Incrementally Verifiable Computation for NP from Standard Assumptions

based on joint work with

Pratish Datta NTT Research

Abhishek Jain JHU & NTT Research

Zhengzhong Jin Northeastern

Surya Mathialagan MIT → NTT Research

Alexis Korb
UCLA

Amit Sahai UCLA

Incrementally Verifiable Computation for NP from Standard Assumptions (iO)

based on joint work with

Pratish Datta NTT Research

Abhishek Jain JHU & NTT Research

Zhengzhong Jin Northeastern

Surya Mathialagan MIT → NTT Research

Alexis Korb UCLA

Amit Sahai UCLA

(Nondeterministic) computation ${\mathcal M}$

(Nondeterministic) computation ${\mathcal M}$

[Valiant '08]

 cf_0

(Nondeterministic) computation ${\mathcal M}$

[Valiant '08]

 cf_0

Fermat's little theorem

(Nondeterministic) computation ${\mathcal M}$

(Nondeterministic) computation ${\mathcal M}$

(Nondeterministic) computation ${\mathcal M}$

(Nondeterministic) computation \mathcal{M}

[Valiant '08]

cf₅₀₀₀ cf_0 cf₁₀₀₀ cf_1 cf_T Fermat's little theorem Riemann Hypothesis

How can we trust the validity of the intermediate configurations?

[Valiant '08]

• **Efficiency:** Proof size and verification time are **independent** of the number of hops.

- **Efficiency:** Proof size and verification time are **independent** of the number of hops.
- Soundness: Hard to come up with proofs for $cf_0 \nrightarrow cf_T$.

- Efficiency: Proof size and verification time are independent of the number of hops.
- Soundness: Hard to come up with proofs for $cf_0 \nrightarrow cf_T$.

^{*}We will not consider knowledge soundness since we are focusing on standard assumptions.

[GL07, CKLM12, CKLM13]

ullet N parties encrypt **votes** under a rerandomizable scheme.

[GL07, CKLM12, CKLM13]

• N parties encrypt votes under a rerandomizable scheme.

ct₁

ct₁

- -

ct_N

[GL07, CKLM12, CKLM13]

N parties encrypt votes under a rerandomizable scheme.

ct₁

ct₁

- -

Encrypted votes!

[GL07, CKLM12, CKLM13]

- N parties encrypt votes under a rerandomizable scheme.
- ullet L authorities shuffle and rerandomise the ciphertext.

ct₁

ct₁

- -

Encrypted votes!

[GL07, CKLM12, CKLM13]

- N parties encrypt votes under a rerandomizable scheme.
- ullet L authorities shuffle and rerandomise the ciphertext.

votes!

- N parties encrypt votes under a rerandomizable scheme.
- ullet L authorities shuffle and rerandomise the ciphertext.

- ullet N parties encrypt **votes** under a rerandomizable scheme.
- ullet L authorities shuffle and rerandomise the ciphertext.

- N parties encrypt votes under a rerandomizable scheme.
- L authorities shuffle and rerandomise the ciphertext.

- N parties encrypt votes under a rerandomizable scheme.
- ullet L authorities shuffle and rerandomise the ciphertext.

- N parties encrypt votes under a rerandomizable scheme.
- ullet L authorities shuffle and rerandomise the ciphertext.

- N parties encrypt votes under a rerandomizable scheme.
- L authorities shuffle and rerandomise the ciphertext.

[GL07, CKLM12, CKLM13]

- N parties encrypt votes under a rerandomizable scheme.
- ullet L authorities shuffle and rerandomise the ciphertext.

votes!

- ullet N parties encrypt **votes** under a rerandomizable scheme.
- ullet L authorities shuffle and rerandomise the ciphertext.

- ullet N parties encrypt **votes** under a rerandomizable scheme.
- ullet L authorities shuffle and rerandomise the ciphertext.

- ullet N parties encrypt **votes** under a rerandomizable scheme.
- ullet L authorities shuffle and rerandomise the ciphertext.

