Guess-and-Determine Rebound: Applications to Key Collisions on AES

Lingyue Qin^{1,2,3} Wenquan Bi² Xiaoyang Dong^{1,2,3(⋈)}

¹Tsinghua University, Beijing, P.R.China

²Zhongguancun Laboratory, Beijing, P.R.China

³State Key Laboratory of Cryptography and Digital Economy Security, Tsinghua University, Beijing, P.R.China

August 18, 2025

Outline

1. Background and Preliminaries

2. Guess-and-Determine Rebound Attack

3. Key Collision Attacks on Reduced AES

Outline

1. Background and Preliminaries

2. Guess-and-Determine Rebound Attack

3. Key Collision Attacks on Reduced AES

Key Commitment of Authenticated Encryption

- Key commitment of Authenticated Encryption:
 - ➤ A ciphertext chosen by an attacker does not decrypt into two different sets of key, nonce, and associated data
- [Albertini et al., 2022] analyzed the widely used AE schemes AES-GCM and ChaCha20-Poly1305
 - ▶ Padding fix: prepending a *I*-bit string X of 0's to the message M for each encryption as $\operatorname{Enc}(K, N, A, X || M)$

Key Commitment of Authenticated Encryption

- Key commitment of Authenticated encryption:
 - ► A ciphertext chosen by an attacker does not decrypt into two different sets of key, nonce, and associated data
- [Albertini et al., 2022] analyzed the widely used AE schemes AES-GCM and ChaCha20-Poly1305
 - ▶ **Padding fix**: prepending a *I*-bit string X of 0's to the message M for each encryption as $\operatorname{Enc}(K, N, A, X || M)$
 - ▶ Open problem: Is it possible to find two keys K_1 and K_2 such that $AES_{K_1}(0) = AES_{K_2}(0)$ in less than 2^{64} trials?

Key Collision Attack

Target-Plaintext Key Collision [Taiyama et al., 2024]

It is two distinct keys that generate the same ciphertext for a single target plaintext.

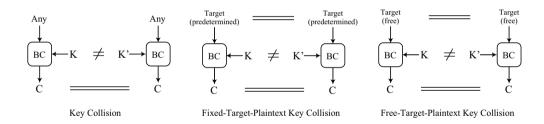
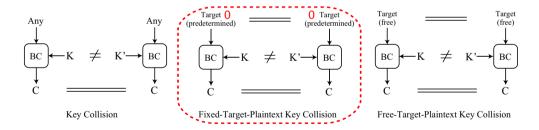


Figure: Variants of key collisions

Key Collision Attack

Target-Plaintext Key Collision [Taiyama et al., 2024]

It is two distinct keys that generate the same ciphertext for a single target plaintext.



AES

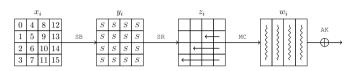


Figure: The round function of AES

Figure: AES-128

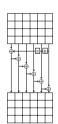


Figure: AES-192

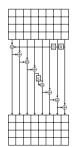
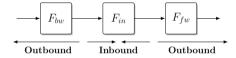


Figure: AES-256

Rebound Attack [Mendel et al., 2009]



- Split the internal block cipher or permutation F into $F = F_{fw} \circ F_{in} \circ F_{bw}$
 - ▶ **Inbound phase**: fulfill the low probability part of the differential with a meet-in-the-middle technique
 - ▶ Outbound phase: compute from the matched values backward and forward to satisfy the outbound differential trail in a brute-force fashion

Triangulating Rebound Attack [Dong et al., 2022]

- Connect multiple inbound phases with the available degrees of freedom both from the key schedule and the encryption path
- Solve a nonlinear system of the byte equations of AES with the help of triangulation algorithm

$$\begin{cases}
F(x \oplus s) \oplus v = 0, \\
G(x \oplus u) \oplus s \oplus L(y \oplus z) = 0, \\
v \oplus G(u \oplus s) = 0, \\
H(z \oplus s \oplus v) \oplus t = 0, \\
u \oplus H(t \oplus x) = 0,
\end{cases}$$

