Nearly Optimal Parallel
Broadcast in the Plain Public Key
Model

Ran Gelles (Bar-llan University), Christoph Lenzen (CISPA), Julian Loss
(CISPA), Sravya Yandamuri (Duke University and Common Prefix)

Funded by
the European Union

Byzantine Broadcast

Byzantine Broadcast

Sender

‘/\Is a’

N

Byzantine Broadcast

Sender

'L; a~

Recelvers

N

Byzantine Broadcast

Sender

{%_6{. lﬂ Receivers

Byzantine Broadcast

Recelvers

Byzantine Broadcast

° o

Sender

Recelvers

o Setting: n parties, pairwise channels

o Goal: Sender distributes m consistently

Byzantine Broadcast

O

D e

Sender

o °

Recelvers

o Setting: n parties, pairwise channels

o Goal: Sender distributes m consistently

 Problem: Majority of 1 < n parties is malicious

This Work: Efficient Parallel Brodcast

This Work: Efficient Parallel Brodcast

« |ike Broadcast, but everybody sends — n consistent outputs

This Work: Efficient Parallel Brodcast

« |ike Broadcast, but everybody sends — n consistent outputs

 Many applications e.g. MPC and Secret Sharing

What Makes a Protocol Efficient?

What Makes a Protocol Efficient?

 \Want to run protocol in large-scale networks = n could be very large

What Makes a Protocol Efficient?

 \Want to run protocol in large-scale networks = n could be very large

« Communication Complexity: how many bits does protocol exchange?

What Makes a Protocol Efficient?

 \Want to run protocol in large-scale networks = n could be very large

« Communication Complexity: how many bits does protocol exchange?

. Should scale well as function of n, e.g. O(n?) is better than O(n*)

What Makes a Protocol Efficient?

 \Want to run protocol in large-scale networks = n could be very large

« Communication Complexity: how many bits does protocol exchange?

. Should scale well as function of n, e.g. O(n?) is better than O(n*)

 Our work: improve communication complexity

Synchronous Network Model

Synchronous Network Model

« Shared clock

Synchronous Network Model

« Shared clock

Synchronous Network Model

« Shared clock

Synchronous Network Model

« Shared clock

» Honest messages delivered in A time, no drops

Synchronous Network Model

’—--n
L@ Q‘
— ——

 Shared clock
» Honest messages delivered in A time, no drops

« Up to f < n/2 malicious corruptions

Synchronous Network Model (cont.)

Synchronous Network Model (cont.)

‘ﬂla a.

A~ 4

 Adaptive: Adversary corrupts parties at any point of execution

Synchronous Network Model (cont.)

O

" I)‘—“‘
C O @ 9

L N ~

 Adaptive: Adversary corrupts parties at any point of execution

Synchronous Network Model (cont.)

O

®)
®)

AN _ 4 3

 Adaptive: Adversary corrupts parties at any point of execution

 Rushing: Learns honest messages immediately in each round

Synchronous Network Model (cont.)

A~ 4

 Adaptive: Adversary corrupts parties at any point of execution

 Rushing: Learns honest messages immediately in each round

Synchronous Network Model (cont.)

O

nAfz Aﬂm
m’

—
N = # -_— ——

m

 Adaptive: Adversary corrupts parties at any point of execution

 Rushing: Learns honest messages immediately in each round

Synchronous Network Model (cont.)

nAfz Aﬂm
m’

—
N = # -_— ——

m

 Adaptive: Adversary corrupts parties at any point of execution
 Rushing: Learns honest messages immediately in each round

* Can not drop messages that party sent while it was still honest

Synchronous Network Model (cont.)

nAfz Aﬂm
m’

—
-_— ——

m

 Adaptive: Adversary corrupts parties at any point of execution
 Rushing: Learns honest messages immediately in each round
* Can not drop messages that party sent while it was still honest