- N parties encrypt votes under a rerandomizable scheme.
- L authorities shuffle and rerandomise the ciphertext.
- ullet Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

- ullet N parties encrypt **votes** under a rerandomizable scheme.
- L authorities shuffle and rerandomise the ciphertext.
- Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

- N parties encrypt votes under a rerandomizable scheme.
- L authorities shuffle and rerandomise the ciphertext.
- ullet Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

- N parties encrypt votes under a rerandomizable scheme.
- L authorities shuffle and rerandomise the ciphertext.
- ullet Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

- N parties encrypt votes under a rerandomizable scheme.
- L authorities shuffle and rerandomise the ciphertext.
- ullet Use ZK-IVC to verify that the final list is honest without reading L NIZKs!

How do we construct IVC?

Valiant's Recipe: Proof Merging (Prior work)

$$(cf, cf', t) \qquad \pi$$

$$(cf', cf'', t') \qquad \pi'$$

(Prior work)

• Proof of knowledge: If adversary gives accepting $(cf, cf'', t + t'), \pi''$, one can extract accepting tuples $(cf, cf', t), \pi$ and $(cf', cf'', t'), \pi'$.

- Proof of knowledge: If adversary gives accepting $(cf, cf'', t + t'), \pi''$, one can extract accepting tuples $(cf, cf', t), \pi$ and $(cf', cf'', t'), \pi'$.
- Succinctness: $|\pi''| \approx |\pi|, |\pi'|$

Level 3

Level 2

Level 1

Level 0

 cf_0 cf_1 cf_2 cf_3 cf_4 cf_5 cf_6

Level 3

Level 2

Level 3

Level 2

Level 3

Proof Merging \rightarrow IVC! "Tree merging"

Level 3

Level 3

Level 3

Proof Merging \rightarrow IVC! "Tree merging"

Level 3

Level 3

$$(cf, cf', 2^k) \qquad \pi$$

$$(cf', cf'', 2^k) \qquad \pi'$$

Claim: There exists cf', π , π' such that $\mathrm{Ver}_k(\mathrm{cf},\mathrm{cf}',\pi)=1$ and $\mathrm{Ver}_k(\mathrm{cf}',\mathrm{cf}'',\pi')=1$

Claim: There exists cf', π , π' such that $\operatorname{Ver}_k(\operatorname{cf},\operatorname{cf}',\pi)=1$ and $\operatorname{Ver}_k(\operatorname{cf}',\operatorname{cf}'',\pi')=1$

Claim: There exists cf', π , π' such that $\mathrm{Ver}_k(\mathrm{cf},\mathrm{cf}',\pi)=1$ and $\mathrm{Ver}_k(\mathrm{cf}',\mathrm{cf}'',\pi')=1$

Claim: There exists cf', π , π' such $Ver_k(cf, cf', \pi) = 1$ and $Ver_k(cf', cf'', \pi)$

Level k SNARK Proof

Recursive composition is the backbone of many works!

[CT10, BCCT13,BGH19,

BCMS20, BDFG21, BCLMS21,

KS22, CCS22, etc]

Level 3

Given cheating proof, recursively extract

• Issue 1: SNARKs do not exist from standard assumptions!! [CGKS23]

- Issue 1: SNARKs do not exist from standard assumptions!! [CGKS23]
 - *Extraction* was extremely crucial to make the soundness analysis go through!

- Issue 1: SNARKs do not exist from standard assumptions!! [CGKS23]
 - *Extraction* was extremely crucial to make the soundness analysis go through!
- Actually, what about random oracle model?

IVC in Random Oracle Model?

SNARKs exist in the ROM!

- SNARKs exist in the ROM!
 - Valiant's construction: Random oracle is an oracle and a concrete function, and then an oracle again.

- SNARKs exist in the ROM!
 - Valiant's construction: Random oracle is an oracle and a concrete function, and then an oracle again.

- SNARKs exist in the ROM!
 - Valiant's construction: Random oracle is an oracle and a concrete function, and then an oracle again.

- SNARKs exist in the ROM!
 - Valiant's construction: Random oracle is an oracle and a concrete function, and then an oracle again.

- SNARKs exist in the ROM!
 - Valiant's construction: Random oracle is an oracle and a concrete function, and then an oracle again.

