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Key Commitment of Authenticated Encryption

• Key commitment of Authenticated Encryption:

▶ A ciphertext chosen by an attacker does not decrypt into two different sets of key,
nonce, and associated data

• [Albertini et al., 2022] analyzed the widely used AE schemes AES-GCM and
ChaCha20-Poly1305

▶ Padding fix: prepending a l-bit string X of 0’s to the message M for each encryption
as Enc(K ,N,A,X∥M)
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Key Commitment of Authenticated Encryption

• Key commitment of Authenticated encryption:

▶ A ciphertext chosen by an attacker does not decrypt into two different sets of key,
nonce, and associated data

• [Albertini et al., 2022] analyzed the widely used AE schemes AES-GCM and
ChaCha20-Poly1305

▶ Padding fix: prepending a l-bit string X of 0’s to the message M for each encryption
as Enc(K ,N,A,X∥M)

▶ Open problem: Is it possible to find two keys K1 and K2 such that
AESK1(0) = AESK2(0) in less than 264 trials?
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Key Collision Attack

Target-Plaintext Key Collision [Taiyama et al., 2024]

It is two distinct keys that generate the same ciphertext for a single target plaintext.

8 K. Taiyama et al.
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Fig. 3: A schematic view of the rebound attack.
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Fig. 4: Variants of key collisions.

Biryukov and Nikolic [10] have found colliding keys of SC2000-256 by exploiting
the weakness of the key scheduling function. For stream ciphers, Matsui [35] has
investigated the behavior of colliding key pairs for the stream cipher RC4, in
which, two distinct keys generate the same key stream.

3.1 New Variants of Key Collision

In this paper, we introduce new variants of key collisions, termed target-plaintext
key collision, defined as follows.

Definition 1 (Target-Plaintext Key Collision) It is two distinct keys that
generate the same ciphertext for a single target plaintext.

Compared to existing key collisions, particularly the subkey collision in the key
scheduling function, a ciphertext collision occurs exclusively with a specific plain-
text under two distinct keys. Identifying such a collision can be classified into
two different problems depending on whether a single target plaintext is prede-
termined or not, illustrated in Fig. 4.

Problem 1 (Fixed-Target-Plaintext Key Collision) Given a single target
plaintext, find a key pair that generates the same ciphertext.

Problem 2 (Free-Target-Plaintext Key Collision) Find a key pair and a
corresponding single plaintext that generates the same ciphertext.

In Problem 1, given a predetermined target plaintext, the adversary must
identify two distinct keys that yield the same ciphertext. In contrast, Problem 2

Figure: Variants of key collisions
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Biryukov and Nikolic [10] have found colliding keys of SC2000-256 by exploiting
the weakness of the key scheduling function. For stream ciphers, Matsui [35] has
investigated the behavior of colliding key pairs for the stream cipher RC4, in
which, two distinct keys generate the same key stream.

3.1 New Variants of Key Collision

In this paper, we introduce new variants of key collisions, termed target-plaintext
key collision, defined as follows.

Definition 1 (Target-Plaintext Key Collision) It is two distinct keys that
generate the same ciphertext for a single target plaintext.

Compared to existing key collisions, particularly the subkey collision in the key
scheduling function, a ciphertext collision occurs exclusively with a specific plain-
text under two distinct keys. Identifying such a collision can be classified into
two different problems depending on whether a single target plaintext is prede-
termined or not, illustrated in Fig. 4.

Problem 1 (Fixed-Target-Plaintext Key Collision) Given a single target
plaintext, find a key pair that generates the same ciphertext.

Problem 2 (Free-Target-Plaintext Key Collision) Find a key pair and a
corresponding single plaintext that generates the same ciphertext.

In Problem 1, given a predetermined target plaintext, the adversary must
identify two distinct keys that yield the same ciphertext. In contrast, Problem 2
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Rebound Attack [Mendel et al., 2009]

Fbw Fin Ffw

InboundOutbound Outbound

• Split the internal block cipher or permutation F into F = Ffw ◦ Fin ◦ Fbw
▶ Inbound phase: fulfill the low probability part of the differential with a

meet-in-the-middle technique
▶ Outbound phase: compute from the matched values backward and forward to satisfy

the outbound differential trail in a brute-force fashion
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Triangulating Rebound Attack [Dong et al., 2022]

• Connect multiple inbound phases with the available degrees of freedom both from
the key schedule and the encryption path