* Can not corrupt during atomic send operation

Dolev-Yao Model

‘hlz; a~

Dolev-Yao Model

sky, pky

* Only allows for basic crypto’ (hash functions, signatures, public/secret key encryption)

Dolev-Yao Model

N
Skl’pkl Sk49 pk4
Skz,pkz Sk3’pk3

* Only allows for basic crypto’ (hash functions, signatures, public/secret key encryption)

* Parties generate their own keys, post them to public bulletin board before start of execution

Dolev-Yao Model

sky, pky

* Only allows for basic crypto’ (hash functions, signatures, public/secret key encryption)

* Parties generate their own keys, post them to public bulletin board before start of execution

Dolev-Yao Model

sky, pky

* Only allows for basic crypto’ (hash functions, signatures, public/secret key encryption)
* Parties generate their own keys, post them to public bulletin board before start of execution

* Pro: Crypto compatible with DY model is simple and very efficient

Dolev-Yao Model

N

sky, pk;

* Only allows for basic crypto’ (hash functions, signatures, public/secret key encryption)
* Parties generate their own keys, post them to public bulletin board before start of execution
* Pro: Crypto compatible with DY model is simple and very efficient

 Con: Harder to construct asymptotically efficient protocols

Some Notation

Some Notation

e K :normalized cryptographic parameter size (hashes, signatures etc.)

Some Notation

e K :normalized cryptographic parameter size (hashes, signatures etc.)

.) : statistical security parameter; want security with probability 1 — 27

Some Notation

e K :normalized cryptographic parameter size (hashes, signatures etc.)
.) : statistical security parameter; want security with probability 1 — 27

e 1 . number of parties, f < n parties are malicious

Some Notation

e K :normalized cryptographic parameter size (hashes, signatures etc.)
.) : statistical security parameter; want security with probability 1 — 27
e 1 :number of parties, t < n parties are malicious

» Typical values: 41 =~ 100, x ~ 256

Some Notation

e K :normalized cryptographic parameter size (hashes, signatures etc.)

.) : statistical security parameter; want security with probability 1 — 27
e 1 :number of parties, t < n parties are malicious

» Typical values: 4 ~ 100, x =~ 256

e n>K>A1

Some Notation

e K :normalized cryptographic parameter size (hashes, signatures etc.)

.) : statistical security parameter; want security with probability 1 — 27
e 1 :number of parties, t < n parties are malicious

» Typical values: 4 ~ 100, x =~ 256

e N 2>K2>A

» A and k factors matter in practice!

Our Result: New Protocol in DY Model

Our Result: New Protocol in DY Model

Our Result: New Protocol in DY Model

e Resilience: r < n/2 in DY model

Our Result: New Protocol in DY Model

e Resilience: r < n/2 in DY model

. Communication: O(n” - £ - log(n) + n - k - log*(n))

Fundamental Operation: Distributing Certificate

'—-Q
‘Q Ol
J—

Fundamental Operation: Distributing Certificate

'a--n
‘Q Ol
J—

» Certificate C is a list of r + 1 signatures on some message "

Fundamental Operation: Distributing Certificate

'a--n
‘Q Ol
J—

» Certificate C is a list of r + 1 signatures on some message "

Fundamental Operation: Distributing Certificate

'—--
‘Q O;
—~———

« Certificate C is a list of r 4+ 1 signatures on some message

e DY model = C has size O(t - k) = O(n - k) VC

Fundamental Operation: Distributing Certificate

» Certificate C is a list of 7 + 1 signatures on some message

e DY model = C has size O(t - k) = O(n - k)

Fundamental Operation: Distributing Certificate

» Certificate C is a list of 7 + 1 signatures on some message

e DY model = C has size O(t - k) = O(n - k)

Fundamental Operation: Distributing Certificate

» Certificate C is a list of 7 + 1 signatures on some message

e DY model = C has size O(t - k) = O(n - k)