- SNARKs exist in the ROM!
 - Valiant's construction: Random oracle is an oracle and a concrete function, and then an oracle again.
 - Security gap!

- SNARKs exist in the ROM!
 - Valiant's construction: Random oracle is **an oracle** and a **concrete function**, and then an **oracle again**.
 - Security gap!
 - SNARKs in the ROM cannot be recursively composed [BCG24]!

- SNARKs exist in the ROM!
 - Valiant's construction: Random oracle is an oracle and a concrete function, and then an oracle again.
 - Security gap!
 - SNARKs in the ROM cannot be recursively composed [BCG24]!
 - [HAN23] showed some barriers in the ROM

- SNARKs exist in the ROM!
 - Valiant's construction: Random oracle is an oracle and a concrete function, and then an oracle again.
 - Security gap!
 - SNARKs in the ROM cannot be recursively composed [BCG24]!
 - [HAN23] showed some barriers in the ROM
 - Shows that SNARGs and IVC are fundamentally different problems

This Work: How do we construct IVC for NP from standard assumptions?

Two constructions of IVC from standard assumptions!

- Two constructions of IVC from standard assumptions!
 - Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP.

- Two constructions of IVC from standard assumptions!
 - Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP.
 - Proof size: $poly(\lambda, |cf|, log T)$.

- Two constructions of IVC from standard assumptions!
 - Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP.
 - Proof size: $poly(\lambda, |cf|, log T)$.
 - Relies heavily on tools from prior works [PP22, DGKV22] on IVC for P

- Two constructions of IVC from standard assumptions!
 - Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP.
 - Proof size: $poly(\lambda, |cf|, log T)$.
 - Relies heavily on tools from prior works [PP22, DGKV22] on IVC for P
 - Without extraction: Even more succinct IVC for "Trapdoor-NP" via a "Pure IO" approach.

- Two constructions of IVC from standard assumptions!
 - Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP.
 - Proof size: $poly(\lambda, |cf|, log T)$.
 - Relies heavily on tools from prior works [PP22, DGKV22] on IVC for P
 - Without extraction: Even more succinct IVC for "Trapdoor-NP" via a "Pure IO" approach.
 - Proof size: $poly(\lambda, log T)!$

- Two constructions of IVC from standard assumptions!
 - Extraction-based: IVC for NP via rate-1 BARGs + SNARGs for NP.
 - Proof size: $poly(\lambda, |cf|, log T)$.
 - Relies heavily on tools from prior works [PP22, DGKV22] on IVC for P
 - Without extraction: Even more succinct IVC for "Trapdoor-NP" via a "Pure IO" approach.
 - Proof size: $poly(\lambda, log T)!$
- We show how to achieve ZK in both settings.

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

Independent of time-steps, but grows with intermediate configurations cf_i

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

• Careful complexity leveraging of [Paneth-Pass '22], [Devadas-Goyal-Kalai-Vaikuntanathan '22].

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

• Careful complexity leveraging of [Paneth-Pass '22], [Devadas-Goyal-Kalai-Vaikuntanathan '22].

Theorem [PP22/DGKV22]. Assuming rate-1 somewhere extractable BARGs, there exists IVC for *deterministic* computations.

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

• Careful complexity leveraging of [Paneth-Pass '22], [Devadas-Goyal-Kalai-Vaikuntanathan '22].

Theorem [DJJMKS25]. There exists IVC for NP assuming subexponential hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

- Careful complexity leveraging of [Paneth-Pass '22], [Devadas-Goyal-Kalai-Vaikuntanathan '22].
- Addresses the common misconception that IVC for NP is impossible due to Gentry-Wichs.

- Proof of knowledge: If adversary gives accepting $(cf, cf'', t + t'), \pi''$, one can extract accepting tuples $(cf, cf', t), \pi$ and $(cf', cf'', t'), \pi'$.
- Succinctness: $|\pi''| \approx |\pi|, |\pi'|$

Somewhere extraction: You can extract either π or π' , but not both.

• Succinctness: $|\pi''| \approx |\pi|, |\pi'|$

Somewhere extraction: You can extract either π or π' , but not both.

