Incrementally Verifiable Computation for NP
from Standard Assumptions

based on joint work with

\\,-

Pratish Datta Abhishek Jain Zhengzhong Jin Surya Mathialagan Alexis Korb Amit Sahai
NTT Research JHU & NTT Research Northeastern MIT — NTT Research UCLA UCLA

Incrementally Verifiable Computation for NP
from Standard Assumptions (7))

based on joint work with

\\,-

Pratish Datta Abhishek Jain Zhengzhong Jin Surya Mathialagan Alexis Korb Amit Sahai
NTT Research JHU & NTT Research Northeastern MIT — NTT Research UCLA UCLA

Motivation: “Multi-Generation” Computation

(Nondeterministic) computation ./ [Valiant "08]

—

Motivation: “Multi-Generation” Computation

(Nondeterministic) computation ./ [Valiant "08]

—

cfy

A

Motivation: “Multi-Generation” Computation

(Nondeterministic) computation ./ [Valiant "08]

—

cfy

A

Fermat’s little theorem

Motivation: “Multi-Generation” Computation

(Nondeterministic) computation ./ [Valiant "08]

—

cfy ct

Fermat’s little theorem

Motivation: “Multi-Generation” Computation

(Nondeterministic) computation ./ [Valiant "08]

—

cfy ct

Fermat’s little theorem

ct1000

Motivation: “Multi-Generation” Computation

(Nondeterministic) computation ./ [Valiant "08]

—

ct4000 cf5000
g !!i ! t % e
Fermat’s little theorem

Motivation: “Multi-Generation” Computation

(Nondeterministic) computation ./ [Valiant "08]

—

ct4000 cf5000 cft
!m !Q % 6 A
o L\
Fermat’s little theorem

Motivation: “Multi-Generation” Computation

(Nondeterministic) computation ./ [Valiant "08]

—

Ct1000 cfs000 cf-

A
oo 1\
»

Fermat’s little theorem Riemann Hypothesis

C8 Ca

Motivation: “Multi-Generation” Computation

(Nondeterministic) computation ./ [Valiant "08]

—

cf, cf; cf’000 cfs000 cfr
s & F ‘
o s

Fermat’s little theorem Riemann Hypothesis

How can we trust the validity of the intermediate configurations?

2

Incrementally Verifiable Computation for NP

Incrementally Verifiable Computation for NP

g Cfl'

Incrementally Verifiable Computation for NP
[Valiant O8]

Cfl'

Incrementally Verifiable Computation for NP
[Valiant O8]

Cfl'

Wit

Incrementally Verifiable Computation for NP
[Valiant O8]

cf; - cfiy

Wit

Incrementally Verifiable Computation for NP
[Valiant O8]

cf; - cfiy

Wit

Incrementally Verifiable Computation for NP
[Valiant O8]

cf; - cfiy

Wit Wiio

Incrementally Verifiable Computation for NP
[Valiant O8]

. cfiyp)

cf; - cfiy

Wit Wiio

Incrementally Verifiable Computation for NP
[Valiant O8]

Common reference string

. cfiyp)

cf; - cfiy

Wit Wiio

Incrementally Verifiable Computation for NP
[Valiant O8]

Common reference string

. cfiyp)

cf; - cfiyy

Wit Wiio

Incrementally Verifiable Computation for NP
[Valiant O8]

Common reference string

Wit Wiio

Incrementally Verifiable Computation for NP
[Valiant O8]

Common reference string

. cfiyp)

Wit Wiio

Incrementally Verifiable Computation for NP

[Valiant 08}
Common reference string
Cfi ' Cfi+2
i it

Wit Wiio

Incrementally Verifiable Computation for NP

[Valiant 08}
Common reference string
Cfl' ' Cfi+2
i it

Wit Wiio

o Efficiency: Proof size and verification time are independent of the
number of hops.

Incrementally Verifiable Computation for NP
[Valiant O8]

Common reference string

. cfiyp)

Wit Wiio

o Efficiency: Proof size and verification time are independent of the
number of hops.

» Soundness: Hard to come up with proofs for cfy - cf+.

3

Incrementally Verifiable Computation for NP
[Valiant O8]

Common reference string

. cfiyp)

Wit Wiio

o Efficiency: Proof size and verification time are independent of the
number of hops.

» Soundness: Hard to come up with proofs for cfy - cf+.

*We will not consider knowledge soundness since we are focusing on standard assumptions.
3

IVC = Multi-Hop SNARG

IVC = Multi-Hop SNARG

IVC = Multi-Hop SNARG

IVC = Multi-Hop SNARG

IVC = Multi-Hop SNARG

IVC = Multi-Hop SNARG

IVC = Multi-Hop SNARG

IVC = Multi-Hop SNARG

IVC = Multi-Hop SNARG

Application: Verifiable Shuffling

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.

Encrypted
votes!

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Encrypted
votes!

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Encrypted
votes!

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Encrypted
votes!

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Shuffle and
rerandomise

Encrypted
votes!

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Shuffle and
rerandomise

N~

S

Encrypted
votes!

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Shuffle and
rerandomise

N~

S

Encrypted
votes!

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Shuffle and Shuffle and
rerandomise rerandomise

N~

S

Encrypted
votes!

Application: Verifiable Shuffling

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Shuffle and Shuffle and
rerandomise rerandomise

e

Encrypted
votes!

Application: Verifiable Shuffling

[GLO7, CKLM12, CKLM13]

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Shuffle and Shuffle and Shuffle and
rerandomise rerandomise rerandomise

Encrypted
votes!

Application: Verifiable Shuffling

[GLO7, CKLM12, CKLM13]

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Shuffle and Shuffle and Shuffle and
rerandomise rerandomise rerandomise

Encrypted
votes!

Application: Verifiable Shuffling

[GLO7, CKLM12, CKLM13]

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Shuffle and Shuffle and Shuffle and
rerandomise rerandomise rerandomise

Need to ensure that the authorities did not
tamper with the contents!

Application: Verifiable Shuffling

[GLO7, CKLM12, CKLM13]

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.

Shuffle and Shuffle and Shuffle and
rerandomise rerandomise rerandomise

Encrypted
votes!