• Solve a nonlinear system of the byte equations of AES with the help of triangulation
algorithm





F (x ⊕ s)⊕ v = 0,
G(x ⊕ u)⊕ s ⊕ L(y ⊕ z) = 0,
v ⊕ G(u ⊕ s) = 0,
H(z ⊕ s ⊕ v)⊕ t = 0,
u ⊕ H(t ⊕ x) = 0,

⇒





L(y⊕ z)⊕ G( u ⊕ x )⊕ s = 0,
z ⊕ H−1( t )⊕ v ⊕ s = 0,

t ⊕H−1( u )⊕ x = 0,
u ⊕G−1( v )⊕ s = 0,

v ⊕F ( x ⊕ s ) = 0.
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The Weaknesses of Dong et al.’s Triangulating Rebound

• Weaknesses I: Triangulation algorithm failed

{
x ⊕ y ⊕ S(y) ⊕ z ⊕ S(z) ⊕ t ⊕ S(t) = 0,

S(x) ⊕ y ⊕ S(y) ⊕ z ⊕ S(z) ⊕ t ⊕ S(t) = 0,
x ⊕ S(x) ⊕ 2y ⊕ S(y) ⊕ 3z ⊕ 3S(z) ⊕ 2t ⊕ 3S(t) = 0.

• [Bouillaguet et al., 2011] proposed the guess-and-determine method to solve the
nonlinear system adopted the Gaussian elimination

{
z ⊕ S(z) ⊕ S(t) ⊕ S(y) = 0,

t ⊕ S(x) ⊕ y ⊕ 2S(y) = 0,
x ⊕ S(x) ⊕ 2S(y) = 0.
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The Weaknesses of Dong et al.’s Triangulating Rebound

• Weaknesses II: Related-key differential unexplored on AES for triangulation
rebound

▶ Related-key differential may induce unexpected conflicts in the attack
▶ The related-key differentials on 2-round AES-128 and 6-round AES-256 in

[Taiyama et al., 2024] are invalid when searching AESK1(0) = AESK2(0)
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Guess-and-Determine Rebound Attack (GD rebound)

P R0/x0 R1/x1 R2/x2 R3/x3

Start

R4/x4 R5/x5 C

InboundOutbound Outbound

k0 k1 k2 k3 k4 k5 k6

KS KS KS KS KS KS

Key schedule (KS)
Encryption (EN)

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Step 1: Related-key Differential Search

Step 2: Determine the Inbound with GD

��

• Step 1: Search for related-key differentials suitable for key collisions on AES with
[Gérault et al., 2020]’s model

• Step 2: Determine an efficient inbound phase by guess-and-determine
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Step 1: Search for related-key differentials of AES

• Collision condition: ∆P = ∆C = 0
• Degree of freedom (DoF): probability 2−p

▶ p ≤ |K | for fixed-target key collision
▶ p ≤ n + |K | for free-target key collision

• Restriction in round 0: ∆x0 = ∆k0, P = x0 ⊕ k0

P R0/x0 R1/x1 R2/x2 R3/x3 R4/x4 R5/x5 C

k0 k1 k2 k3 k4 k5 k6

KS KS KS KS KS KS

Key schedule (KS)

Encryption (EN)

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
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Step 1: Search for related-key differentials of AES

• Key collision attack on 2-round AES-128 in [Taiyama et al., 2024]

P x0 y0 w0 x1 y1 w1 x2

k0 k1 k2

KS KS

Key schedule (KS)

Encryption (EN)

SB MC◦SR SB SR
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▶ (∆x0[12],∆SB(x0[12])) = (0x69, 0xef), (∆k0[12],∆SB(k0[12])) = (0x69, 0x08)
▶ To fulfill the differential, x0[12] ∈ {0x1b, 0x72}, k0[12] ∈ {0x60, 0x08}
▶ P[12] = k0[12]⊕ x0[12] ̸= 0
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Step 1: Search for related-key differentials of AES

Solve the incompatibility of KS and EN path in round 0
• Avoid activating Sbox in round 0 of the key schedule

▶ ∆k0[j ] = 0 (j ∈ [12, 13, 14, 15]) for AES-128

• Set the output differences of corresponding active Sbox in KS and EN path to be
same

