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How can we trust the validity of the intermediate configurations?
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Incrementally Verifiable Computation for NP
[Valiant O8]

Common reference string

. cfiyp)

Wit Wiio

o Efficiency: Proof size and verification time are independent of the
number of hops.

» Soundness: Hard to come up with proofs for cfy - cf+.

*We will not consider knowledge soundness since we are focusing on standard assumptions.
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Application: Verifiable Shuffling

[GLO7, CKLM12, CKLM13]

« |V parties encrypt votes under a rerandomizable scheme.
« [ authorities shuffle and rerandomise the ciphertext.
¢ Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

Shuffle and Shuffle and Shuffle and
Ct; rerandomise rerandomise rerandomise Ct%

ct,

4
ct)

Cty

4
cty,

Ty @

m

Encrypted
votes! NP witness = Randomness and permutation!
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(et <t 1) . Merge (cf,cft+ 1)

(with SNARK) ;
(cf,cf’, 1) ' g

» Proof of knowledge: If adversary gives accepting (cf,cf”,t + t'), 7", one
can extract accepting tuples (cf, cf’, ¢), # and (cf’, ct”, t"), "

e Succinctness: | 7" | ~ | x|, | 7|
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« SNARKS exist in the ROM!

e \aliant’s construction: Random oracle is an oracle and a concrete
function, and then an oracle again.

e Security gap!
« SNARKSs in the ROM cannot be recursively composed [BCG24]!

» [HAN23] showed some barriers in the ROM

 Shows that SNARGs and IVC are fundamentally different problems
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* Relies heavily on tools from prior works [PP22, DGKV22] on IVC for P

 Without extraction: Even more succinct IVC for “Trapdoor-NP” via a
“Pure 10O” approach.

» Proof size: poly(4,log T)!

 \We show how to achieve ZK in both settings.
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o Careful complexity leveraging of [Paneth-Pass ’22], [Devadas-Goyal-Kalai-
Vaikuntanathan '22].

Theorem [PP22/DGKV22]. Assuming rate-1 somewhere extractable
BARGsS, there exists IVC for deterministic computations.
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Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, [cf|,log T).

o Careful complexity leveraging of [Paneth-Pass ’22], [Devadas-Goyal-Kalai-
Vaikuntanathan '22].

 Addresses the common misconception that [VC for NP is impossible due
to Gentry-Wichs.
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Valiant’s Recipe: Proof Merging

x(Cf, cf 5 t) T " Merge » (Cf, Cf”, t + t/)

(cf,cf’t) > ™

Idea: Can be achieved via
batch arguments (BARGs)! [DGKV/PP22]
Known from standard assumptions

Somewhere extraction: You can extract either 7 or 7/, but not both.

e Succinctness: ‘ 7[”‘ ~ ‘ 7[‘ ] ‘ 7[’| Achieved if BARG is rate-1
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Security sketch with “Somewhere Soundness”™

Our main technical contribution
(over [DGKV/PP22]):

/s
We show this works for NP with cfo—cfy
careful complexity leveraging ‘

Level 1

Base case:
SNARG for NP!

Breaks SNARG security!
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More Succinct IVC?

» We know adaptively sound SNARGs with poly(A) proof size [WW24/25,
WZ24]

* |f we follow the “proof merging” template, it seems like we are stuck with
this “configuration” size dependence.

 Need to extract the intermediate configuration!
 Can we construct IVC without any extraction?

« SNARGs without extraction? Smells like iO :)
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Our Result ll: Even More Succinctness

Theorem [DJJUJMKS25]. There exists IVC for trapdoor computations /.
assuming subexponential hardness of IO and injective PRGs.

» Proof size: poly(4, log T')!
Definition: 4 Td such that x; 4 X; iff Td(x, Xjs] — 1) = Accept.

* Trapdoor only appears in the proof

 Can generate the CRS and guarantee soundness only knowing that a
trapdoor exists
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Verifiable Shuffling

Shuffle and Shuffle and Shuffle and
Ct; rerandomise rerandomise rerandomise Ct1
m & =
— %v
Cty CtN

001101 110001

* Trapdoor = Secret key of rerandomisable scheme!