Application: Verifiable Shuffling

[GLO7, CKLM12, CKLM13]

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.
¢ Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

Shuffle and Shuffle and Shuffle and
Ct; rerandomise rerandomise rerandomise Ct%

ct

4
ct)

Cty

cty,

Encrypted
votes!

Application: Verifiable Shuffling

[GLO7, CKLM12, CKLM13]

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.
¢ Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

Shuffle and Shuffle and Shuffle and
rerandomise rerandomise rerandomise Ct%

4
ct)

cty,

Encrypted
votes!

Application: Verifiable Shuffling

[GLO7, CKLM12, CKLM13]

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.
¢ Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

Shuffle and Shuffle and Shuffle and
rerandomise rerandomise rerandomise

Encrypted
votes!

Application: Verifiable Shuffling

[GLO7, CKLM12, CKLM13]

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.
¢ Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

Shuffle and Shuffle and Shuffle and
Ct; rerandomise rerandomise rerandomise

ct

Encrypted
votes!

Application: Verifiable Shuffling

[GLO7, CKLM12, CKLM13]

« |V parties encrypt votes under a rerandomizable scheme.
« [authorities shuffle and rerandomise the ciphertext.
¢ Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

Shuffle and Shuffle and Shuffle and
Ct; rerandomise rerandomise rerandomise Ct%

ct,

4
ct)

Cty

4
cty,

Ty @

m

Encrypted
votes! NP witness = Randomness and permutation!

How do we construct IVC?

Valiant’s Recipe: Proof Merging

Valiant’s Recipe: Proof Merging

(cf, ct’, 1) T

(cf,cf’t)

Valiant’s Recipe: Proof Merging

(cf,cf.) = Verge

(with SNARK)

(cf,cf’t)

Valiant’s Recipe: Proof Merging

(et <t 1) . Merge (cf,cft+ 1)

(with SNARK) ;
(cf,cf’,t) ' g

Valiant’s Recipe: Proof Merging

(et <t 1) . Merge (cf,cft+ 1)

(with SNARK) ;
(cf,cf’, 1) ' g

» Proof of knowledge: If adversary gives accepting (cf,cf”,t + t'), 7", one
can extract accepting tuples (cf, cf’, ¢), # and (cf’, ct”, t"), "

Valiant’s Recipe: Proof Merging

(et <t 1) . Merge (cf,cft+ 1)

(with SNARK) ;
(cf,cf’, 1) ' g

» Proof of knowledge: If adversary gives accepting (cf,cf”,t + t'), 7", one
can extract accepting tuples (cf, cf’, ¢), # and (cf’, ct”, t"), "

e Succinctness: | 7" | ~ | x|, | 7|

Level 3

Level 2

Level 1

Level O

cfy

Proof Merging — IVC!

cf;

cf,

cf,

cfy

cfs

cfe

ct-

cfy

Proof Merging — IVC!

Level 3

Level 2
Level 1

Level O ﬂcfo—>cf1

cfy ct cf, cf, cfy cfs cfe ct- cfy

8

Proof Merging — IVC!

Level 3

Level 2
Level 1

Leve I O ﬂCfO—>Cf1 ﬂCﬂ —)sz

cfy ct cf, cf, cfy cfs cfe ct- cfy

8

Level 3

Level 2

Level 1

Proof Merging — IVC!

ﬂCfo—l'sz

1

Leve I O ﬂCfO—>Cf1 ﬂCﬂ —)sz

cfy

ct cf, cf, cfy cfs cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

ﬂCfo—l'sz

cfy

cf;

cf,

cf,

cfy

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

ﬂCfo—l'sz

cfy

Tlef,—cf,

cf;

cf,

cf,

cfy

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

ﬂCfo—l'sz

cfy

Tlef,—cf,

Tlefy—cf,

cf;

|
cf,

|
cf,

|
cfy

8

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

ﬂCfo—l'sz

cfy

]Z-sz e Cf4

‘ /

ﬂCf2—>Cf3 ﬂCf3 —>Cf4

cf;

| || |
cf, cf, cfy

8

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

ﬂCfo—l'sz

cfy

]Z-sz e Cf4

cf;

cf,

cf,

cfy

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

ﬂCfO—>Cf4

ﬂCfo—l'sz

cfy

]Z-sz e Cf4

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfO—>Cf4

cf,

cf,

cfy

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfO—>Cf4

cf,

Tlef,—cfs

|
cf,

|
cfy

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfO—>Cf4

|
cf,

Tlef,—cfs

|
cf,

Tlcfs—cf

|
cfy

8

|
cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfO—>Cf4

|
cf,

]Z.Cf4—>Cf6

‘ ’

ﬂCf4 —> Cf5 ﬂCfS —> Cf6

|
cf,

| |
cfy cfs cfe ct- cfy

8

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfO—>Cf4

cf,

|
cf,

]Z.Cf4—>Cf6

|
cfy

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfO—>Cf4

cf,

|
cf,

]Z.Cf4—>Cf6

|
cfy

ﬂCf6—> Cf7

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfO—>Cf4

|
cf,

|
cf,

]Z.Cf4—>Cf6

|
cfy

8

ﬂCf6—> Cf7

|
cfs

Tlcf,—cfg

cfe

|
ct-

|
cfy

Proof Merging — IVC!

Level 3
Level 2 Tty —cf,
Level 1 Tl y—cf Mt s—cfy
‘ \
| |
Level O Refescf, ef,—cfy

cfy ct cf, cf, cfy cfs cfe ct- cfy

8

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfO—>Cf4

cf,

|
cf,

]Z.Cf4—>Cf6

|
cfy

cfs

]Z-Cf6—>Cf8

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfO—>Cf4

cf,

|
cf,

ﬂCf4—> Cf8

]Z.Cf4—>Cf6

|
cfy

cfs

]Z-Cf6—>Cf8

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfO—>Cf4

cf,

|
cf,

|
cfy

ﬂCf4—> Cf8

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

ﬂCfo—)CfS

ﬂCfO—>Cf4

cf,

|
cf,

|
cfy

ﬂCf4—> Cf8

cfs

cfe

ct-

cfy

Level 3

Level 2

Level 1

Level O

Proof Merging — IVC!

cfy

cf;

cf,

ﬂCfo—)CfS

|
cf,

|
cfy

cfs

cfe

ct-

cfy

Proof Merging — IVC!

ldea: At most 1

Level 3 Tty —cf,
proof per level
Proof size: « log T
Level 2
Level 1
Level O

|
| || | | | |
cfy ct cf, cf, cfy cfs cfe ct- cfy

Valiant’s Recipe: SNARK the SNARK!