The Weaknesses of Dong et al.'s Triangulating Rebound

• Weaknesses I: Triangulation algorithm failed

$$\begin{cases} x \oplus y \oplus S(y) \oplus z \oplus S(z) \oplus t \oplus S(t) = 0, \\ S(x) \oplus y \oplus S(y) \oplus z \oplus S(z) \oplus t \oplus S(t) = 0, \\ x \oplus S(x) \oplus 2y \oplus S(y) \oplus 3z \oplus 3S(z) \oplus 2t \oplus 3S(t) = 0. \end{cases}$$

• [Bouillaguet et al., 2011] proposed the guess-and-determine method to solve the nonlinear system adopted the Gaussian elimination

The Weaknesses of Dong et al.'s Triangulating Rebound

- Weaknesses II: Related-key differential unexplored on AES for triangulation rebound
 - ▶ Related-key differential may induce unexpected conflicts in the attack
 - ▶ The related-key differentials on 2-round AES-128 and 6-round AES-256 in [Taiyama et al., 2024] are invalid when searching $AES_{\kappa_1}(0) = AES_{\kappa_2}(0)$

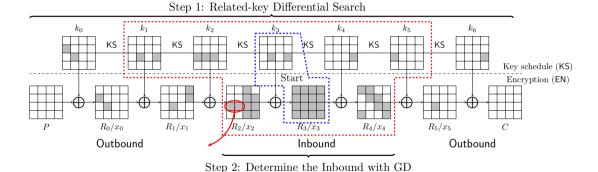
Outline

1. Background and Preliminaries

2. Guess-and-Determine Rebound Attack

3. Key Collision Attacks on Reduced AES

Guess-and-Determine Rebound Attack (GD rebound)

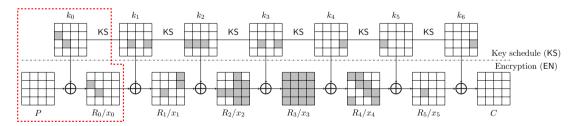


• **Step 1**: Search for related-key differentials suitable for key collisions on AES with [Gérault et al., 2020]'s model

• Step 2: Determine an efficient inbound phase by guess-and-determine

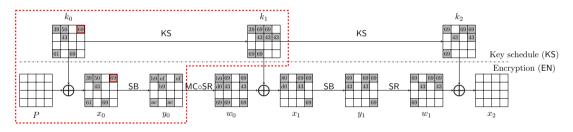
Step 1: Search for related-key differentials of AES

- Collision condition: $\Delta P = \Delta C = 0$
- **Degree of freedom (DoF)**: probability 2^{-p}
 - $ightharpoonup p \le |K|$ for fixed-target key collision
 - ▶ $p \le n + |K|$ for free-target key collision
- **Restriction in round 0**: $\Delta x_0 = \Delta k_0$, $P = x_0 \oplus k_0$



Step 1: Search for related-key differentials of AES

Key collision attack on 2-round AES-128 in [Taiyama et al., 2024]



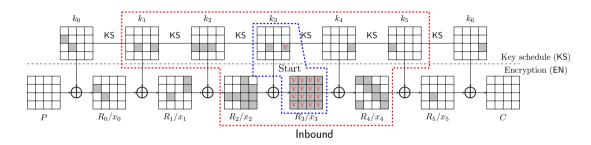
- $(\Delta x_0[12], \Delta SB(x_0[12])) = (0x69, 0xef), (\Delta k_0[12], \Delta SB(k_0[12])) = (0x69, 0x08)$
- ▶ To fulfill the differential, $x_0[12] \in \{0x1b, 0x72\}, k_0[12] \in \{0x60, 0x08\}$
- $ightharpoonup P[12] = k_0[12] \oplus x_0[12] \neq 0$

Step 1: Search for related-key differentials of AES

Solve the incompatibility of KS and EN path in round 0

- Avoid activating Sbox in round 0 of the key schedule
 - $ightharpoonup \Delta k_0[j] = 0 \ (j \in [12, 13, 14, 15]) \text{ for AES-128}$
- Set the output differences of corresponding active Sbox in KS and EN path to be same
 - $igsim \Delta k_0[j] = \Delta x_0[j] \ (j \in [12, 13, 14, 15]), \ \Delta SB(k_0[j]) = \Delta SB(x_0[j]) \ \text{for AES-128}$
 - ▶ **Reconsideration of the probability**: Setting $k_0[j] = x_0[j]$, the probability only needs to be calculated once for two active Sboxes