. Naive echoing: O(n° - k) bits

ldea: Replace Send-to-All with Gossip

ldea: Replace Send-to-All with Gossip

 Gossip: Tell message to few neighbours (only once), they do the same

ldea: Replace Send-to-All with Gossip

 Gossip: Tell message to few neighbours (only once), they do the same

ldea: Replace Send-to-All with Gossip

 Gossip: Tell message to few neighbours (only once), they do the same

ldea: Replace Send-to-All with Gossip
e

 Gossip: Tell message to few neighbours (only once), they do the same

ldea: Replace Send-to-All with Gossip

 Gossip: Tell message to few neighbours (only once), they do the same

 Everybody learns the message in log(7) rounds with O(n) complexity

Not Possible versus Adaptive Adversary!

Not Possible versus Adaptive Adversary!

Not Possible versus Adaptive Adversary!

00 o o0
o0 o000 o
000000
oo o0 0o
000000

 Adaptive adversary can eclipse the sender

Not Possible versus Adaptive Adversary!

00 o o0
o0 o000 o
000000
oo o0 0 o
000000

 Adaptive adversary can eclipse the sender

* Shuts down the process before the message spreads

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

‘% 5\.

N

 PBC inherently costs O(nz) communication =— all-to-all communication is ok!

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

‘L; a~

N

 PBC inherently costs O(nz) communication =— all-to-all communication is ok!

e |dea: run n gossip instances in parallel (one per sender)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

¢, = Enc (ml)

/

 PBC inherently costs O(nz) communication =— all-to-all communication is ok!

‘L; a~

N

e |dea: run n gossip instances in parallel (one per sender)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

¢, = Enc (ml)

51 = Enc (ml) g /

N

 PBC inherently costs O(nz) communication =— all-to-all communication is ok!

e |dea: run n gossip instances in parallel (one per sender)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

¢, = Enc (ml)

¢, = Enc (m,) - /;2 — Enc (m,)

N

 PBC inherently costs O(nz) communication =— all-to-all communication is ok!

e |dea: run n gossip instances in parallel (one per sender)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

C, = ENnc (mz)

¢, = Enc (ml)

¢, = Enc (m,) - /;2 — Enc (m,)

N

 PBC inherently costs O(nz) communication =— all-to-all communication is ok!

e |dea: run n gossip instances in parallel (one per sender)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

¢, = Enc (mz) c; = Enc (m3)

¢, = Enc (ml)

¢, = Enc (m,) - /;2 — Enc (m,)

N

 PBC inherently costs O(nz) communication =— all-to-all communication is ok!

e |dea: run n gossip instances in parallel (one per sender)

Key idea: Cover Traffic (Tsimos et al. CRYPTO 22)

¢, = Enc (mz) c; = Enc (m3)

C| = Enc ml

/; EnC

 PBC inherently costs O(nz) Communlcatlon —> all-to-all communication is ok!

e |dea: run n gossip instances in parallel (one per sender)

Key idea: Cover Traffic (T simos et al. CRYPTO 22)

c; = Enc (m3)

Cyp = Enc m4 Cy = E”C mz
C| = Enc ml

\ / Enc

 PBC inherently costs O(nz) Communlcatlon —> all-to-all communication is ok!

C3 — EnC m3

e |dea: run n gossip instances in parallel (one per sender)

Key idea: Cover Traffic (T simos et al. CRYPTO 22)

¢y =Enc(my) 2= Enc (m,) ¢; = Enc (m3)

C3 — EnC m3

C| = Enc ml

/;2 — EnC m2

\-l

 PBC inherently costs O(nz) communication =— all-to-all communication is ok!

e |dea: run n gossip instances in parallel (one per sender)

 Send same sized ciphertext to every party in every gossip round

Key idea: Cover Traffic (T simos et al. CRYPTO 22)

¢y =Enc(my) = Enc (m,) ¢ = Enc (m3)