Valiant’s Recipe: SNARK the SNARK!

(cf,cf'2Y) =

(cf,cf”2Y =

Valiant’s Recipe: SNARK the SNARK!

(cf,cf'2Y) =

(cf,cf”2Y =

Level kK SNARK Proof

Valiant’s Recipe: SNARK the SNARK!

(cf,cf'2Y) =

SNARK . Prove,_

(cf,cf”2Y =

Level kK SNARK Proof

Valiant’s Recipe: SNARK the SNARK!

(cf,cf'2Y) =

SNARK . Prove,_

(cf,cf”2Y =

Level kK SNARK Proof

Claim: There exists ct’, &, 7’ such that
Ver,(cf,ct’,n) = 1 and Very(cf',cf”, 7’) = 1

9

Valiant’s Recipe: SNARK the SNARK!

1 Nk
(Cf, cf ,2) T » (Cf, Cf”,zk_l_l)

SNARK . Prove,_
(cf’,cf"28 & - 7’

Level kK SNARK Proof

Claim: There exists ct’, &, 7’ such that
Ver,(cf,ct’,n) = 1 and Very(cf',cf”, 7’) = 1

9

Valiant’s Recipe: SNARK the SNARK!

(Cf’ Cf,,zk) &] 11 ~yk+1
SNARK . Prove;. (cf, cf’27)
(cf’,cf"28 & ’ 7’
Level K SNARK Proof Level k + 1 SNARK Proof

Claim: There exists ct’, &, 7’ such that
Ver,(cf,ct’,n) = 1 and Very(cf',cf”, 7’) = 1

9

Valiant’s Recipe: SNARK the SNARK!

- | (Cf, Cf//, 2k+1)

m

(cf,cf'2Y) =

(cf,cf’ 25 &

Level kK SNARK Proof

Claim: There exists cf’, z, 7’ such
Ver,(cf,cf’,7) = 1 and Very(cf’, ct”

9

Proof strategy: EXTRACT!

Level 3 Tty —cf,

This Is an intuitive sketch missing many details

Proof strategy: EXTRACT!

Given cheating proof,
Level 3 Mo s cf, recursively extract

This Is an intuitive sketch missing many details 10

Proof strategy: EXTRACT!

Given cheating proof,
Level 3 Mo s cf, recursively extract

Level 2 : Tt —cf, Kef,—cfy

This Is an intuitive sketch missing many details 10

Proof strategy: EXTRACT!

Given cheating proof,

Level 3 Tt ‘_mfs recursively extract
I' ----------- + ----------------------------------- -| -------- Ty
Level 2 E ﬂCfO—>Cf4 ﬂcf4_)cf8 E
JRTTEre frrmmmr e STEPEEEPRPPPPPPEPERre LTttt .
Level 1 : ﬂCfo—>Cf2 ﬂsz—)Cf4 Jz-Cf4—)Cf6 ﬂCf6—)Cf8 :

This Is an intuitive sketch missing many details 10

Proof strategy: EXTRACT!

Given cheating proof,

Level 3 Tt ‘_mfs recursively extract
I' ----------- + ----------------------------------- -| -------- Ty
Level 2 Tefy—cf, TTet,—cfs
JRTTEre frrmmmr e STEPEEEPRPPPPPPEPERre LTttt .
Level 1 : ﬂCfo_)sz]TCf2—>Cf4 ﬂCf4—>Cf6]Z-Cf6—)Cf8 :

Level O 7t Lof, Tef—cf, Tefyocf, Tefiocf, Mcfyocfs Tofoocfs Tofeocfy Fcf—cfy

--

This Is an intuitive sketch missing many details 10

Proof strategy: EXTRACT!

Given cheating proof,

Level 3 3 ‘_mfg recursively extract
I' ----------- + ----------------------------------- -| -------- “
Level 2 E ﬂCf0_>Cf4 ﬂcf4_)cf8 E
pmanonns frrmmrmarmnes TP T T .
Level 1 : ﬂCfo_)sz]TCf2—>Cf4 ﬂCf4—>Cf6]Z-Cf6—>Cf8 :
P —— e e R e R G
Level O« 7es o, Mot cf, Tf,ocf, Tfiocf, Tof,ocfs Mofeocfs Mofeocf, Tcf,—cf,
‘"“'ij“"
e 1="F | = F=F [~ 171 I 3
cfy ct cf, cf, cfy cfs cfe ct- cfy

This Is an intuitive sketch missing many details 10

Proof strategy: EXTRACT!

Given cheating proof,

Level 3 3 ‘_mfg recursively extract
I' ----------- + ----------------------------------- -| --------- 1
Level 2 : s f Tt £
OT‘* _______________________________ “47“¢(C) CONTRADICTION!
. frrmmrnarnnas emnmsnanonona e N A —— y
Level 1 E ﬂCfo_)sz]TCf2—>Cf4 ﬂCf4—>Cf6]Z-Cf6—>Cf8 :
T~ jo-m-fmmmmmmmmmmm e R e R L=
Level O« 7es o, Mot cf, Tf,ocf, Tfiocf, Tof,ocfs Mofeocfs Mofeocf, Tcf,—cf,
e eyt kit kbbbl ekl fpedete llipluiets laieilpaield delellyfp el sl
= f===7" f="f==77°" FF T " = F=F [~ 171 T A
. cfy cf; cf, cf, cfy cfs cfe cf; cfy

This Is an intuitive sketch missing many details 10

IVC from Standard Assumptions?