• Succinctness: $|\pi''| \approx |\pi|, |\pi'|$

Idea: Can be achieved via

batch arguments (BARGs)! [DGKV/PP22]

Known from standard assumptions

Somewhere extraction: You can extract either π or π' , but not both.

• Succinctness: $|\pi'| \approx |\pi|, |\pi'|$

Idea: Can be achieved via

batch arguments (BARGs)! [DGKV/PP22]

Known from standard assumptions

Somewhere extraction: You can extract either π or π' , but not both.

• Succinctness: $|\pi''| \approx |\pi|, |\pi'|$

Achieved if BARG is rate-1

Construction

 cf_0 cf_1 cf_2 cf_3

Construction

Level 2

Level 1

Level 1

Level 2

Level 1

Base case:SNARG for NP!

Level 2

Level 1

Base case:SNARG for NP!

Level 2

Level 1

Base case:SNARG for NP!

Breaks SNARG security!

Theorem [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

Theorem [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

Corollary [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

Theorem [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

Corollary [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Theorem [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

Corollary [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, |w_i|, log T)$.

Theorem [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

Corollary [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, |w_i|, log T)$.

Independent of time-steps, but grows with intermediate configurations cf_i and witness

Theorem [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

- Non-adaptive SNARG for NP (known from iO + OWF).
- Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, log T)$.

Corollary [DJJMKS25]. There exists IVC for NP assuming <u>subexponential</u> hardness of:

Rate-1 Somewhere Extractable BARGs (known from LWE/DLIN/etc).

Proof size: $poly(\lambda, |cf|, |w_i|, log T)$.

Independent of time-steps, but grows with intermediate configurations cf_i and witness

• We know adaptively sound SNARGs with poly(λ) proof size [WW24/25, WZ24]

- We know adaptively sound SNARGs with poly(λ) proof size [WW24/25, WZ24]
- If we follow the "proof merging" template, it seems like we are stuck with this "configuration" size dependence.

- We know adaptively sound SNARGs with poly(λ) proof size [WW24/25, WZ24]
- If we follow the "proof merging" template, it seems like we are stuck with this "configuration" size dependence.
 - Need to extract the intermediate configuration!

- We know adaptively sound SNARGs with poly(λ) proof size [WW24/25, WZ24]
- If we follow the "proof merging" template, it seems like we are stuck with this "configuration" size dependence.
 - Need to extract the intermediate configuration!
- Can we construct IVC without any extraction?

- We know adaptively sound SNARGs with poly(λ) proof size [WW24/25, WZ24]
- If we follow the "proof merging" template, it seems like we are stuck with this "configuration" size dependence.
 - Need to extract the intermediate configuration!
- Can we construct IVC without any extraction?
 - SNARGs without extraction? Smells like iO:)

Theorem [DJJMKS25]. There exists IVC for *trapdoor computations* \mathcal{M} assuming subexponential hardness of iO and injective PRGs.

Theorem [DJJMKS25]. There exists IVC for *trapdoor computations* \mathcal{M} assuming subexponential hardness of iO and injective PRGs.

Definition: $\exists \mathsf{Td}$ such that $x_i \to^{\mathscr{M}} x_j$ iff $\mathsf{Td}(x_i, x_j, j - i) = \mathsf{Accept}$.

Theorem [DJJMKS25]. There exists IVC for *trapdoor computations* \mathcal{M} assuming subexponential hardness of iO and injective PRGs.

• Proof size: $poly(\lambda, log T)!$

Definition: $\exists \mathsf{Td}$ such that $x_i \to^{\mathscr{M}} x_j$ iff $\mathsf{Td}(x_i, x_j, j - i) = \mathsf{Accept}$.

Theorem [DJJMKS25]. There exists IVC for *trapdoor computations* \mathcal{M} assuming subexponential hardness of iO and injective PRGs.

• Proof size: $poly(\lambda, log T)!$

Definition: $\exists \mathsf{Td}$ such that $x_i \to^{\mathscr{M}} x_j$ iff $\mathsf{Td}(x_i, x_j, j - i) = \mathsf{Accept}$.