C3 — EnC m3

C| = Enc ml

/2 — EnC le

\-l

PBC inherently costs O(nz) communication =— all-to-all communication is ok!

ldea: run n gossip instances in parallel (one per sender)
Send same sized ciphertext to every party in every gossip round

Instances provide cover traffic for each other

Key idea: Cover Traffic (T simos et al. CRYPTO 22)

c; = Enc (m3)

Cyp = Enc m4 Cy = E”C mz

C3 — EnC m3

C| = Enc ml

/;2 — EnC mZ

\-l

PBC inherently costs O(nz) communication =— all-to-all communication is ok!

ldea: run n gossip instances in parallel (one per sender)
Send same sized ciphertext to every party in every gossip round

Instances provide cover traffic for each other

Still costs O(n%x]) bits

Two-Step Approach

Two-Step Approach

« Step 1: Reduce PBC to Binary Consensus

Two-Step Approach

« Step 1: Reduce PBC to Binary Consensus

. Step 2: Binary consensus in O(n” - k) bits using novel DY-based gossip

Pull-Based Gossip

L N

Pull-Based Gossip

* Ask for (pull) signatures from other parties

Pull-Based Gossip

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Pull-Based Gossip

T ey

L N

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Pull-Based Gossip

T ey

L N

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Pull-Based Gossip

T ey

L N

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Pull-Based Gossip

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Pull-Based Gossip

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Pull-Based Gossip

/va
o (m) ﬁ %

®

Uz(m) P |

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Pull-Based Gossip

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Pull-Based Gossip

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Pull-Based Gossip

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Pull-Based Gossip

* Ask for (pull) signatures from other parties

* Pull only indices you are missing

Issue with Naive Pulling

c,(m)

» @\
)

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

c,(m)

» o)
®)

» Naive attempt: pull O(1) missing indices

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

C)
®)

L N

» Naive attempt: pull O(1) missing indices

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

c,(m)

C)
®)

L N

» Naive attempt: pull O(1) missing indices

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

@ -

Gl(m) / (/)
o\ Mm
T — @

o3(m’)
O 45\‘ ‘]\:‘ Gz(WL)

» Naive attempt: pull O(1) missing indices

= (0y(m), o3(m’"), o5(m”) }

Issue with Naive Pulling

» Naive attempt: pull O(1) missing indices

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

» Naive attempt: pull O(1) missing indices

= (0y(m), o3(m’"), o5(m”) }

Issue with Naive Pulling

o,(m) /ffz(”l)
05(m) 2.3
ﬁ /

L N

» Naive attempt: pull O(1) missing indices

= (0y(m), o3(m’"), o5(m”) }

Issue with Naive Pulling

» Naive attempt: pull O(1) missing indices

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

» Naive attempt: pull O(1) missing indices

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

» Naive attempt: pull O(1) missing indices

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

» Naive attempt: pull O(1) missing indices

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

P will never query for a
signature from P, again

» Naive attempt: pull O(1) missing indices

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

P will never query for a
signature from P, again

—> P, never learns C’ from
an honest party!

» Naive attempt: pull O(1) missing indices

C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

P will never query for a
signature from P, again

—> P, never learns C’ from
an honest party! °.°

» Naive attempt: pull O(1) missing indices

» Issue: Certificate could exist for any message m’ #= m
C' = {6,(m'), 03(m’), o65(m’) }

Issue with Naive Pulling

P will never query for a
signature from P, again

—> P, never learns C’ from
an honest party! °.°

» Naive attempt: pull O(1) missing indices

» Issue: Certificate could exist for any message m’ #= m
C' = {6,(m'), 03(m’), o65(m’) }

» 0,(m’) for m" # m is never pulled

Issue with Naive Pulling

P will never query for a
signature from P, again

—> P, never learns C’ from
an honest party! °.°

» Naive attempt: pull O(1) missing indices
» Issue: Certificate could exist for any message m’ #= m
» 0,(m’) for m" # m is never pulled