IVC from Standard Assumptions?

e Issue 1: SNARKSs do not exist from standard assumptions!! [CGKS23]

IVC from Standard Assumptions?

e Issue 1: SNARKSs do not exist from standard assumptions!! [CGKS23]

 Extraction was extremely crucial to make the soundness analysis go
through!

11

IVC from Standard Assumptions?

e Issue 1: SNARKSs do not exist from standard assumptions!! [CGKS23]

 Extraction was extremely crucial to make the soundness analysis go
through!

e Actually, what about random oracle model?

11

IVC In Random Oracle Model?

IVC In Random Oracle Model?

 SNARKS exist in the ROM!

IVC In Random Oracle Model?

 SNARKS exist in the ROM!

e \alilant’s construction: Random oracle is an oracle and a concrete
function, and then an oracle again.

12

IVC In Random Oracle Model?

 SNARKS exist in the ROM!

e \alilant’s construction: Random oracle is an oracle and a concrete
function, and then an oracle again.

(cfcf2y 7 SNARK” . (cfcf"20)

/ —_—) . Provek+1 71'”
(cf,cf’ 25 =

T

Level kK SNARK Level Kk + 1 SNARK Proof

Claim: There exists cf’, 7, 7" such that Ver@k(cf, ct,n)=1
and Ver?,(cf’,cf”, z’) = 1!

12

IVC In Random Oracle Model?

 SNARKS exist in the ROM!

e \alilant’s construction: Random oracle is an oracle and a concrete
function, and then an oracle again.

(cf, Cf’,2k) T SNA R > (cf, Cf//,2k+1)
; _— . Provek+ 1]Z'”

(cf,cf’ 25 =

| |

Level kK SNARK Level Kk + 1 SNARK Proof

Claim: There exists cf’, @7 such that Vecf, cf,m) =1
and Vecf’, cf’,n’) = 1!

12

IVC In Random Oracle Model?

 SNARKS exist in the ROM!

e \alilant’s construction: Random oracle is an oracle and a concrete
function, and then an oracle again.

(Cf, cf’,Zk) /A S N A R g (Cf, Cf//,2k+1)

/ —_—) . PrOvek+1 71'/,
(cf,cf’ 25 =

| |

Level kK SNARK Level Kk + 1 SNARK Proof

- . 0y N ;
Claim: There ex:’;s(,j C\f; ;C fs/,uzpﬂ:cr;:};c \;el!.(cf, cf,m) =1 Exc “SE ME? vou n('“B'.E
' DIPPED THE GHIP.

12

IVC In Random Oracle Model?

IVC In Random Oracle Model?

« SNARKS exist in the ROM!

e \aliant’s construction: Random oracle is an oracle and a concrete
function, and then an oracle again.

13

IVC In Random Oracle Model?

« SNARKS exist in the ROM!

e \aliant’s construction: Random oracle is an oracle and a concrete
function, and then an oracle again.

e Security gap!

13

IVC In Random Oracle Model?

« SNARKS exist in the ROM!

e \aliant’s construction: Random oracle is an oracle and a concrete
function, and then an oracle again.

e Security gap!

« SNARKSs in the ROM cannot be recursively composed [BCG24]!

13

IVC In Random Oracle Model?

« SNARKS exist in the ROM!

e \aliant’s construction: Random oracle is an oracle and a concrete
function, and then an oracle again.

e Security gap!
« SNARKSs in the ROM cannot be recursively composed [BCG24]!

» [HAN23] showed some barriers in the ROM

13

IVC In Random Oracle Model?

« SNARKS exist in the ROM!

e \aliant’s construction: Random oracle is an oracle and a concrete
function, and then an oracle again.

e Security gap!
« SNARKSs in the ROM cannot be recursively composed [BCG24]!

» [HAN23] showed some barriers in the ROM

 Shows that SNARGs and IVC are fundamentally different problems

13

This Work:
How do we construct IVC for NP
from standard assumptions?

This work

This work

 Two constructions of IVC from standard assumptions!

15

This work

 Two constructions of IVC from standard assumptions!

e Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP.

15

This work

 Two constructions of IVC from standard assumptions!

e Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP.

» Proof size: poly(4, | cf|,log T).

15

This work

 Two constructions of IVC from standard assumptions!

e Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP.

» Proof size: poly(4, | cf|,log T).
* Relies heavily on tools from prior works [PP22, DGKV22] on IVC for P

15

This work

 Two constructions of IVC from standard assumptions!
 Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP,
» Proof size: poly(4, | cf|,log T).
* Relies heavily on tools from prior works [PP22, DGKV22] on IVC for P

 Without extraction: Even more succinct IVC for “Trapdoor-NP” via a
“Pure 10O” approach.

15

This work

 Two constructions of IVC from standard assumptions!

e Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP.

» Proof size: poly(4, | cf|,log T).
* Relies heavily on tools from prior works [PP22, DGKV22] on IVC for P

 Without extraction: Even more succinct IVC for “Trapdoor-NP” via a
“Pure 10O” approach.

» Proof size: poly(4,log T)!

15

This work

 Two constructions of IVC from standard assumptions!
 Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP,
» Proof size: poly(4, | cf|,log T).
* Relies heavily on tools from prior works [PP22, DGKV22] on IVC for P

 Without extraction: Even more succinct IVC for “Trapdoor-NP” via a
“Pure 10O” approach.

» Proof size: poly(4,log T)!

 \We show how to achieve ZK in both settings.

15

IVC for NP!

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, [cf|,log T).

16

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, [cf|,log T).

Independent of time-steps, but grows with
intermediate configurations cf;

16

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, [cf|,log T).

16

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, [cf|,log T).

o Careful complexity leveraging of [Paneth-Pass ’22], [Devadas-Goyal-Kalai-
Vaikuntanathan '22].

16

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, [cf|,log T).

o Careful complexity leveraging of [Paneth-Pass ’22], [Devadas-Goyal-Kalai-
Vaikuntanathan '22].

Theorem [PP22/DGKV22]. Assuming rate-1 somewhere extractable
BARGsS, there exists IVC for deterministic computations.

16

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, [cf|,log T).

o Careful complexity leveraging of [Paneth-Pass ’22], [Devadas-Goyal-Kalai-
Vaikuntanathan '22].