Trapdoor only appears in the proof

Theorem [DJJMKS25]. There exists IVC for *trapdoor computations* \mathcal{M} assuming subexponential hardness of iO and injective PRGs.

• Proof size: $poly(\lambda, log T)!$

Definition: $\exists \mathsf{Td}$ such that $x_i \to^{\mathscr{M}} x_j$ iff $\mathsf{Td}(x_i, x_j, j - i) = \mathsf{Accept}$.

- Trapdoor only appears in the proof
 - Can generate the CRS and guarantee soundness only knowing that a trapdoor exists

• Trapdoor = Secret key of rerandomisable scheme!

Trapdoor = Secret key of rerandomisable scheme!

- Trapdoor = Secret key of rerandomisable scheme!
- Our work gives a multi-hop verifiable shuffling scheme with short proofs from standard assumptions in the plain model.

Our Result II: More Succinct IVC

Theorem [DJJMKS25]. There exists IVC for *trapdoor computations* \mathcal{M} assuming subexponential hardness of iO and injective PRGs.

• Proof size: $poly(\lambda, log T)!$

Definition: $\exists \mathsf{Td}$ such that $x_i \to^{\mathscr{M}} x_j$ iff $\mathsf{Td}(x_i, x_j, j - i) = \mathsf{Accept}$.

Our Result II: More Succinct IVC

Theorem [DJJMKS25]. There exists IVC for *trapdoor computations* \mathcal{M} assuming subexponential hardness of iO and injective PRGs.

• Proof size: $poly(\lambda, log T)!$

Definition: $\exists \mathsf{Td}$ such that $x_i \to^{\mathscr{M}} x_j$ iff $\mathsf{Td}(x_i, x_j, j - i) = \mathsf{Accept}$.

Trapdoor only appears in the proof

Our Result II: More Succinct IVC

Theorem [DJJMKS25]. There exists IVC for *trapdoor computations* \mathcal{M} assuming subexponential hardness of iO and injective PRGs.

• Proof size: $poly(\lambda, log T)!$

Definition: $\exists \mathsf{Td}$ such that $x_i \to^{\mathscr{M}} x_j$ iff $\mathsf{Td}(x_i, x_j, j - i) = \mathsf{Accept}$.

- Trapdoor only appears in the proof
- Highly inspired by "pure iO" adaptive SNARG constructions of [WW24/25, WZ24, DWW24] and "chaining approach" of [GSWW22, DWW24].

Our Result II: More Succinct IVC

Theorem [DJJMKS25]. There exists IVC for *trapdoor computations* \mathcal{M} assuming subexponential hardness of iO and injective PRGs.

• Proof size: $poly(\lambda, log T)!$

Definition: $\exists \mathsf{Td}$ such that $x_i \to^{\mathscr{M}} x_j$ iff $\mathsf{Td}(x_i, x_j, j - i) = \mathsf{Accept}$.

- Trapdoor only appears in the proof
- Highly inspired by "pure iO" adaptive SNARG constructions of [WW24/25, WZ24, DWW24] and "chaining approach" of [GSWW22, DWW24].
 - Idea: Do proof without extraction!

IVC.V

IVC.V

$$X_0, X_i, \pi_i$$

IVC.VCheck π_i = 0/1 x_0, x_i, π_i

IVC.P

Obfuscate these programs and publish as CRS!!

The real scheme

The real scheme

The real scheme

Idea: Cheating prover → Distinguisher for these hybrids

- Idea: Cheating prover → Distinguisher for these hybrids
 - Can calculate cheating prover's success probability in H_{real} using Td.

- Idea: Cheating prover → Distinguisher for these hybrids
 - Can calculate cheating prover's success probability in H_{real} using Td.
 - This gives us soundness:)

- Idea: Cheating prover → Distinguisher for these hybrids
 - Can calculate cheating prover's success probability in H_{real} using Td.
 - This gives us soundness:)
- Marries ideas from [GSWW22], [DWW24], [WW25]!

