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Indistinguishability Obfuscation
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• Currently only candidates [JLS21, 
JLS22, RVV24] from standard 
assumptions follows the [JLS20] mould

C0 C1≡

Obf(C0) Obf(C1)≈

(x + y)(x − y) x2 − y2
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iO: Swiss Army knife of Cryptography
(subexponential) iO (+ standard assumptions) is “crypto complete”

• PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable 
Enc [SW’14]

• FHE [CLTV’15]

• WE [GGHRSW’14]

• Adaptive SNARGs [WW24, 25, WZ24]

• Succinct Garbling [KLW’15]

Many of these applications involve 
obfuscating a cryptographic 

program. Can we leverage this?
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F

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain 
of length  to support depth  
computation.

N N

• Consider a small program that 
computes this chain.

• [CLTV] Obfuscate ! Now  can be 
super polynomial.

F N

u1 u2 uN−1 uN

𝒪(F)
If FHE has pseudorandom ciphertexts, 
this truth-table is also pseudorandom.  

 
Can we use this?
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TLDR

• This work is a systematic study of the various notions of pseudorandom 
obfuscation (PRO).

• 3 notions of PRO

• Possibilities and impossibilities

• PRO + Bilinear Maps = iO

• (Not in talk) The full version of this paper additionally includes a candidate 
construction of pseudorandom obfuscation from the evasive LWE heuristic.
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Pseudorandom Obfuscation 
Medium notion

TT(C) U≈

⇒
PRO(C) u≈

aux(Cb)given

given aux(Cb)

Postcondition

Precondition

TT(Cb)

PRO(C0) PRO(C1)

Obfuscation itself doesn't have to 
be pseudorandom
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M, x

g1 g2 gn

GC1 GC2 GCn
Garbling of 

CM,x

Circuit 
description

• Idea: Obfuscate the 
machine which:

• Expands  into a 
circuit .

(M, x)
CM,x

• Outputs a garbling of 
.CM,x

Garbling =  
Obfuscation of  
this program!
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Succinct Garbling from PRO

• Pick a garbling scheme 
with pseudorandom 
garbling [BLSV ’18].

• 𝖦𝖢 . 𝖦𝖺𝗋𝖻 = (r, PRO(F))

PRO of F

GC1 GC2 GCn
Garbling of 
CM,x ⊕ r

𝒰

r

rsim

Set rsim = M(x) ⊕ PRO . Eval(𝒰)

Indistinguishable by PRO security!
Simulator:
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Null-iO [VWW22] 
SNARK for UP 

[MPV24] 
SNARG for NP 

[JKLM25] 

This work: 
(+LWE) FHE  

Succinct Garbling 
Succinct witness 

encryption

Impossible

Bad news: We show PRO does not exist

Go to bonus slide
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Summary

• We study varying notions of pseudorandom obfuscation.

• Strongest notions are impossible.

• We show that iPRO is sufficient for many applications, including FHE and succinct garbling.

• Implied by iO  No impossibility!→

• iPRO + Bilinear maps = iO

• Gives a “modular” approach to iO. 

• Open: Can we construct iPRO from LPN variants/PRGs in NC0? Or even LWE?

• (Not in talk) We give a candidate construction via the evasive LWE heuristic (more on this in the 
next talk!)



Thank you for your attention!
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WE(“x is TT of small ”, )C 0λw =
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Distinguisher!

Back to main body