16

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, [cf|,log T).

o Careful complexity leveraging of [Paneth-Pass ’22], [Devadas-Goyal-Kalai-
Vaikuntanathan '22].

 Addresses the common misconception that [VC for NP is impossible due
to Gentry-Wichs.

16

Valiant’s Recipe: Proof Merging

(cf, et 1) s (cf,cf i+ 1)

Merge
(cf’,ct”, t') g ’ 4

Valiant’s Recipe: Proof Merging

(cf, et 1) s (cf,cf i+ 1)

Merge
(cf’,ct”, t') g ’ 4

» Proof of knowledge: If adversary gives accepting (cf,cf”, t + t'), 7", one
can extract accepting tuples (cf, cf’, 1), # and (cf’,ct”, "), "

e Succinctness: |7"| ~ |x|, | 7]

17

Valiant’s Recipe: Proof Merging

(cf, et 1) s (cf,cf i+ 1)

Merge
(cf’,ct”, t') g ’ 4

Somewhere extraction: You can extract either & or 7/, but not both.

e Succinctness: |7"| ~ |x|, | 7]

17

Valiant’s Recipe: Proof Merging

x(Cf, cf 5 t) T " Merge » (Cf, Cf”, t + t/)

(cf,cf’t) > ™

Somewhere extraction: You can extract either & or 7/, but not both.

e Succinctness: |7"| ~ |x|, | 7]

17

Valiant’s Recipe: Proof Merging

x(Cf, cf 5 t) T " Merge » (Cf, Cf”, t + t/)

(cf,cf’t) > ™

Idea: Can be achieved via
batch arguments (BARGs)! [DGKV/PP22]
Known from standard assumptions

Somewhere extraction: You can extract either & or 7/, but not both.

e Succinctness: |7"| ~ |x|, | 7]

17

Valiant’s Recipe: Proof Merging

x(Cf, cf 5 t) T " Merge » (Cf, Cf”, t + t/)

(cf,cf’t) > ™

Idea: Can be achieved via
batch arguments (BARGs)! [DGKV/PP22]
Known from standard assumptions

Somewhere extraction: You can extract either 7 or 7/, but not both.

e Succinctness: ‘ 7[”‘ ~ ‘ 7[‘] ‘ 7[’| Achieved if BARG is rate-1

17

Construction

cfy ct cf,

cf,

cfy

Construction

Base case: 9 9 m 9
SNARG for NP! Tetgocfy Tefiocf, Tefyocfy Ty,

cf, cf cf, cf, cfy

18

Construction

Base case: 9 9 1 11
SNARG for NP! Tetgocfy Tefiocf, Tefyocfy Ty,

|] . . |
Removes
dependence on w Cfo Cf1 sz Cf3 Cf4

18

Base case:
SNARG for NP!

Removes
dependence on w

Construction

ﬂcfo—mf : Tof . —cf, ﬂcf2—>cf3

cfy ct cf,

18

ﬂCf3 —)Cf4

M

Level 1

Base case:
SNARG for NP!

Removes
dependence on w

Construction

ﬂCfO—>Cf2 ﬂsz—>Cf4

® o
ﬂcfo—mf : Tof . —cf, ﬂcf2—>cf3

cfy ct cf,

18

ﬂCf3 —)Cf4

M

Level 2

Level 1

Base case:
SNARG for NP!

Removes
dependence on w

Construction

]Z-CfO —> Cf4

ﬂCfO—>Cf2 ﬂsz—>Cf4

® o
ﬂcfo—mf : Tof . —cf, ﬂcf2—>cf3

cfy ct cf,

18

ﬂCf3 —)Cf4

M

Level 2

Merge via
rate-1 BARGs

Level 1

Base case:
SNARG for NP!

Removes
dependence on w

Construction

ﬂCfO —> Cf4

ﬂCfO—>Cf2 ﬂCfZ—>Cf4

® o
ﬂcfo—mf : Tof . —cf, ﬂcf2—>cf3

cfy ct cf,

18

ﬂCf3 —)Cf4

M

Security sketch with “Somewhere Soundness”™

Level 2 Rt —cf,

Level 1

19

Security sketch with “Somewhere Soundness”™

Level 2 Rt —cf,

¢ EE I I B B B B = B B E|m EE =

Level 1 : ﬂCfO—>Cf2]Z.sz—)Cf4

19

Security sketch with “Somewhere Soundness”™

Level 2

Level 1

19

Security sketch with “Somewhere Soundness”™

Level 2

Level 1

Base case:
SNARG for NP!

19

Security sketch with “Somewhere Soundness”™

Level 2

Level 1

Base case:
SNARG for NP!

Security sketch with “Somewhere Soundness”™

Level 2

Level 1

Base case:
SNARG for NP!

Breaks SNARG security!

Security sketch with “Somewhere Soundness”™

Our main technical contribution
(over [DGKV/PP22]):

/s
We show this works for NP with cfo—cfy
careful complexity leveraging ‘

Level 1

Base case:
SNARG for NP!

Breaks SNARG security!

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential

hardness of:
 Non-adaptive SNARG for NP

e Rate-1 Somewhere Extractable BARGs
Proof size: poly(4, |cf|,log T).

20

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, |cf|,log T).

Corollary [DJJMKS25]. There exists IVC for NP assuming subexponential

hardness of:

20

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, |cf|,log T).

Corollary [DJJMKS25]. There exists IVC for NP assuming subexponential

hardness of:
Rate-1 Somewhere Extractable BARGs

20

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, |cf|,log T).

Corollary [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

Rate-1 Somewhere Extractable BARGs
Proof size: poly(4, | cf|, |w;]|,log T).

20

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, |cf|,log T).

Corollary [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

Rate-1 Somewhere Extractable BARGs
Proof size: poly(4, | cf|, |w;]|,log T).

Independent of time-steps, but grows with

intermediate configurations cf; and witness
20

IVC for NP!

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

 Non-adaptive SNARG for NP
e Rate-1 Somewhere Extractable BARGs

Proof size: poly(4, |cf|,log T).

