Two Garbled Circuit Lower Bounds

Lower Bounds for Garbled Circuits from Shannon-Type Information Inequalities

Jake Januzelli + Mike Rosulek + Lawrence Roy

Bitwise Garbling Schemes: A Model with $\frac{3}{2}\kappa$ -bit Lower Bound of Ciphertexts

Fei Xu + Honggang Hu + Changhong Xu

Part 1: Background

Yao Garbled Circuits

$$egin{aligned} A_0,A_1 & & & & \mathbb{E}_{A_0,B_0}(C_0) \ B_0,B_1 & & & \mathbb{E}_{A_0,B_1}(C_1) \ & \mathbb{E}_{A_1,B_0}(C_0) \ & \mathbb{E}_{A_1,B_1}(C_0) \end{aligned}$$

Security properties

- Privacy: truth values hidden from evaluator.
- Authenticity: evaluator can only produce correct output.

How big can the gate be?

Only consider RO/symmetric key constructions.

$[\mathrm{BMR}90]$	4λ	4λ	\$
[NPS99]	3λ	3λ	\$
[GLNP15]	2λ	λ	\$
$[{ m ZRE15}]$	2λ	0	$A_1=A_0\oplus \Delta$
[RR21]	1.5λ	0	$A_1=A_0\oplus \Delta$

Existing lower bounds

Paper	model	Free-XOR AND	non-Free-XOR AND
[ZRE15]	linear model	$\geq 2\lambda$	
[BK24]	linear + general slicing model	$\geq 1.5\lambda$	
[XHX24]	bitwise model	$\geq 1.5\lambda$	$\geq 2\lambda$

Part 2: Our results

Lower Bounds for Garbled Circuits from Shannon-Type Information Inequalities

Speaker: Jake Januzelli (Columbia University)

Joint work with Mike Rosulek (Oregon State University) and Lawrence Roy (Aarhus University)

Our results

- Garbled AND gates w/ Free-XOR labels need $1.5\lambda-negl$ bits.
- Garbled AND gates w/ uncorrelated wire labels need $2\lambda negl$ bits.
- Garbled XOR gates w/ uncorrelated wire labels need $\lambda-negl$ bits.
- [GLNP15, RR21] are optimal.

Our assumptions

- Minicrypt scheme.
- Unrestricted garbler.
- Evaluator makes only non-adaptive random oracle queries ⇒ useful for single gates.
- Evaluator makes **coordinated** random oracle queries: for any RO query Eval makes when evaluating on (i,j), Eval knows which other inputs would also make the query.
- The above holds for all known Minicrypt schemes.

Coordinated queries

$$A_0, B_0$$
 $Eval(0,0)$

$$A_0, B_0 \oplus \Delta$$
 $Eval(0,1)$

$$A_0 \oplus \Delta, B_0$$
 $\operatorname{Eval}(1,0)$

$$A_0 \oplus \Delta, B_0 \oplus \Delta$$
 Eval $(1,1)$

Our (milder) assumptions

$$A_0, A_1 - \bigcirc - C_0, C_1$$
 $B_0, B_1 - \bigcirc$

•
$$|A_i| = |B_j| = \lambda$$
, $\leftarrow \$$

•
$$(C_0, C_1) \cong (A_0, B_0) \cong (B_0, B_1)$$

Security definition (I)

Real:

Security definition (II)

Real: $\begin{vmatrix} \underline{\mathsf{Real}} \colon \\ \mathcal{C} : (G, C_0, C_1, A_0, A_1, B_0, B_1) \leftarrow \mathsf{Garble}(g) \\ \mathcal{C} \to \mathcal{A} : (G, A_i, B_j) \end{vmatrix} \vdash \overline{\mathcal{C}} : (G, A_i, B_j) \leftarrow \mathsf{Sim}(g) \\ \mathcal{C} \to \mathcal{A} : (G, A_i, B_j) \\ \mathcal{A} \leftrightarrow RO$ $\mathcal{A} \leftrightarrow RO$ $*\mathcal{A} \to \mathcal{C}:\mathsf{end}$ $*C \to A: (G, C_0, C_1, A_0, A_1, B_0, B_1)$ $\mathcal{A} \to \mathcal{C} : \sigma$

```
Ideal:
| *(G, C_0, C_1, A_{1-i}, B_{1-j}) \leftarrow \mathcal{C} 
*\mathcal{C} \rightarrow \mathcal{A} : (G, C_0, C_1, A_0, A_1, B_0, B_1) 
\mathcal{A} \rightarrow \mathcal{C} : \sigma
```

Information theory

- Shannon information inequality: linear combinations of conditional entropies $(\text{E.x }\phi(X)-\phi(X\,|\,Y)\geq 0).$
- Translate correctness + security into Shannon bounds → use LP solver (CITIP).
- "Minimize entropy of garbled gate, subject to [bounds]"

Challenges

- Code modifications to CITIP (multiple distributions, approximate constraints)
- Initial attempts to solve LP take too long.
- Solution: reduce number of variables.

n-way queries

- *n*-way query: query that can be made with *n* different input combinations.
- E.g, $A_0 \oplus B_0 \oplus \Delta$ in free-XOR.
- We **show** (don't assume) 2-way queries are the only "useful" queries.

$$A_0, B_0$$
 $A_0, B_0 \oplus \Delta$ $Eval(0,0)$ $Eval(0,1)$

$$egin{aligned} \mathbf{A}_0 \oplus \Delta, B_0 \ \mathbf{Eval}(1,0) \end{aligned}$$

$$A_0 \oplus \Delta, B_0 \oplus \Delta$$

 $Eval(1,1)$

n-way queries (II)

- Lemma: Any 3-way query is actually 4-way (use non-adaptiveness).
- Lemma: 1-way queries can be expressed with 2-ways. E.g $H(A_i, B_j) \cong H(A_i) \oplus H(B_j)$.
- Lemma: Only 2-way queries are from Free-XOR.

 $egin{aligned} \mathbf{A}_0, B_0 \ \mathbf{Eval}(0, 0) \end{aligned}$

 $A_0, B_0 \oplus \Delta$ Eval(0,1)

 $egin{aligned} \mathbf{A}_0 \oplus \Delta, B_0 \ & \mathrm{Eval}(1,0) \end{aligned}$

 $egin{aligned} \mathbf{A}_0 \oplus \Delta, B_0 \oplus \Delta \ & \mathrm{Eval}(1,1) \end{aligned}$

Conclusion

Paper	model	Free-XOR AND	non-Free-XOR AND
[ZRE15]	linear model	$\geq 2\lambda$	
[BK24]	linear + general slicing model	$\geq 1.5\lambda$	
$[\mathrm{FLZ}24]$	linear + general slicing model	$\geq 1.5\lambda$	
[XHX24]	bitwise model	$\geq 1.5\lambda$	$\geq 2\lambda$
Our work	our model	$\geq 1.5\lambda$	$\geq 2\lambda$

Thank you for your time!