Step 2: Determine the Inbound with guess-and-determine

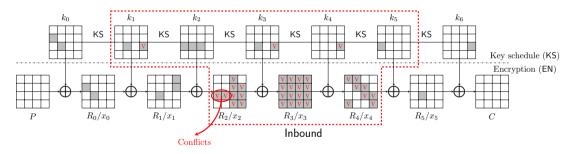


- Select the starting round as the initial Inbound
 - ▶ Fix all values of active Sboxes in KS and EN path of Inbound
 - ▶ Run Buillaguet et al.'s tool to get the guess-and-determine (GD) process of Inbound
 - $ightharpoonup c_{in}$ conflicts, $\mathcal{T}_{GD}=2^{8c_{in}}$ to find one starting point

Step 2: Determine the Inbound with guess-and-determine

Conflicts in the guess-and-determine

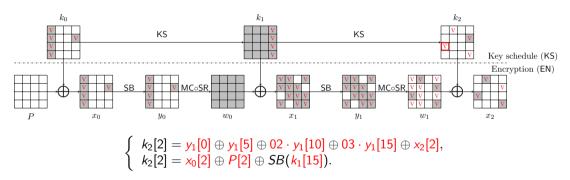
• Type I: Active sboxes falsely included in the Inbound



• Move c_1 **Type I** conflicts to the Outbound phase: $2^{8 \cdot c_1} \rightarrow 2^{(7 \text{ or } 6) \cdot c_1}$

Step 2: Determine the Inbound with guess-and-determine

Type II: Conflict between KS and EN path



- Type II conflicts can be resolved by precomputation
- Type III: Internal conflict

Summary of the GD Rebound Attack

Time complexity

- ▶ Let the numbers of Type I/II/II conflicts be c_1, c_2, c_3
- ▶ Time complexity of GD is $\mathcal{T}'_{GD} = \mathcal{T}_{GD}/2^{8(c_1+c_2)} = 2^{8c_3}$
- ▶ Probability of the Outbound decreases to $2^{-p_{out}-(7 \text{ or } 6)\cdot c_1}$
- ▶ Overall time complexity: $\mathcal{T} = 2^{8c_3} \cdot 2^{p_{out} + (7 \text{ or } 6) \cdot c_1}$
- Add more rounds of KS or EN into Inbound and update the probability of Outbound
 - ▶ Run the guess-and-determine tool to find a new GD and analyze the conflicts

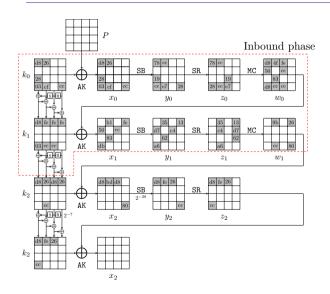
Outline

1. Background and Preliminaries

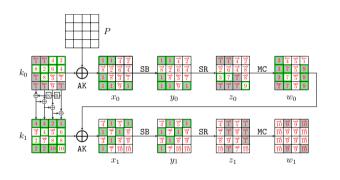
2. Guess-and-Determine Rebound Attack

3. Key Collision Attacks on Reduced AES

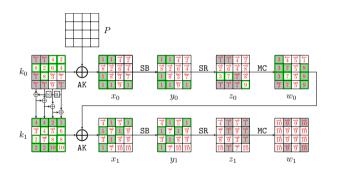
New Related-key Differential on 3-round AES-128



- $\Delta x_0[12] = \Delta k_0[12] = 0x69$, $\Delta SB(x_0[12]) = \Delta SB(k_0[12]) = 0xef$
- Keep $x_0[12] = k_0[12]$ for P = 0
- Probability $2^{-131} \rightarrow 2^{-125}$