Corollary [DJJMKS25]. There exists IVC for NP assuming subexponential
hardness of:

Rate-1 Somewhere Extractable BARGs
Proof size: poly(4, | cf|, |w;]|,log T).

Independent of time-steps, but grows with

intermediate configurations cf; and witness
20

More Succinct IVC?

More Succinct IVC?

» We know adaptively sound SNARGs with poly(A) proof size [WW24/25,
WZ24]

21

More Succinct IVC?

» We know adaptively sound SNARGs with poly(A) proof size [WW24/25,
WZ24]

* |f we follow the “proof merging” template, it seems like we are stuck with
this “configuration” size dependence.

21

More Succinct IVC?

» We know adaptively sound SNARGs with poly(A) proof size [WW24/25,
WZ24]

* |f we follow the “proof merging” template, it seems like we are stuck with
this “configuration” size dependence.

 Need to extract the intermediate configuration!

21

More Succinct IVC?

» We know adaptively sound SNARGs with poly(A) proof size [WW24/25,
WZ24]

* |f we follow the “proof merging” template, it seems like we are stuck with
this “configuration” size dependence.

 Need to extract the intermediate configuration!

 Can we construct IVC without any extraction?

21

More Succinct IVC?

» We know adaptively sound SNARGs with poly(A) proof size [WW24/25,
WZ24]

* |f we follow the “proof merging” template, it seems like we are stuck with
this “configuration” size dependence.

 Need to extract the intermediate configuration!
 Can we construct IVC without any extraction?

« SNARGs without extraction? Smells like iO :)

21

Our Result ll: Even More Succinctness

22

Our Result Il: Even More Succinctness

22

Our Result ll: Even More Succinctness

Theorem [DJJUJMKS25]. There exists IVC for trapdoor computations /.
assuming subexponential hardness of IO and injective PRGs.

Definition: 3Td such that x; =% x; iff Td(x;, x;,j — 1) = Accept.

22

Our Result ll: Even More Succinctness

Theorem [DJJUJMKS25]. There exists IVC for trapdoor computations /.
assuming subexponential hardness of IO and injective PRGs.

» Proof size: poly(4, log T')!

Definition: 3Td such that x; =% x; iff Td(x;, x;,j — 1) = Accept.

22

Our Result ll: Even More Succinctness

Theorem [DJJUJMKS25]. There exists IVC for trapdoor computations /.
assuming subexponential hardness of IO and injective PRGs.
» Proof size: poly(4, log T')!

Definition: 3Td such that x; =% x; iff Td(x;, x;,j — 1) = Accept.

* Trapdoor only appears in the proof

22

Our Result ll: Even More Succinctness

Theorem [DJJUJMKS25]. There exists IVC for trapdoor computations /.
assuming subexponential hardness of IO and injective PRGs.

» Proof size: poly(4, log T')!
Definition: 4 Td such that x; 4 X; iff Td(x, Xjs] — 1) = Accept.

* Trapdoor only appears in the proof

 Can generate the CRS and guarantee soundness only knowing that a
trapdoor exists

22

Verifiable Shuffling

Shuffle and Shuffle and Shuffle and
rerandomise rerandomise rerandomise Ct%

v\.,% ct,
v

/
ct],

23

Verifiable Shuffling

Shuffle and Shuffle and Shuffle and
Ct; rerandomise rerandomise rerandomise

n \é?.'%‘.%
—— = =

Ctyy

* Trapdoor = Secret key of rerandomisable scheme!

23

Verifiable Shuffling

Shuffle and Shuffle and Shuffle and

Ct; rerandomise rerandomise rerandomise

/

—
A \éé\g,%v\.,%
—" _— =

ct,
001101 110001

* Trapdoor = Secret key of rerandomisable scheme!

Ctyy

23

Verifiable Shuffling

Shuffle and Shuffle and Shuffle and
Ct; rerandomise rerandomise rerandomise Ct1
m & =
— %v
Cty CtN

001101 110001

* Trapdoor = Secret key of rerandomisable scheme!

* Our work gives a multi-hop verifiable shuffling scheme with short proofs
from standard assumptions in the plain model.

23

Our Result Il: More Succinct IVC

Theorem [DJJUJMKS25]. There exists IVC for trapdoor computations /.
assuming subexponential hardness of IO and injective PRGs.

» Proof size: poly(4, log T')!

Definition: 3Td such that x; =% x; iff Td(x;, x;,j — 1) = Accept.

24

Our Result Il: More Succinct IVC

Theorem [DJJUJMKS25]. There exists IVC for trapdoor computations /.
assuming subexponential hardness of IO and injective PRGs.

» Proof size: poly(4, log T')!

Definition: 3Td such that x; =% x; iff Td(x;, x;,j — 1) = Accept.

* Trapdoor only appears in the proof

24

Our Result Il: More Succinct IVC

Theorem [DJJUJMKS25]. There exists IVC for trapdoor computations /.
assuming subexponential hardness of IO and injective PRGs.

» Proof size: poly(4, log T')!
Definition: 4 Td such that x; 4 X; iff Td(x, Xjs] — 1) = Accept.

* Trapdoor only appears in the proof

* Highly inspired by “pure i10” adaptive SNARG constructions of [WW24/25,
WZ24, DWW24| and “chaining approach” of [GSWW22, DWW?24].

24

Our Result Il: More Succinct IVC

Theorem [DJJUJMKS25]. There exists IVC for trapdoor computations /.
assuming subexponential hardness of IO and injective PRGs.

» Proof size: poly(4, log T')!

Definition: 3Td such that x; =% x; iff Td(x;, x;,j — 1) = Accept.

* Trapdoor only appears in the proof

* Highly inspired by “pure i10” adaptive SNARG constructions of [WW24/25,
WZ24, DWW24| and “chaining approach” of [GSWW22, DWW?24].

* ldea: Do proof without extraction!