▶ ∆k0[j ] = ∆x0[j ] (j ∈ [12, 13, 14, 15]), ∆SB(k0[j ]) = ∆SB(x0[j ]) for AES-128
▶ Reconsideration of the probability: Setting k0[j ] = x0[j ], the probability only needs

to be calculated once for two active Sboxes
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Step 2: Determine the Inbound with guess-and-determine

P R0/x0 R1/x1 R2/x2 R3/x3

Start

R4/x4 R5/x5 C

Inbound

k0 k1 k2 k3 k4 k5 k6

KS KS KS KS KS KS

Key schedule (KS)

Encryption (EN)

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

• Select the starting round as the initial Inbound

▶ Fix all values of active Sboxes in KS and EN path of Inbound
▶ Run Buillaguet et al.’s tool to get the guess-and-determine (GD) process of Inbound
▶ cin conflicts, TGD = 28cin to find one starting point
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Step 2: Determine the Inbound with guess-and-determine

Conflicts in the guess-and-determine

• Type I: Active sboxes falsely included in the Inbound

P R0/x0 R1/x1 R2/x2 R3/x3 R4/x4 R5/x5 C

Inbound
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Conflicts

• Move c1 Type I conflicts to the Outbound phase: 28·c1 → 2(7 or 6)·c1
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Step 2: Determine the Inbound with guess-and-determine

• Type II: Conflict between KS and EN path

P x0 y0 w0 x1 y1 w1 x2

k0 k1 k2

KS KS

Key schedule (KS)
Encryption (EN)
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{
k2[2] = y1[0]⊕ y1[5]⊕ 02 · y1[10]⊕ 03 · y1[15]⊕ x2[2],
k2[2] = x0[2]⊕ P[2]⊕ SB(k1[15]).

• Type II conflicts can be resolved by precomputation

• Type III: Internal conflict
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Summary of the GD Rebound Attack

• Time complexity
▶ Let the numbers of Type I/II/II conflicts be c1, c2, c3
▶ Time complexity of GD is T ′

GD = TGD/28(c1+c2) = 28c3

▶ Probability of the Outbound decreases to 2−pout−(7 or 6)·c1

▶ Overall time complexity: T = 28c3 · 2pout+(7 or 6)·c1

• Add more rounds of KS or EN into Inbound and update the probability of Outbound

▶ Run the guess-and-determine tool to find a new GD and analyze the conflicts
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New Related-key Differential on 3-round AES-128
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• ∆x0[12] = ∆k0[12] = 0x69,
∆SB(x0[12]) = ∆SB(k0[12]) =
0xef

• Keep x0[12] = k0[12] for P = 0

• Probability 2−131 → 2−125

20 / 30



The Practical Key Collision Attack on 3-round AES-128
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1. Deduce x0[0, 2, 3, 4, 7, 15],
x1[1, 3, 4, 6, 9, 12], k1[12] by the
fixed differences 1

▶ Compute k0[0, 2, 3, 4, 7, 15] =
(x0 ⊕ P)[0, 2, 3, 4, 7, 15] and

w0[12] = k1[12]⊕ x1[12] (
←−
1 )

▶ Deduce z0[0, 3, 4, 7, 10, 11] and

z1[4, 5, 7, 12, 13, 14] (
−→
1 )
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The Practical Key Collision Attack on 3-round AES-128
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2. Guess k0[5, 12] 2

▶ Deduce k1[2, 3, 7, 8] by key
relation 2

▶ Compute z0[1, 12] and w0[3]

3. For column 0 over the MC of
round 0

▶ Deduce w0[0, 1, 2] and z0[2] 3
from z0[0, 1, 3] and w0[3]

▶ Compute k0[10] and k1[1]
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The Practical Key Collision Attack on 3-round AES-128

1. k0[0, 2, 3, 4, 7, 15] = (x0 ⊕ P)[0, 2, 3, 4, 7, 15] w0[12] = k1[12]⊕ x1[12]

2. k1[3] = k0[3]⊕ SB(k0[12]) k1[7] = k0[7]⊕ k1[3]

k1[8] = k1[12]⊕ k0[12] k1[2] = k0[2]⊕ SB(k0[15])

z0[1] = SB(k0[5]⊕ P[5])

3. w0[0, 1, 2], z0[2] = MC(z0[0, 1, 3],w0[3]) k0[10] = P[10]⊕ SB−1(z0[2])

k1[1] = w0[1]⊕ x1[1]

