

🧑🦱

Fundamental Operation: Distributing Certificate

• Certificate is a list of signatures on some messageC t + 1

👵

👨🦰

👩🦱

🧑🦱

Fundamental Operation: Distributing Certificate

• Certificate is a list of signatures on some messageC t + 1

👵

👨🦰

👩🦱

🧑🦱
C

Fundamental Operation: Distributing Certificate

• Certificate is a list of signatures on some messageC t + 1

• DY model has size ⟹ C O(t ⋅ κ) = O(n ⋅ κ)

👵

👨🦰

👩🦱

🧑🦱
C

Fundamental Operation: Distributing Certificate

• Certificate is a list of signatures on some messageC t + 1

• DY model has size ⟹ C O(t ⋅ κ) = O(n ⋅ κ)

👵

👨🦰

👩🦱

🧑🦱
C

Fundamental Operation: Distributing Certificate

• Certificate is a list of signatures on some messageC t + 1

• DY model has size ⟹ C O(t ⋅ κ) = O(n ⋅ κ)

👵

👨🦰

👩🦱

🧑🦱

C

C

C

C

Fundamental Operation: Distributing Certificate

• Certificate is a list of signatures on some messageC t + 1

• DY model has size ⟹ C O(t ⋅ κ) = O(n ⋅ κ)

• Naive echoing: bitsO(n3 ⋅ κ)

👵

👨🦰

👩🦱

🧑🦱

C

C

C

C

Idea: Replace Send-to-All with Gossip

Idea: Replace Send-to-All with Gossip

• Gossip: Tell message to few neighbours (only once), they do the same

Idea: Replace Send-to-All with Gossip

• Gossip: Tell message to few neighbours (only once), they do the same

Idea: Replace Send-to-All with Gossip

• Gossip: Tell message to few neighbours (only once), they do the same

Idea: Replace Send-to-All with Gossip

• Gossip: Tell message to few neighbours (only once), they do the same

Idea: Replace Send-to-All with Gossip

• Gossip: Tell message to few neighbours (only once), they do the same

• Everybody learns the message in rounds with complexitylog(n) Õ(n)

Not Possible versus Adaptive Adversary!

Not Possible versus Adaptive Adversary!

Not Possible versus Adaptive Adversary!

• Adaptive adversary can eclipse the sender

😈
😈

😈

😈

😈

Not Possible versus Adaptive Adversary!

• Adaptive adversary can eclipse the sender

• Shuts down the process before the message spreads

😈
😈

😈

😈

😈

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

c1 = 𝖤𝗇𝖼 (m1)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

c1 = 𝖤𝗇𝖼 (m1)

c̃1 = 𝖤𝗇𝖼 (m1)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

c1 = 𝖤𝗇𝖼 (m1)

c̃1 = 𝖤𝗇𝖼 (m1) c2 = 𝖤𝗇𝖼 (m2)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

c1 = 𝖤𝗇𝖼 (m1)

c̃1 = 𝖤𝗇𝖼 (m1)

c̃2 = 𝖤𝗇𝖼 (m2)

c2 = 𝖤𝗇𝖼 (m2)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

c1 = 𝖤𝗇𝖼 (m1)

c̃1 = 𝖤𝗇𝖼 (m1)

c3 = 𝖤𝗇𝖼 (m3)c̃2 = 𝖤𝗇𝖼 (m2)

c2 = 𝖤𝗇𝖼 (m2)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

c1 = 𝖤𝗇𝖼 (m1)

c̃1 = 𝖤𝗇𝖼 (m1)

c3 = 𝖤𝗇𝖼 (m3)

c̃3 = 𝖤𝗇𝖼 (m3)

c̃2 = 𝖤𝗇𝖼 (m2)

c2 = 𝖤𝗇𝖼 (m2)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

c1 = 𝖤𝗇𝖼 (m1)

c̃1 = 𝖤𝗇𝖼 (m1)

c3 = 𝖤𝗇𝖼 (m3)

c̃3 = 𝖤𝗇𝖼 (m3)

c4 = 𝖤𝗇𝖼 (m4) c̃2 = 𝖤𝗇𝖼 (m2)