24

Construction

Construction

IVC.V

Construction
IVC.V

X(s Ajs 7L

Construction

IVC.V

X(s Ajs 7L

Construction

IVC.V

X(s Ajs 7L

Construction

IVC.V

X(s Ajs 7L

0/1

Conﬁstruction

IVC.V

0/1,

X(s Ajs 7L

Conﬁstruction

IVC.P

IVC.V

0/1,

X(s Ajs 7L

Conﬁstruction

IVC.P

IVC.V

0/1,

X(s Ajs 7L

Conﬁstruction

IVC.P

IVC.V

X0y Xiy T3y W

0/1,

X(s Ajs 7L

Conﬁstruction

IVC.P
IVC.V

X0y Xiy T3y W

0/1,

X(s Ajs 7L

Conﬁstruction

IVC.P
IVC.V

X0y Xiy T3y W

0/1,

X(s Ajs 7L

Con_struction

IVC.P
IVC.V

X0y Xiy T3y W

X(s Ajs 7L

0/1

A0 X1 iyl

25

Con_struction

IVC.P
IVC.V

X0y Xiy T3y W

X(s Ajs 7L

0/1

X0s Xit15 it

Obfuscate these programs and publish as CRS!

25

High level ideal
————————————————————————

High level ideal

High level ideal

H

real

The real scheme

High level idea!

H } IO Gymnastics! (See paper)

real

The real scheme

20

High level ideal

i ' tics! (See paper
Hml IO Gymnastics! (paper) Hideal

The real scheme

20

High level ideal

} IO Gymnastics! (See paper
Hreal 4 (PP) Hideal

No proofs for false

{he real scheme statements (uses Td)

20

High level idea!

H IO Gymnastics! (See paper) H
real ideal

No proofs for false

The real scheme
statements (uses Td)

e |dea: Cheating prover — Distinguisher for these hybrids

20

High level ideal

H IO Gymnastics! (See paper) H
real ideal

No proofs for false

The real scheme
statements (uses Td)

e |dea: Cheating prover — Distinguisher for these hybrids

» Can calculate cheating prover’s success probability in H,., ; using Td.

red

20

High level ideal

H IO Gymnastics! (See paper) H
real ideal

No proofs for false

The real scheme
statements (uses Td)

e |dea: Cheating prover — Distinguisher for these hybrids

» Can calculate cheating prover’s success probability in H,.,, ; using Td.

red

* This gives us soundness :)

20

High level ideal

H IO Gymnastics! (See paper) H
real ideal

No proofs for false
statements (uses Td)

The real scheme

e |dea: Cheating prover — Distinguisher for these hybrids

» Can calculate cheating prover’s success probability in H,., ; using Td.

red
* This gives us soundness :)

. Marries ideas from [GSWW22], [DWW24], [WW25]!

20

High level ideal

H IO Gymnastics! (See paper) H
real ideal

No proofs for false
statements (uses Td)

The real scheme

e |dea: Cheating prover — Distinguisher for these hybrids

» Can calculate cheating prover’s success probability in H,., ; using Td.

red
* This gives us soundness :)

. Marries ideas from [GSWW22], [DWW24], [WW25]!

» This approach does not use extraction and achieves poly(4)-sized proof!

20

Summary

Summary

e Jo extract or not to extract?

27

Summary

e Jo extract or not to extract?

 We show two IVC constructions in the nondeterministic setting.

27

Summary

* To extract or not to extract?
 We show two IVC constructions in the nondeterministic setting.

* We give an extraction-based approach to achieve IVC for NP.

27

Summary

* To extract or not to extract?
 We show two IVC constructions in the nondeterministic setting.

* We give an extraction-based approach to achieve IVC for NP.

e Proof size: poly(4, | cf|,log T).

27

Summary

* To extract or not to extract?
 We show two IVC constructions in the nondeterministic setting.

* We give an extraction-based approach to achieve IVC for NP.
e Proof size: poly(4, | cf|,log T).
* We give an 10-based approach to IVC for “Trapdoor-NP”.

27

Summary

* To extract or not to extract?
 We show two IVC constructions in the nondeterministic setting.

* We give an extraction-based approach to achieve IVC for NP.
e Proof size: poly(4, | cf|,log T).
* We give an 10-based approach to IVC for “Trapdoor-NP”.

 Demonstrates a new approach to IVC without extraction!

27

Summary

* To extract or not to extract?
 We show two IVC constructions in the nondeterministic setting.

* We give an extraction-based approach to achieve IVC for NP.
e Proof size: poly(4, | cf|,log T).
* We give an 10-based approach to IVC for “Trapdoor-NP”.

 Demonstrates a new approach to IVC without extraction!

» Proof size: poly(4).

27

Summary

* To extract or not to extract?
 We show two IVC constructions in the nondeterministic setting.
* We give an extraction-based approach to achieve IVC for NP.
e Proof size: poly(4, | cf|,log T).
* We give an 10-based approach to IVC for “Trapdoor-NP”.
 Demonstrates a new approach to IVC without extraction!
o Proof size: poly(/).

 Open problem: Can we extend this to all of NP?

27

Thank you for your attention!

Bonus Slides

Recall: Rate-1 Batch Arguments (BARG)

Common reference string

@ Xiy .o X € L
7 £

Recall: Rate-1 Batch Arguments (BARG)

Common reference string

@ X1y ooy X € L
7 &

Recall: Rate-1 Batch Arguments (BARG)

Common reference string

@ X1y ooy X € L
g e 8

wq

14%9)

Recall: Rate-1 Batch Arguments (BARG)

Common reference string

@ X1y ooy X € L
g e 8

Rate 1: | 7| = |w;| + poly(4)

wq

14%9)

30

Recall: Rate-1 Batch Arguments (BARG)

Common reference string

@ Xiy .o X € L
=

Rate 1: | 7| = |w;| + poly(4)

wq
14%9)

Usually only require
| < k- |w].

30

Recall: Rate-1 Batch Arguments (BARG)

Common reference string crs(i™)

@ Xiy .o X € L
=

Rate 1: | 7| = |w;| + poly(4)

wq

14%9)

31

Recall: Rate-1 Batch Arguments (BARG)

Common reference string crs(i™)

@ Xiy .o X € L
SN : K

Rate 1: | 7| = |w;| + poly(4)

W, « Somewhere soundness: Can generate crs(i™) in
trapdoor mode that let’s you extract a witness for x;..