- Idea: Cheating prover → Distinguisher for these hybrids
 - Can calculate cheating prover's success probability in H_{real} using Td.
 - This gives us soundness:)
- Marries ideas from [GSWW22], [DWW24], [WW25]!
- This approach does not use extraction and achieves $poly(\lambda)$ -sized proof!

To extract or not to extract?

- To extract or not to extract?
- We show two IVC constructions in the nondeterministic setting.

- To extract or not to extract?
- We show two IVC constructions in the nondeterministic setting.
 - We give an extraction-based approach to achieve IVC for NP.

- To extract or not to extract?
- We show two IVC constructions in the nondeterministic setting.
 - We give an extraction-based approach to achieve IVC for NP.
 - Proof size: $poly(\lambda, |cf|, log T)$.

- To extract or not to extract?
- We show two IVC constructions in the nondeterministic setting.
 - We give an extraction-based approach to achieve IVC for NP.
 - Proof size: $poly(\lambda, |cf|, log T)$.
 - We give an iO-based approach to IVC for "Trapdoor-NP".

- To extract or not to extract?
- We show two IVC constructions in the nondeterministic setting.
 - We give an extraction-based approach to achieve IVC for NP.
 - Proof size: $poly(\lambda, |cf|, log T)$.
 - We give an iO-based approach to IVC for "Trapdoor-NP".
 - Demonstrates a new approach to IVC without extraction!

- To extract or not to extract?
- We show two IVC constructions in the nondeterministic setting.
 - We give an extraction-based approach to achieve IVC for NP.
 - Proof size: $poly(\lambda, |cf|, log T)$.
 - We give an iO-based approach to IVC for "Trapdoor-NP".
 - Demonstrates a new approach to IVC without extraction!
 - Proof size: $poly(\lambda)$.

- To extract or not to extract?
- We show two IVC constructions in the nondeterministic setting.
 - We give an extraction-based approach to achieve IVC for NP.
 - Proof size: $poly(\lambda, |cf|, log T)$.
 - We give an iO-based approach to IVC for "Trapdoor-NP".
 - Demonstrates a new approach to IVC without extraction!
 - Proof size: $poly(\lambda)$.
 - Open problem: Can we extend this to all of NP?

Thank you for your attention!

Bonus Slides

Common reference string

$$x_1, \ldots, x_k \in L$$

Common reference string

 w_1

 W_2

- - -

Common reference string

 W_1

 W_2

. .

Common reference string

 $x_1, \ldots, x_k \in L$

 π

Rate 1:
$$|\pi| \approx |w_i| + \text{poly}(\lambda)$$

 W_1

 W_2

- -

Common reference string

 $x_1, \ldots, x_k \in L$

 π

Rate 1: $|\pi| \approx |w_i| + \text{poly}(\lambda)$

 W_1

 W_2

- -

 W_k

Usually only require

$$|\pi| \ll k \cdot |w_i|$$
.

Common reference string $crs(i^*)$

 $x_1, \ldots, x_k \in L$

 π

 W_1

 W_2

Rate 1:
$$|\pi| \approx |w_i| + \text{poly}(\lambda)$$

Common reference string $crs(i^*)$

 $x_1, \ldots, x_k \in L$

 π

 W_1

 W_2

Rate 1:
$$|\pi| \approx |w_i| + \text{poly}(\lambda)$$

• Somewhere soundness: Can generate $crs(i^*)$ in trapdoor mode that let's you extract a witness for x_{i^*} .

Common reference string $crs(i^*)$

 π

 W_1

 W_2

Rate 1:
$$|\pi| \approx |w_i| + \text{poly}(\lambda)$$

- Somewhere soundness: Can generate $\operatorname{crs}(i^*)$ in trapdoor mode that let's you extract a witness for x_{i^*} .
- CRS indistinguishability: $crs \approx crs(i^*)$.

Common reference string $crs(i^*)$

 π

 W_1

 W_2

Rate 1:
$$|\pi| \approx |w_i| + \text{poly}(\lambda)$$

- Somewhere soundness: Can generate $\operatorname{crs}(i^*)$ in trapdoor mode that let's you extract a witness for x_{i^*} .
- CRS indistinguishability: crs \approx crs (i^*) .