c2 = 𝖤𝗇𝖼 (m2)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

• Send same sized ciphertext to every party in every gossip round

c1 = 𝖤𝗇𝖼 (m1)

c̃1 = 𝖤𝗇𝖼 (m1)

c3 = 𝖤𝗇𝖼 (m3)

c̃3 = 𝖤𝗇𝖼 (m3)

c4 = 𝖤𝗇𝖼 (m4) c̃2 = 𝖤𝗇𝖼 (m2)

c2 = 𝖤𝗇𝖼 (m2)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

• Send same sized ciphertext to every party in every gossip round

• Instances provide cover traffic for each other

c1 = 𝖤𝗇𝖼 (m1)

c̃1 = 𝖤𝗇𝖼 (m1)

c3 = 𝖤𝗇𝖼 (m3)

c̃3 = 𝖤𝗇𝖼 (m3)

c4 = 𝖤𝗇𝖼 (m4) c̃2 = 𝖤𝗇𝖼 (m2)

c2 = 𝖤𝗇𝖼 (m2)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

🧑
• PBC inherently costs communication all-to-all communication is ok!O(n2) ⟹

• Idea: run gossip instances in parallel (one per sender)n

• Send same sized ciphertext to every party in every gossip round

• Instances provide cover traffic for each other

• Still costs bitsO(n2κλ)

c1 = 𝖤𝗇𝖼 (m1)

c̃1 = 𝖤𝗇𝖼 (m1)

c3 = 𝖤𝗇𝖼 (m3)

c̃3 = 𝖤𝗇𝖼 (m3)

c4 = 𝖤𝗇𝖼 (m4) c̃2 = 𝖤𝗇𝖼 (m2)

c2 = 𝖤𝗇𝖼 (m2)

Two-Step Approach

Two-Step Approach

• Step 1: Reduce PBC to Binary Consensus

Two-Step Approach

• Step 1: Reduce PBC to Binary Consensus

• Step 2: Binary consensus in bits using novel DY-based gossipO(n2 ⋅ κ)

Pull-Based Gossip

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

Pull-Based Gossip

• Ask for (pull) signatures from other parties

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ2(m)

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ2(m)

σ2(m)

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)σ2(m)

σ2(m)

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)

σ2(m)

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)

σ2(m)

σ3(m′￼)

Pull-Based Gossip

• Ask for (pull) signatures from other parties

• Pull only indices you are missing

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)

σ2(m)

σ3(m′￼)

σ3(m′￼)

Issue with Naive Pulling

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ2(m)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ2(m)
σ2(m)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)
σ2(m)

σ2(m)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)
σ2(m)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)
σ2(m)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

σ3(m′￼)

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)
σ2(m)

σ3(m′￼)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

σ3(m′￼)

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)
σ2(m)

σ3(m′￼)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

 will never query for a
signature from again
P1

P2

σ3(m′￼)

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)
σ2(m)

σ3(m′￼)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

 will never query for a
signature from again
P1

P2

 never learns from
an honest party!

⟹ P1 C′￼

σ3(m′￼)

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

• Issue: Certificate could exist for any message m′￼ ≠ m

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)
σ2(m)

σ3(m′￼)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

 will never query for a
signature from again
P1

P2

 never learns from
an honest party!

⟹ P1 C′￼

σ3(m′￼)

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

• Issue: Certificate could exist for any message m′￼ ≠ m

• for is never pulledσi(m′￼) m′￼ ≠ m

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)
σ2(m)

σ3(m′￼)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

 will never query for a
signature from again
P1

P2

 never learns from
an honest party!

⟹ P1 C′￼

σ3(m′￼)

Issue with Naive Pulling

• Naive attempt: pull missing indicesO(1)

• Issue: Certificate could exist for any message m′￼ ≠ m

• for is never pulledσi(m′￼) m′￼ ≠ m

• Prevents signatures in certificate from spreading

👵

👨🦰

😈

🧑

🧑🦱

σ1(m)

σ2(m)

σ2(m)

σ3(m′￼)

σ4(m′￼)
σ3(m′￼)

2,4

2,3

4,5

3,4

σ3(m′￼)

σ3(m′￼)

σ2(m)
σ2(m)

σ3(m′￼)

C′￼ = {σ2(m′￼), σ3(m′￼), σ5(m′￼)}

 will never query for a
signature from again
P1

P2

 never learns from
an honest party!