4. k1[0] = k0[0]⊕ SB(k0[13])⊕ const k1[4] = k0[4]⊕ k1[0]

k0[8] = k1[8]⊕ k1[4] k1[5] = k0[5]⊕ k1[1]

5. w0[8, 9, 10, 11] = MC(z0[8, 9, 10, 11]) k1[9] = w0[9]⊕ x1[9]

6. k0[9] = k1[9]⊕ k1[5] k1[13] = k1[9]⊕ k0[13]

7. w0[5, 6, 7], z0[6] = MC(z0[4, 5, 7],w0[4]) k0[14] = P[14]⊕ SB−1(z0[6])

k1[6] = w0[6]⊕ x1[6]

8. k0[1] = k1[1]⊕ SB(k0[14]) k0[6] = k1[6]⊕ k1[2]

k1[10] = k1[6]⊕ k0[10] k1[14] = k1[10]⊕ k0[14]

9. w0[13, 14, 15], z0[15] = MC(z0[12, 13, 14],w0[12]) k0[11] = P[11]⊕ SB−1(z0[15])

10. k1[11] = k0[11]⊕ k1[7] k1[15] = k1[11]⊕ k0[15]

Table: Equations in the GD steps for 3-round AES-128. Blue bytes are guessed.
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The Practical Key Collision Attack on 3-round AES-128

Degree of freedom
• Step 1, deduce 212+2/2 = 213 values for active bytes 1 from the differences

▶ s1 = 12 active Sboxes with 2−7 and s2 = 1 active Sboxes with 2−6 probability

• Step 2 and 4, guess k0[5, 12, 13]

• 213+24 = 237 states satisfying the inbound trial

Time complexity

• cin = 0, TGD = 1 for finding one starting point

• 2−pout = 2−35, collect 235 starting points to expect one collision

• Overall time complexity T = 235
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The Practical Key Collision Attack on 3-round AES-128

Experiments on fixed-target-plaintext key collisions

• Intel Core i7-13700F @2.1 GHz and 16G RAM

Key Collisions on 3-round AES-128 for P = 0
K1 : 0x0f6eef4eea138a1b60057a26d30bedfa
K2 : 0xd76ec74dcc138ad460057a26d30bed36
C : 0x87c494f5d33621b65ad032992b8f6def

K1 : 0x0f06c74eeae0f2d494b699656837a236
K2 : 0xd706ef4dcce0f21b94b699656837a2fa
C : 0xa10740d59630c5a0e1ac2462fb79349d

K1 : 0x0f42ef4eea32361b5938c173b43fd7cc
K2 : 0xd742c74dcc3236d45938c173b43fd700
C : 0x04a426d2376e704c409b8409cb6f02d1
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Summary

• We introduced the guess-and-determine rebound attack

▶ Exploring and identifying valid related-key differentials for key collision attack
▶ Determining the range of Inbound phase with the guess-and-determine technique and

handling the conflicts flexibly

• Applied to AES-128/192/256 for fixed-target-plaintext key collision and
free-target-plaintext key collision

▶ The theoretical key collision attacks on AES in [Taiyama et al., 2024] are improved to
practical ones

▶ A new 3-round practical key collision attack on AES-128
▶ Some quantum key collisions attacks and semi-free-start key collision attacks
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Results

Target Attack Rounds Time C-Mem qRAM Setting Ref.

AES-128 Key Collision 2/10 249 - - Classic [Taiyama et al., 2024]
2/10 Practical 222 - Classic [Ni et al., 2025]
2/10 26 Practical - - Classic Ours
3/10 235 Practical - - Classic Ours

DM mode 5/10 257 - - Classic [Taiyama et al., 2024]
Semi-free-start 5/10 254 - - Classic [Ni et al., 2025]

5/10 239 - - Classic Ours

AES-192 Key Collision 5/12 261 - - Classic [Taiyama et al., 2024]
5/12 Practical 25 - Classic [Ni et al., 2025]
5/12 221 Practical - - Classic Ours
6/12 238.7 44 Quantum Ours

DM mode 7/12 262 - - Classic [Taiyama et al., 2024]
Semi-free-start 7/12 256 - - Classic [Ni et al., 2025]

7/12 220 Practical - - Classic Ours

AES-256 Key Collision 6/14 261 - - Classic [Taiyama et al., 2024]
6/14 260 - - Classic [Ni et al., 2025]
6/14 221 Practical - - Classic Ours
7/14 236.7 60 Quantum Ours
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Thanks for your attention!
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