* Prevents signatures in certificate from spreading

C' = {6,(m'), 03(m’), o65(m’) }

Pull-Based Gossip with Testing

Pull-Based Gossip with Testing

0,(m) ‘/’L a~
A _ 4

P’ P

Pull-Based Gossip with Testing

1 - »—
o a O(log(k)) bits

P’ P

» Test for new information before pulling = O(log(k)) extra bits per index

Pull-Based Gossip with Testing

—

] | :
() @ O(log(x)) bits

P’ P

» Test for new information before pulling = O(log(k)) extra bits per index

* Pull only if test indicates a different signature

Pull-Based Gossip with Testing

O(log(x)) bit :
orm) 6N — (1)

A _ 4

P’ P

» Test for new information before pulling = O(log(k)) extra bits per index

* Pull only if test indicates a different signature

Pull-Based Gossip with Testing

O(log(x)) bit -
0(1m) ﬁ Sk AN 6,(m)
: |

P’ P

» Test for new information before pulling = O(log(k)) extra bits per index

* Pull only if test indicates a different signature

* Jechnical issue: signatures on same message can be syntactically different

Issues with Naive Testing

Issues with Naive Testing

/
‘L& a‘

L N

P’ P

* Incomplete certificate C’; missing single index

Issues with Naive Testing

A _ 4

P’ P
* Incomplete certificate C’; missing single index

« Complete C; has different signatures on superset of indices in C' on same message m

Issues with Naive Testing

A _ 4

P’ P
* Incomplete certificate C’; missing single index

« Complete C; has different signatures on superset of indices in C' on same message m

» Naive: P’tests for O(A) random indices missing from C’ per gossip round

Issues with Naive Testing

/l | C

—

P’ P
* Incomplete certificate C’; missing single index

« Complete C; has different signatures on superset of indices in C' on same message m

» Naive: P’tests for O(A) random indices missing from C’ per gossip round

Issues with Naive Testing

/l | C

—

P’ P
Incomplete certificate C’; missing single index
Complete C; has different signatures on superset of indices in C’' on same message m

Naive: P’ tests for O(4) random indices missing from C’ per gossip round

All tests positive = missing index is pulled with probability 1/x

Issues with Naive Testing

C
] |

L N

P’ P
Incomplete certificate C’; missing single index
Complete C; has different signatures on superset of indices in C’' on same message m
Naive: P’ tests for O(4) random indices missing from C’ per gossip round

All tests positive = missing index is pulled with probability 1/x

A rounds to learn missing index with probability 1 — 27 = still costs O(n” - k - 1) bits

Increasing the Probability of Pulling

Increasing the Probability of Pulling

C’ C

‘L& a‘

P P

Increasing the Probability of Pulling

C

(' is a full certificate
P, P for m

Increasing the Probability of Pulling

C

(' is a full certificate
P, P for m

« Foreach P;:

Increasing the Probability of Pulling

C

(' is a full certificate
P, P for m

« Foreach P;:

» P samples O(A) signatures in C

Increasing the Probability of Pulling

C’ C

A

—

(' is a full certificate
P. P for m

« Foreach P;:

» P samples O(A) signatures in C

» P finds (via testing) O(1) signatures among sample that P; doesn’t have

Increasing the Probability of Pulling

C’ C

A

—

(' is a full certificate
P. P for m

« Foreach P;:

» P samples O(A) signatures in C

» P finds (via testing) O(1) signatures among sample that P; doesn’t have

» P, pulls missing index with probability O(4/n) (improved from naive O(1/n) probability)

Increasing the Probability of Pulling

C

A

—

(' is a full certificate
P. P for m

« Foreach P;:

» P samples O(A) signatures in C

» P finds (via testing) O(1) signatures among sample that P; doesn’t have
» P, pulls missing index with probability O(4/n) (improved from naive O(1/n) probability)