* Our work gives a multi-hop verifiable shuffling scheme with short proofs
from standard assumptions in the plain model.
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Our Result Il: More Succinct IVC

Theorem [DJJUJMKS25]. There exists IVC for trapdoor computations /.
assuming subexponential hardness of IO and injective PRGs.

» Proof size: poly(4, log T')!

Definition: 3Td such that x; =% x; iff Td(x;, x;,j — 1) = Accept.

* Trapdoor only appears in the proof

* Highly inspired by “pure i10” adaptive SNARG constructions of [WW24/25,
WZ24, DWW24| and “chaining approach” of [GSWW22, DWW?24].

* ldea: Do proof without extraction!
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IVC.P
IVC.V

X0y Xiy T3y W

X(s Ajs 7L

0/1

X0s Xit15 it

Obfuscate these programs and publish as CRS!
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High level ideal

H IO Gymnastics! (See paper) H
real ideal

No proofs for false
statements (uses Td)

The real scheme

e |dea: Cheating prover — Distinguisher for these hybrids

» Can calculate cheating prover’s success probability in H,., ; using Td.

red
* This gives us soundness :)

. Marries ideas from [GSWW22], [DWW24], [WW25]!

» This approach does not use extraction and achieves poly(4)-sized proof!
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Summary

* To extract or not to extract?
 We show two IVC constructions in the nondeterministic setting.
* We give an extraction-based approach to achieve IVC for NP.
e Proof size: poly(4, | cf|,log T).
* We give an 10-based approach to IVC for “Trapdoor-NP”.
 Demonstrates a new approach to IVC without extraction!
o Proof size: poly(/).

 Open problem: Can we extend this to all of NP?
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Recall: Rate-1 Batch Arguments (BARG)

Common reference string

@ Xiy .o X € L
=

Rate 1: | 7| = |w;| + poly(4)

wq
14%9)

Usually only require
| < k- |w].
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(cf’ cf’ 25  # ' " = (ct', Tgarg)

Construct a BARG proof 7z 55 corresponding to:
BARG Statement: (cf, cf’), (cf’, cf”).

» Suppose & creates cheating proofs (cf’, 7garc) BARG Witness: Level k proofs 7, 7"

Level k + 1 proof: 7”7 = (cf’, Agprg)-

with prob. > e.

* By pigeonhole, cf - cf’ with prob > ¢/2 or, cf’ » cf”. WLOG first hop.
* Switch BARG CRS binding accordingly!
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BARG Statement: (cf, cf’), (cf’, cf”).
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Level k + 1 proof: 7”7 = (cf’, Agprg)-

with prob. > e.

* By pigeonhole, cf - cf’ with prob > ¢/2 or, cf’ » cf”. WLOG first hop.
* Switch BARG CRS binding accordingly!
* By index-hiding property of the BARG, should still cheat on this hop!!
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Proof Strategy: BARG the BARG

1 Kk .
x(Cf’ ct.2”) I Merge with -~ (cf, cf” 2k+1

rate-1 BARG o
(cf’ cf’ 25  # ' " = (ct', Tgarg)

Construct a BARG proof 7z 55 corresponding to:
BARG Statement: (cf, cf’), (cf’, cf”).

» Suppose & creates cheating proofs (cf’, 7garc) BARG Witness: Level k proofs 7, 7"

Level k + 1 proof: 7”7 = (cf’, Agprg)-

with prob. > e.

* By pigeonhole, cf - cf’ with prob > ¢/2 or, cf’ » cf”. WLOG first hop.
* Switch BARG CRS binding accordingly!
* By index-hiding property of the BARG, should still cheat on this hop!!

e Extract 7 and recurse!!
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Proof Strategy: BARG the BARG

1 Kk .
X(Cf’ ct.2”) I Merge with -~ (cf, cf” 2k+1

rate-1 BARG o
(cf’ cf’ 25  # ' " = (ct', Tgarg)

Needs careful
complexity leveraging for NP

(this work, based on BKK+17)!
Ask me later :)

* By pigeonhole, cf - cf’ with prob > e¢/2 or.2"".> ct”. WLOG first hop.
« Switch BARG CRS binding accorziigly!
* By index-hiding property of the BARG, should still cheat on this hop!!

» Suppose & creates cheating proofs (cf’, 7garc)
with prob. > e.

e Extract 7 and recurse!!
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