31

Recall: Rate-1 Batch Arguments (BARG)

Common reference string crs(i™)

@ Xiy .o X € L
P * N

Rate 1: | 7| = |w;| + poly(4)

W, « Somewhere soundness: Can generate crs(i™) in
trapdoor mode that let’s you extract a witness for x;..

« CRS indistinguishability: crs &~ crs(i*).

31

Recall: Rate-1 Batch Arguments (BARG)

Common reference string crs(i™)

@ Xiy .o X € L
P * N

Rate 1: | 7| = |w;| + poly(4)

W, « Somewhere soundness: Can generate crs(i™) in
trapdoor mode that let’s you extract a witness for x;..

« CRS indistinguishability: crs &~ crs(i*).

31

Proof Strategy: BARG the BARG

(cf,cf' 2 =

Merge with (cf, cf” 21

rate-1 BARG o
(cf’ cf" 2% &« ' " = (ct', TgarG)

32

Proof Strategy: BARG the BARG

(cf,cf' 2 =

Merge with (cf, cf” 21

rate-1 BARG o
(cf’ cf’ 25 # ' " = (ct', Tgarg)

Construct a BARG proof 7z 55 corresponding to:

BARG Statement: (cf, cf’), (cf’, cf”).
BARG Witness: Level k proofs 7, 7"’
Level k + 1 proof: 7" = (cf’, g Arg)-

32

Proof Strategy: BARG the BARG

(cf,cf 2 = »

Merge with (cf, cf” 21

rate-1 BARG o
(cf’ cf’ 25 # ' " = (ct', Tgarg)

Construct a BARG proof 7z 55 corresponding to:
BARG Statement: (cf, cf’), (cf’, cf”).

» Suppose & creates cheating proofs (cf’, 7garc) BARG Witness: Level k proofs 7, 7"

Level k + 1 proof: 7”7 = (cf’, Agprg)-

with prob. > e.

32

Proof Strategy: BARG the BARG

(cf,cf 2 = »

Merge with (cf, cf” 21

rate-1 BARG o
(cf’ cf" 2% &« ' " = (ct', TgarG)

Construct a BARG proof 7z 55 corresponding to:
BARG Statement: (cf, cf’), (cf’, cf”).

» Suppose & creates cheating proofs (cf’, 7garc) BARG Witness: Level k proofs 7, 7"

Level k + 1 proof: 7”7 = (cf’, Agprg)-

with prob. > €.
* By pigeonhole, cf - cf’ with prob > ¢/2 or, cf’ » cf”. WLOG first hop.

32

Proof Strategy: BARG the BARG

1 Kk .
x(Cf’ et ® Merge with -~ (cf, cf” 2k+1

rate-1 BARG o
(cf’ cf’ 25 # ' " = (ct', Tgarg)

Construct a BARG proof 7z 55 corresponding to:
BARG Statement: (cf, cf’), (cf’, cf”).

» Suppose & creates cheating proofs (cf’, 7garc) BARG Witness: Level k proofs 7, 7"

Level k + 1 proof: 7”7 = (cf’, Agprg)-

with prob. > e.
* By pigeonhole, cf - cf’ with prob > ¢/2 or, cf’ » cf”. WLOG first hop.

32

Proof Strategy: BARG the BARG

1 Kk .
x(Cf’ et ® Merge with -~ (cf, cf” 2k+1

rate-1 BARG o
(cf’ cf’ 25 # ' " = (ct', Tgarg)

Construct a BARG proof 7z 55 corresponding to:
BARG Statement: (cf, cf’), (cf’, cf”).

» Suppose & creates cheating proofs (cf’, 7garc) BARG Witness: Level k proofs 7, 7"

Level k + 1 proof: 7”7 = (cf’, Agprg)-

with prob. > e.

* By pigeonhole, cf - cf’ with prob > ¢/2 or, cf’ » cf”. WLOG first hop.
* Switch BARG CRS binding accordingly!

32

Proof Strategy: BARG the BARG

1 Kk .
x(Cf’ et ® Merge with -~ (cf, cf” 2k+1

rate-1 BARG o
(cf’ cf’ 25 # ' " = (ct', Tgarg)

Construct a BARG proof 7z 55 corresponding to:
BARG Statement: (cf, cf’), (cf’, cf”).

» Suppose & creates cheating proofs (cf’, 7garc) BARG Witness: Level k proofs 7, 7"

Level k + 1 proof: 7”7 = (cf’, Agprg)-

with prob. > e.

* By pigeonhole, cf - cf’ with prob > ¢/2 or, cf’ » cf”. WLOG first hop.
* Switch BARG CRS binding accordingly!
* By index-hiding property of the BARG, should still cheat on this hop!!

32

Proof Strategy: BARG the BARG

1 Kk .
x(Cf’ ct.2”) I Merge with -~ (cf, cf” 2k+1

rate-1 BARG o
(cf’ cf’ 25 # ' " = (ct', Tgarg)

Construct a BARG proof 7z 55 corresponding to:
BARG Statement: (cf, cf’), (cf’, cf”).

» Suppose & creates cheating proofs (cf’, 7garc) BARG Witness: Level k proofs 7, 7"

Level k + 1 proof: 7”7 = (cf’, Agprg)-

with prob. > e.

* By pigeonhole, cf - cf’ with prob > ¢/2 or, cf’ » cf”. WLOG first hop.
* Switch BARG CRS binding accordingly!
* By index-hiding property of the BARG, should still cheat on this hop!!

e Extract 7 and recurse!!

32

Proof Strategy: BARG the BARG

1 Kk .
X(Cf’ ct.2”) I Merge with -~ (cf, cf” 2k+1

rate-1 BARG o
(cf’ cf’ 25 # ' " = (ct', Tgarg)

Needs careful
complexity leveraging for NP

(this work, based on BKK+17)!
Ask me later :)

* By pigeonhole, cf - cf’ with prob > e¢/2 or.2"".> ct”. WLOG first hop.
« Switch BARG CRS binding accorziigly!
* By index-hiding property of the BARG, should still cheat on this hop!!

» Suppose & creates cheating proofs (cf’, 7garc)
with prob. > e.

e Extract 7 and recurse!!

32