« Per round, A honest parties learn a new signature from P with probability 1 — 24

Alternating Push/Pull Paradigm

« Perform pulling step on certificate C

Alternating Push/Pull Paradigm

« Perform pulling step on certificate C

[|
| |

Alternating Push/Pull Paradigm

@
@
@
@

Alternating Push/Pull Paradigm

« Perform pulling step on certificate C P

@
@
@
@

L N

« Initially, ensures that O(n) parties each learn O(1) signatures from C with probability 1 — 27 > 1 — 274

Alternating Push/Pull Paradigm

« Perform pulling step on certificate C P

@
@
@
@

L N

« Initially, ensures that O(n) parties each learn O(1) signatures from C with probability 1 — 27 > 1 — 274

. Later on, ensures A parties learn some new signatures from C with probability 1 — 27

Alternating Push/Pull Paradigm

« Perform pulling step on certificate C P

@
@
@
@

L N

« Initially, ensures that O(n) parties each learn O(1) signatures from C with probability 1 — 27 > 1 — 274
. Later on, ensures A parties learn some new signatures from C with probability 1 — 27

e Push random O(1) indices to all parties

¢

Alternating Push/Pull Paradigm

®© 0 0 ® O
. 0 0 ® ® O

« Perform pulling step on certificate C P

)

@
0@
® O
o O
® O

L N

« Initially, ensures that O(n) parties each learn O(1) signatures from C with probability 1 — 27 > 1 — 274
. Later on, ensures A parties learn some new signatures from C with probability 1 — 27

e Push random O(1) indices to all parties

Alternating Push/Pull Paradigm

O 060 O o 0
O 60O O o 0
O 00O o ® O
©O 00 ® O
. 0@ o 0

« Perform pulling step on certificate C P

¢

)

@
0@
® O
o O
® O

L N

« Initially, ensures that O(n) parties each learn O(1) signatures from C with probability 1 — 27 > 1 — 274
. Later on, ensures A parties learn some new signatures from C with probability 1 — 27
e Push random O(1) indices to all parties

* Increases spread of signatures by constant factor with probability 1 — 2~4 due to concentration over at least A parties

Alternating Push/Pull Paradigm

O 060 O o 0
O 60O O o 0
O 00O o ® O
©O 00 ® O
. 0@ o 0

« Perform pulling step on certificate C P

Repeat log(n) times

¢

C

)

@
0@
® O
o O
® O

L N

« Initially, ensures that O(n) parties each learn O(1) signatures from C with probability 1 — 27 > 1 — 274
. Later on, ensures A parties learn some new signatures from C with probability 1 — 27
e Push random O(1) indices to all parties

* Increases spread of signatures by constant factor with probability 1 — 2~4 due to concentration over at least A parties

Open Questions

Open Questions

* Apply pull-based gossip for the t < n regime (in progress)

Open Questions

* Apply pull-based gossip for the t < n regime (in progress)

« Better round efficiency; can gossip run 'in the background’?

Open Questions

* Apply pull-based gossip for the t < n regime (in progress)

« Better round efficiency; can gossip run 'in the background’?

 Applications to the information theoretic case with t < n/3

Open Questions

* Apply pull-based gossip for the t < n regime (in progress)

« Better round efficiency; can gossip run 'in the background’?

 Applications to the information theoretic case with t < n/3

* Improvements to VSS?

Open Questions

* Apply pull-based gossip for the t < n regime (in progress)

« Better round efficiency; can gossip run 'in the background’?

 Applications to the information theoretic case with t < n/3
* Improvements to VSS?

* Pulling-based gossip in the asynchronous model

Open Questions

* Apply pull-based gossip for the t < n regime (in progress)

« Better round efficiency; can gossip run 'in the background’?

 Applications to the information theoretic case with t < n/3
* Improvements to VSS?

* Pulling-based gossip in the asynchronous model

 Asynchronous common subset In O(n2 - £) in the DY model?

