
Pseudorandom Obfuscation
And applications

Abhishek Jain
JHU and NTT Research

Surya Mathialagan
MIT NTT Research→

Nico Döttling
CISPA

Giulio Malavolta Vinod Vaikuntanathan
MITBocconi

Spencer Peters
Cornell Meta→

Pedro Branco
Bocconi

Pseudorandom Obfuscation
And applications

Abhishek Jain
JHU and NTT Research

Surya Mathialagan
MIT NTT Research→

Nico Döttling
CISPA

Giulio Malavolta Vinod Vaikuntanathan
MITBocconi

Spencer Peters
Cornell Meta→

Pedro Branco
Bocconi

Thank you Nico for many of these slides!

Indistinguishability Obfuscation
[BGI+01,GGH+13]

Indistinguishability Obfuscation
[BGI+01,GGH+13]

C0 C1

Indistinguishability Obfuscation
[BGI+01,GGH+13]

C0 C1≡

Indistinguishability Obfuscation
[BGI+01,GGH+13]

C0 C1≡
(x + y)(x − y) x2 − y2

Indistinguishability Obfuscation
[BGI+01,GGH+13]

C0 C1≡

Obf(C0) Obf(C1)

(x + y)(x − y) x2 − y2

Indistinguishability Obfuscation
[BGI+01,GGH+13]

C0 C1≡

Obf(C0) Obf(C1)≈

(x + y)(x − y) x2 − y2

Indistinguishability Obfuscation
[BGI+01,GGH+13]

• Currently only candidates [JLS21,
JLS22, RVV24] from standard
assumptions follows the [JLS20] mould

C0 C1≡

Obf(C0) Obf(C1)≈

(x + y)(x − y) x2 − y2

iO: Swiss Army knife of Cryptography
(subexponential) iO (+ standard assumptions) is “crypto complete”

iO: Swiss Army knife of Cryptography
(subexponential) iO (+ standard assumptions) is “crypto complete”

• PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable
Enc [SW’14]

iO: Swiss Army knife of Cryptography
(subexponential) iO (+ standard assumptions) is “crypto complete”

• PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable
Enc [SW’14]

• FHE [CLTV’15]

iO: Swiss Army knife of Cryptography
(subexponential) iO (+ standard assumptions) is “crypto complete”

• PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable
Enc [SW’14]

• FHE [CLTV’15]

• WE [GGHRSW’14]

iO: Swiss Army knife of Cryptography
(subexponential) iO (+ standard assumptions) is “crypto complete”

• PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable
Enc [SW’14]

• FHE [CLTV’15]

• WE [GGHRSW’14]

• Adaptive SNARGs [WW24, 25, WZ24]

iO: Swiss Army knife of Cryptography
(subexponential) iO (+ standard assumptions) is “crypto complete”

• PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable
Enc [SW’14]

• FHE [CLTV’15]

• WE [GGHRSW’14]

• Adaptive SNARGs [WW24, 25, WZ24]

• Succinct Garbling [KLW’15]

iO: Swiss Army knife of Cryptography
(subexponential) iO (+ standard assumptions) is “crypto complete”

• PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable
Enc [SW’14]

• FHE [CLTV’15]

• WE [GGHRSW’14]

• Adaptive SNARGs [WW24, 25, WZ24]

• Succinct Garbling [KLW’15]

Many of these applications involve
obfuscating a cryptographic

program. Can we leverage this?

Is there a different notion of obfuscation
that suffices for these applications?

Fully Homomorphic Encryption
a la [CLTV’15]

Fully Homomorphic Encryption
a la [CLTV’15]

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

Fully Homomorphic Encryption
a la [CLTV’15]

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

Encpk1
(m)

Fully Homomorphic Encryption
a la [CLTV’15]

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

Encpk1
(m) Encpk2

(m)

Fully Homomorphic Encryption
a la [CLTV’15]

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

Encpk1
(m) Encpk2

(m) Encpk3
(m)

Fully Homomorphic Encryption
a la [CLTV’15]

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

Fully Homomorphic Encryption
a la [CLTV’15]

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

• Consider a small program that
computes this chain.

Fully Homomorphic Encryption
a la [CLTV’15]

F

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

• Consider a small program that
computes this chain.

Fully Homomorphic Encryption
a la [CLTV’15]

F

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

• Consider a small program that
computes this chain.

Fully Homomorphic Encryption
a la [CLTV’15]

F

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

• Consider a small program that
computes this chain.

• [CLTV] Obfuscate ! Now can be
super polynomial.

F N

Fully Homomorphic Encryption
a la [CLTV’15]

F

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

• Consider a small program that
computes this chain.

• [CLTV] Obfuscate ! Now can be
super polynomial.

F N
𝒪(F)

Fully Homomorphic Encryption
a la [CLTV’15]

F

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

• Consider a small program that
computes this chain.

• [CLTV] Obfuscate ! Now can be
super polynomial.

F N
𝒪(F)

If FHE has pseudorandom ciphertexts,
this truth-table is also pseudorandom.  

 
Can we use this?

Fully Homomorphic Encryption
a la [CLTV’15]

F

Encpk2
(sk1) …Encpk3

(sk2) EncpkN
(skN−1)EncpkN−1

(skN−2)

• Leveled FHE: pk contains key chain
of length to support depth
computation.

N N

• Consider a small program that
computes this chain.

• [CLTV] Obfuscate ! Now can be
super polynomial.