- 1. Deduce $x_0[0, 2, 3, 4, 7, 15]$, $x_1[1, 3, 4, 6, 9, 12]$, $k_1[12]$ by the fixed differences 1
 - Compute $k_0[0, 2, 3, 4, 7, 15] = (x_0 \oplus P)[0, 2, 3, 4, 7, 15]$ and $w_0[12] = k_1[12] \oplus x_1[12]$
 - ► Deduce $z_0[0, 3, 4, 7, 10, 11]$ and $z_1[4, 5, 7, 12, 13, 14]$ (1)



- 2. Guess $k_0[5, 12]$ 2
 - ► Deduce $k_1[2, 3, 7, 8]$ by key relation 2
 - ightharpoonup Compute $z_0[1, 12]$ and $w_0[3]$
- 3. For column 0 over the MC of round 0
 - ▶ Deduce $w_0[0, 1, 2]$ and $z_0[2]$ 3 from $z_0[0, 1, 3]$ and $w_0[3]$
 - ▶ Compute $k_0[10]$ and $k_1[1]$

1.	$k_0[0,2,3,4,7,15] = (x_0 \oplus P)[0,2,3,4,7,15]$	$w_0[12] = k_1[12] \oplus x_1[12]$
2.	$k_1[3] = k_0[3] \oplus SB(k_0[12])$	$k_1[7] = k_0[7] \oplus k_1[3]$
	$k_1[8] = k_1[12] \oplus k_0[12]$	$k_1[2] = k_0[2] \oplus SB(k_0[15])$
	$z_0[1] = SB(k_0[5] \oplus P[5])$	
3.	$w_0[0,1,2], z_0[2] = MC(z_0[0,1,3], w_0[3])$	$k_0[10] = P[10] \oplus SB^{-1}(z_0[2])$
	$k_1[1] = w_0[1] \oplus x_1[1]$	
4.	$k_1[0]=k_0[0]\oplus SB(k_0[13])\oplus const$	$k_1[4] = k_0[4] \oplus k_1[0]$
	$k_0[8] = k_1[8] \oplus k_1[4]$	$k_1[5] = k_0[5] \oplus k_1[1]$
5.	$w_0[8,9,10,11] = MC(z_0[8,9,10,11])$	$k_1[9] = w_0[9] \oplus x_1[9]$
6.	$k_0[9] = k_1[9] \oplus k_1[5]$	$k_1[13] = k_1[9] \oplus k_0[13]$
7.	$w_0[5,6,7], z_0[6] = MC(z_0[4,5,7], w_0[4])$	$k_0[14] = P[14] \oplus SB^{-1}(z_0[6])$
	$k_1[6] = w_0[6] \oplus x_1[6]$	
8.	$k_0[1] = k_1[1] \oplus SB(k_0[14])$	$k_0[6] = k_1[6] \oplus k_1[2]$
	$k_1[10] = k_1[6] \oplus k_0[10]$	$k_1[14] = k_1[10] \oplus k_0[14]$
9.	$w_0[13, 14, 15], z_0[15] = MC(z_0[12, 13, 14], w_0[12])$	$k_0[11] = P[11] \oplus SB^{-1}(z_0[15])$
10.	$k_1[11] = k_0[11] \oplus k_1[7]$	$k_1[15] = k_1[11] \oplus k_0[15]$

Table: Equations in the GD steps for 3-round AES-128. Blue bytes are guessed.

Degree of freedom

- Step 1, deduce $2^{12+2}/2 = 2^{13}$ values for active bytes 1 from the differences $s_1 = 12$ active Sboxes with 2^{-7} and $s_2 = 1$ active Sboxes with 2^{-6} probability
- Step 2 and 4, guess $k_0[5, 12, 13]$
- $2^{13+24} = 2^{37}$ states satisfying the inbound trial

Time complexity

- $c_{in} = 0$, $\mathcal{T}_{GD} = 1$ for finding one starting point
- $2^{-p_{out}} = 2^{-35}$, collect 2^{35} starting points to expect one collision
- Overall time complexity $T=2^{35}$