⟹ P1 C′￼

σ3(m′￼)

Pull-Based Gossip with Testing

👵🧑
P′￼ P

Pull-Based Gossip with Testing

👵🧑σ2(m)

P′￼ P

Pull-Based Gossip with Testing

• Test for new information before pulling extra bits per index⟹ O(log(κ))

👵🧑σ2(m)
 bitsO(log(κ))

P′￼ P

Pull-Based Gossip with Testing

• Test for new information before pulling extra bits per index⟹ O(log(κ))

• Pull only if test indicates a different signature

👵🧑σ2(m)
 bitsO(log(κ))

P′￼ P

Pull-Based Gossip with Testing

• Test for new information before pulling extra bits per index⟹ O(log(κ))

• Pull only if test indicates a different signature

👵🧑 σ2(m′￼)σ2(m)
 bitsO(log(κ))

P′￼ P

Pull-Based Gossip with Testing

• Test for new information before pulling extra bits per index⟹ O(log(κ))

• Pull only if test indicates a different signature

• Technical issue: signatures on same message can be syntactically different

👵🧑σ2(m)
 bitsO(log(κ))

̂σ2(m)

P′￼ P

Issues with Naive Testing

👵🧑
P′￼ P

Issues with Naive Testing

• Incomplete certificate ; missing single indexC′￼

👵🧑
C′￼

P′￼ P

Issues with Naive Testing

• Incomplete certificate ; missing single indexC′￼

• Complete ; has different signatures on superset of indices in on same message C C′￼ m

👵🧑
C′￼

P′￼ P

C

Issues with Naive Testing

• Incomplete certificate ; missing single indexC′￼

• Complete ; has different signatures on superset of indices in on same message C C′￼ m

• Naive: tests for random indices missing from per gossip roundP′￼ O(λ) C′￼

👵🧑
C′￼

P′￼ P

C

Issues with Naive Testing

• Incomplete certificate ; missing single indexC′￼

• Complete ; has different signatures on superset of indices in on same message C C′￼ m

• Naive: tests for random indices missing from per gossip roundP′￼ O(λ) C′￼

👵🧑
C′￼ λ

P′￼ P

C

Issues with Naive Testing

• Incomplete certificate ; missing single indexC′￼

• Complete ; has different signatures on superset of indices in on same message C C′￼ m

• Naive: tests for random indices missing from per gossip roundP′￼ O(λ) C′￼

• All tests positive missing index is pulled with probability ⟹ 1/n

👵🧑
C′￼ λ

P′￼ P

C

Issues with Naive Testing

• Incomplete certificate ; missing single indexC′￼

• Complete ; has different signatures on superset of indices in on same message C C′￼ m

• Naive: tests for random indices missing from per gossip roundP′￼ O(λ) C′￼

• All tests positive missing index is pulled with probability ⟹ 1/n

• rounds to learn missing index with probability still costs bitsλ 1 − 2−λ ⟹ O(n2 ⋅ κ ⋅ λ)

👵🧑
C′￼ λ

P′￼ P

C

Increasing the Probability of Pulling

👵🧑
Pi P

Increasing the Probability of Pulling

👵🧑
Pi P

C′￼ C

Increasing the Probability of Pulling

👵🧑
Pi P

C′￼ C

 is a full certificate

for

C
m

Increasing the Probability of Pulling

• For each : Pi

👵🧑
Pi P

C′￼ C

 is a full certificate

for

C
m

Increasing the Probability of Pulling

• For each : Pi

• samples signatures in P O(λ) C

👵🧑
Pi P

C′￼ C

 is a full certificate

for

C
m

Increasing the Probability of Pulling

• For each : Pi

• samples signatures in P O(λ) C

• finds (via testing) signatures among sample that doesn’t haveP O(1) Pi

👵🧑
λ

Pi P

C′￼ C

 is a full certificate

for

C
m

Increasing the Probability of Pulling

• For each : Pi

• samples signatures in P O(λ) C

• finds (via testing) signatures among sample that doesn’t haveP O(1) Pi

• pulls missing index with probability (improved from naive probability)Pi O(λ/n) O(1/n)