For construction, see [PP22, DGKV22, BDSZ24]

Construct a BARG proof π_{BARG} corresponding to:

BARG Statement: (cf, cf'), (cf', cf'').
BARG Witness: Level k proofs π, π'' .

Level k+1 proof: $\pi''=(cf',\pi_{BARG})$.

• Suppose \mathscr{A} creates cheating proofs (cf', π_{BARG}) with **prob.** $\geq \epsilon$.

Construct a BARG proof π_{BARG} corresponding to:

BARG Statement: (cf, cf'), (cf', cf'').

BARG Witness: Level k proofs π , π'' .

Level k+1 proof: $\pi''=(cf',\pi_{BARG})$.

• Suppose \mathscr{A} creates cheating proofs (cf', π_{BARG}) with **prob.** $\geq \epsilon$.

Construct a BARG proof π_{BARG} corresponding to:

BARG Statement: (cf, cf'), (cf', cf'').
BARG Witness: Level k proofs π, π'' .

Level k+1 proof: $\pi''=(cf',\pi_{\mathsf{BARG}})$.

• By pigeonhole, cf \rightarrow cf' with prob $\geq \epsilon/2$ or, cf' \rightarrow cf''. WLOG first hop.

• Suppose \mathscr{A} creates cheating proofs (cf', π_{BARG}) with **prob.** $\geq \epsilon$.

Construct a BARG proof π_{BARG} corresponding to:

BARG Statement: (cf, cf'), (cf', cf'').

BARG Witness: Level k proofs π , π'' .

Level k+1 proof: $\pi''=(cf',\pi_{BARG})$.

• By pigeonhole, cf \rightarrow cf' with prob $\geq \epsilon/2$ or, cf' \rightarrow cf''. WLOG first hop.

• Suppose \mathscr{A} creates cheating proofs (cf', π_{BARG}) with **prob.** $\geq \epsilon$.

Construct a BARG proof π_{BARG} corresponding to:

BARG Statement: (cf, cf'), (cf', cf'').

BARG Witness: Level k proofs π , π'' .

Level k+1 proof: $\pi''=(cf',\pi_{BARG})$.

- By pigeonhole, cf \rightarrow cf' with prob $\geq \epsilon/2$ or, cf' \rightarrow cf''. WLOG first hop.
- Switch BARG CRS binding accordingly!

• Suppose \mathscr{A} creates cheating proofs (cf', π_{BARG}) with **prob.** $\geq \epsilon$.

Construct a BARG proof π_{BARG} corresponding to:

BARG Statement: (cf, cf'), (cf', cf''). BARG Witness: Level k proofs π , π'' . Level k+1 proof: $\pi''=(cf',\pi_{BARG})$.

- By pigeonhole, cf \rightarrow cf' with prob $\geq \epsilon/2$ or, cf' \rightarrow cf''. WLOG first hop.
- Switch BARG CRS binding accordingly!
 - By index-hiding property of the BARG, should still cheat on this hop!!

• Suppose \mathscr{A} creates cheating proofs (cf', π_{BARG}) with **prob.** $\geq \epsilon$.

Construct a BARG proof π_{BARG} corresponding to:

BARG Statement: (cf, cf'), (cf', cf''). BARG Witness: Level k proofs π , π'' . Level k+1 proof: $\pi''=(cf',\pi_{BARG})$.

- By pigeonhole, cf \rightarrow cf' with prob $\geq \epsilon/2$ or, cf' \rightarrow cf''. WLOG first hop.
- Switch BARG CRS binding accordingly!
 - By index-hiding property of the BARG, should still cheat on this hop!!
 - Extract π and recurse!!

• Suppose \mathscr{A} creates cheating proofs (cf', π_{BARG}) with **prob.** $\geq \epsilon$.

- Needs careful complexity leveraging for NP (this work, based on BKK+17)!
 Ask me later:)
- By pigeonhole, cf \rightarrow cf' with prob $\geq \epsilon/2$ or cf'. WLOG first hop.
- Switch BARG CRS binding accordingly!
 - By index-hiding property of the BARG, should still cheat on this hop!!
 - Extract π and recurse!!