Experiments on fixed-target-plaintext key collisions

Intel Core i7-13700F @2.1 GHz and 16G RAM

Key Collisions on 3-round AES-128 **for** P = 0

K₁: 0x0f6eef4eea138a1b60057a26d30bedfa
 K₂: 0xd76ec74dcc138ad460057a26d30bed36
 C: 0x87c494f5d33621b65ad032992b8f6def

 K_1 : 0x0f06c74eeae0f2d494b699656837a236 K_2 : 0xd706ef4dcce0f21b94b699656837a2fa C: 0xa10740d59630c5a0e1ac2462fb79349d

 K_1 : 0x0f42ef4eea32361b5938c173b43fd7cc K_2 : 0xd742c74dcc3236d45938c173b43fd700 C: 0x04a426d2376e704c409b8409cb6f02d1

Summary

- We introduced the guess-and-determine rebound attack
 - ▶ Exploring and identifying valid related-key differentials for key collision attack
 - ▶ Determining the range of Inbound phase with the guess-and-determine technique and handling the conflicts flexibly
- Applied to AES-128/192/256 for fixed-target-plaintext key collision and free-target-plaintext key collision
 - ▶ The theoretical key collision attacks on AES in [Taiyama et al., 2024] are improved to practical ones
 - ▶ A new 3-round practical key collision attack on AES-128
 - ▶ Some quantum key collisions attacks and semi-free-start key collision attacks

Results

Target	Attack	Rounds	Time	C-Mem	qRAM	Setting	Ref.
AES-128	Key Collision	2/10	2 ⁴⁹	-	-	Classic	[Taiyama et al., 2024]
		2/10	Practical	2^{22}	-	Classic	[Ni et al., 2025]
		2 /10	2 ⁶ Practical	-	-	Classic	Ours
		3/10	2 ³⁵ Practical	-	-	Classic	Ours
	DM mode	5/10	2 ⁵⁷	-	-	Classic	[Taiyama et al., 2024]
	Semi-free-start	5/10	2 ⁵⁴	-	-	Classic	[Ni et al., 2025]
		5/10	2 ³⁹	-	-	Classic	Ours
AES-192	Key Collision	5/12	2 ⁶¹	-	-	Classic	[Taiyama et al., 2024]
		5/12	Practical	2^{5}	-	Classic	[Ni et al., 2025]
		5/12	2 ²¹ Practical	-	-	Classic	Ours
		6/12	2 ^{38.7}		44	Quantum	Ours
	DM mode	7/12	2 ⁶²	-	-	Classic	[Taiyama et al., 2024]
	Semi-free-start	7/12	2^{56}	-	-	Classic	[Ni et al., 2025]
		<mark>7</mark> /12	2 ²⁰ Practical	-	-	Classic	Ours
AES-256	Key Collision	6/14	2 ⁶¹	-	-	Classic	[Taiyama et al., 2024]
		6/14	2^{60}	-	-	Classic	[Ni et al., 2025]
		6/14	2 ²¹ Practical	-	-	Classic	Ours
		7/14	$2^{36.7}$		60	Quantum	Ours

Thanks for your attention!

References I

Bouillaguet, C., Derbez, P., and Fouque, P. (2011). Automatic search of attacks on round-reduced AES and applications. In *CRYPTO 2011*, pages 169–187.

Dong, X., Guo, J., Li, S., and Pham, P. (2022). Triangulating rebound attack on aes-like hashing. In *CRYPTO 2022*, pages 94–124.

Gérault, D., Lafourcade, P., Minier, M., and Solnon, C. (2020). Computing AES related-key differential characteristics with constraint programming. *Artif. Intell.*, 278.

References II

Mendel, F., Rechberger, C., Schläffer, M., and Thomsen, S. S. (2009). The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In *FSE 2009*, pages 260–276.

Ni, J., Li, Y., Liu, F., and Wang, G. (2025). Practical key collision on AES and kiasu-bc. *IACR Cryptol. ePrint Arch.*, page 462.

Taiyama, K., Sakamoto, K., Ito, R., Taka, K., and Isobe, T. (2024). Key collisions on AES and its applications. In *ASIACRYPT 2024*, pages 267–300.