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Part 1: Background



Yao Garbled Circuits




Security properties

* Privacy: truth values hidden from evaluator.

» Authenticity: evaluator can only produce correct output.



How big can the gate be?

* Only consider RO/symmetric key constructions.
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Existing lower bounds

Paper model Free-XOR AND non-Free-XOR AND
ZRE15] linear model > 2
'BK24| linear 4+ general slicing model > 1.5\

XHX24| bitwise model > 1.5\ > 2\



Part 2: Our results



Lower Bounds for Garbled
Circuits from Shannon-Type
Information Inequalities

Speaker: Jake Januzelli (Columbia University)

Joint work with Mike Rosulek (Oregon State University) and
Lawrence Roy (Aarhus University)



Our results

» Garbled AND gates w/ Free-XOR labels need 1.54 — negl bits.
» Garbled AND gates w/ uncorrelated wire labels need 24 — negl bits.

» Garbled XOR gates w/ uncorrelated wire labels need 4 — negl bits.

 [GLNP15, RR21] are optimal.



Our assumptions

 Minicrypt scheme.

* Unrestricted garbler.

 Evaluator makes only non-adaptive random oracle queries = useful for
single gates.

 Evaluator makes coordinated random oracle queries: for any RO query Eval

makes when evaluating on (i, ), Eval knows which other inputs would also
make the query.

 The above holds for all known Minicrypt schemes.



Coordinated queries

AO7 BO A07 BO @ A
Eval(0,0) Eval(0,1)

Ao A,By Ao ®@A,Bo® A
Eval(1,0) Eval(1,1)




Our (milder) assumptions

0, P21
.« (Cy, C)) = (A, By = (By, By)



Security definition (l)

Real: |deal:

C: (G, CanlvAOaAlaB()aBl) — Garble(g) C: (G7 AZ’BJ) — Slm(g)
C - A: (G, A; Bj) C - A:(G,A; Bj)

A RO A< RO

A—=C:o A—->C:o




Security definition (ll)

|deal:
Real: |
C:(G,A;, B;) < Sim(g)
C: (G, C'07Crla"407"417B07Bl) A Garble(g) C —() A : (Ga.;)liaBj)
Cc - A:(G,A;, B)) A < RO
AA<—> RCO ] x*xA — C : end
*A — C . éen *(G, C(),Cl,Al—iaBl—j) «—C
*xC — .A.Z (G, C(),Cl,AOaAlaBOaBl) xC — A; (G,CO,Cl,AO,A17B07B1)
A—C:o A—=C:o




Information theory

 Shannon information inequality: linear
combinations of conditional entropies

Ex p(X) = p(X|Y) 2 0).

* [ranslate correctness + security into

Shannon bounds — use LP solver
(CITIP).

 “Minimize entropy of garbled gate, feasible
subject to [bounds]” region




Challenges

 Code modifications to CITIP (multiple
distributions, approximate constraints)

* |nitial attempts to solve LP take too long.

e Solution: reduce number of variables.




n-way queries

e n-way query: query that can be made
with n different input combinations. Ay, By Ao, By d A

» E.g,A) D By D A in free-XOR. Eval(0,0) Eval(0,1)

» We show (don’t assume) 2-way queries A P A. By Ao DA,By® A
are the only “useful” queries. Eval(1,0) Eval(1,1)




n-way queries (ll)

e Lemma: Any 3-way query is An. B Ag, By ® A
actually 4-way (use non- RV S
adaptiveness). Eval(0,0) Eval(0,1)

e Lemma: 1-way queries can be Ac®A, By Ay®A,By® A
expressed with 2-ways. E.g Eval(1,0) Eval(1,1)

H(A;, B) = H(A) & H(B)).

e Lemma: Only 2-way queries are
from Free-XOR.



Conclusion

Paper model Free-XOR AND non-Free-XOR AND
ZRE15] linear model > 2
'BK24|  linear + general slicing model > 1.5
FLZ24]  linear + general slicing model > 1.5
| XHX24] bitwise model > 1.5 > 2
Our work our model > 1.5\ > 2\

Thank you for your time!