👵🧑
λ

Pi P

C′￼ C

 is a full certificate

for

C
m

Increasing the Probability of Pulling

• For each : Pi

• samples signatures in P O(λ) C

• finds (via testing) signatures among sample that doesn’t haveP O(1) Pi

• pulls missing index with probability (improved from naive probability)Pi O(λ/n) O(1/n)

• Per round, honest parties learn a new signature from with probability λ P 1 − 2−λ

👵🧑
λ

Pi P

C′￼ C

 is a full certificate

for

C
m

Alternating Push/Pull Paradigm

🧑
C

P

Alternating Push/Pull Paradigm

🧑
C

P• Perform pulling step on certificate C

Alternating Push/Pull Paradigm

🧑
C

P• Perform pulling step on certificate C

Alternating Push/Pull Paradigm

🧑
C

P• Perform pulling step on certificate C

• Initially, ensures that parties each learn signatures from with probability O(n) O(1) C 1 − 2−n ≥ 1 − 2−λ

Alternating Push/Pull Paradigm

🧑
C

P• Perform pulling step on certificate C

• Initially, ensures that parties each learn signatures from with probability O(n) O(1) C 1 − 2−n ≥ 1 − 2−λ

• Later on, ensures parties learn some new signatures from with probability λ C 1 − 2−λ

Alternating Push/Pull Paradigm

🧑
C

P• Perform pulling step on certificate C

• Initially, ensures that parties each learn signatures from with probability O(n) O(1) C 1 − 2−n ≥ 1 − 2−λ

• Later on, ensures parties learn some new signatures from with probability λ C 1 − 2−λ

• Push random indices to all partiesO(1)

Alternating Push/Pull Paradigm

🧑
C

P• Perform pulling step on certificate C

• Initially, ensures that parties each learn signatures from with probability O(n) O(1) C 1 − 2−n ≥ 1 − 2−λ

• Later on, ensures parties learn some new signatures from with probability λ C 1 − 2−λ

• Push random indices to all partiesO(1)

Alternating Push/Pull Paradigm

🧑
C

P• Perform pulling step on certificate C

• Initially, ensures that parties each learn signatures from with probability O(n) O(1) C 1 − 2−n ≥ 1 − 2−λ

• Later on, ensures parties learn some new signatures from with probability λ C 1 − 2−λ

• Push random indices to all partiesO(1)

• Increases spread of signatures by constant factor with probability due to concentration over at least parties1 − 2−λ λ

Alternating Push/Pull Paradigm

🧑
C

P• Perform pulling step on certificate C

• Initially, ensures that parties each learn signatures from with probability O(n) O(1) C 1 − 2−n ≥ 1 − 2−λ

• Later on, ensures parties learn some new signatures from with probability λ C 1 − 2−λ

• Push random indices to all partiesO(1)

• Increases spread of signatures by constant factor with probability due to concentration over at least parties1 − 2−λ λ

Repeat times log(n)

Open Questions

Open Questions

• Apply pull-based gossip for the regime (in progress)t < n

Open Questions

• Apply pull-based gossip for the regime (in progress)t < n

• Better round efficiency; can gossip run `in the background’?

Open Questions

• Apply pull-based gossip for the regime (in progress)t < n

• Better round efficiency; can gossip run `in the background’?

• Applications to the information theoretic case with t < n/3

Open Questions

• Apply pull-based gossip for the regime (in progress)t < n

• Better round efficiency; can gossip run `in the background’?

• Applications to the information theoretic case with t < n/3

• Improvements to VSS?

Open Questions

• Apply pull-based gossip for the regime (in progress)t < n

• Better round efficiency; can gossip run `in the background’?

• Applications to the information theoretic case with t < n/3

• Improvements to VSS?

• Pulling-based gossip in the asynchronous model

Open Questions

• Apply pull-based gossip for the regime (in progress)t < n

• Better round efficiency; can gossip run `in the background’?

• Applications to the information theoretic case with t < n/3

• Improvements to VSS?

• Pulling-based gossip in the asynchronous model

• Asynchronous common subset in in the DY model?O(n2 ⋅ ℓ)