F N

u1 u2 uN−1 uN

𝒪(F)
If FHE has pseudorandom ciphertexts,
this truth-table is also pseudorandom.  

 
Can we use this?

Pseudorandom Obfuscation

TLDR

TLDR

• This work is a systematic study of the various notions of pseudorandom
obfuscation (PRO).

TLDR

• This work is a systematic study of the various notions of pseudorandom
obfuscation (PRO).

• 3 notions of PRO

TLDR

• This work is a systematic study of the various notions of pseudorandom
obfuscation (PRO).

• 3 notions of PRO

• Possibilities and impossibilities

TLDR

• This work is a systematic study of the various notions of pseudorandom
obfuscation (PRO).

• 3 notions of PRO

• Possibilities and impossibilities

• PRO + Bilinear Maps = iO

TLDR

• This work is a systematic study of the various notions of pseudorandom
obfuscation (PRO).

• 3 notions of PRO

• Possibilities and impossibilities

• PRO + Bilinear Maps = iO

• (Not in talk) The full version of this paper additionally includes a candidate
construction of pseudorandom obfuscation from the evasive LWE heuristic.

Pseudorandom Obfuscation
Strongest Notion: Double Pseudorandomness (dPRO)

Pseudorandom Obfuscation
Strongest Notion: Double Pseudorandomness (dPRO)

TT(C)

Pseudorandom Obfuscation
Strongest Notion: Double Pseudorandomness (dPRO)

TT(C) U≈

Pseudorandom Obfuscation
Strongest Notion: Double Pseudorandomness (dPRO)

TT(C) U≈

⇒

Pseudorandom Obfuscation
Strongest Notion: Double Pseudorandomness (dPRO)

TT(C) U≈

⇒
PRO(C) u≈

Pseudorandom Obfuscation
Strongest Notion: Double Pseudorandomness (dPRO)

TT(C) U≈

⇒
PRO(C) u≈

aux(C)given

given aux(C)

Pseudorandom Obfuscation
Strongest Notion: Double Pseudorandomness (dPRO)

TT(C) U≈

⇒
PRO(C) u≈

aux(C)given

given aux(C)

Pseudorandom Obfuscation
Strongest Notion: Double Pseudorandomness (dPRO)

TT(C) U≈

⇒
PRO(C) u≈

aux(C)given

given aux(C)

xPRO: |PRO(C) | = |TT(C) |1−ϵ

Pseudorandom Obfuscation
Strongest Notion: Double Pseudorandomness (dPRO)

TT(C) U≈

⇒
PRO(C) u≈

aux(C)given

given aux(C)

Precondition

xPRO: |PRO(C) | = |TT(C) |1−ϵ

Pseudorandom Obfuscation
Strongest Notion: Double Pseudorandomness (dPRO)

TT(C) U≈

⇒
PRO(C) u≈

aux(C)given

given aux(C)

Postcondition

Precondition

xPRO: |PRO(C) | = |TT(C) |1−ϵ

Pseudorandom Obfuscation

TT(C) U≈

⇒
PRO(C) u≈

aux(Cb)given

given aux(Cb)

Postcondition

Precondition

Pseudorandom Obfuscation
Medium notion

TT(C) U≈

⇒
PRO(C) u≈

aux(Cb)given

given aux(Cb)

Postcondition

Precondition

Pseudorandom Obfuscation
Medium notion

TT(C) U≈

⇒
PRO(C) u≈

aux(Cb)given

given aux(Cb)

Postcondition

Precondition

TT(Cb)

Pseudorandom Obfuscation
Medium notion

TT(C) U≈

⇒
PRO(C) u≈

aux(Cb)given

given aux(Cb)

Postcondition

Precondition

TT(Cb)

PRO(C0) PRO(C1)

Pseudorandom Obfuscation
Medium notion

TT(C) U≈

⇒
PRO(C) u≈

aux(Cb)given

given aux(Cb)

Postcondition

Precondition

TT(Cb)

PRO(C0) PRO(C1)

Obfuscation itself doesn't have to
be pseudorandom

The notions and applications

The notions and applications

 is
pseudorandom

TT(fK)

The notions and applications

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒰

The notions and applications

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒰 dPRO

The notions and applications

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰 dPRO

The notions and applications

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

PRO

dPRO

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPRO

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPRO

Null-iO [VWW22] 
SNARK for UP

[MPV24] 
SNARG for NP

[JKLM25] 

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPRO

Null-iO [VWW22] 
SNARK for UP

[MPV24] 
SNARG for NP

[JKLM25] 

This work: 
(+LWE) FHE  

Succinct Garbling 
Succinct witness

encryption

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPRO

Null-iO [VWW22] 
SNARK for UP

[MPV24] 
SNARG for NP

[JKLM25] 

This work: 
(+LWE) FHE  

Succinct Garbling 
Succinct witness

encryption

Impossible

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPRO

Null-iO [VWW22] 
SNARK for UP

[MPV24] 
SNARG for NP

[JKLM25] 

This work: 
(+LWE) FHE  

Succinct Garbling 
Succinct witness

encryption

Impossible

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPRO

Null-iO [VWW22] 
SNARK for UP

[MPV24] 
SNARG for NP

[JKLM25] 

This work: 
(+LWE) FHE  

Succinct Garbling 
Succinct witness

encryption

Impossible

Over-simplified Sketch of Succinct Garbling
Via standard iO

Over-simplified Sketch of Succinct Garbling
Via standard iO Size of program is independent of

runtime of TM

Over-simplified Sketch of Succinct Garbling
Via standard iO

Over-simplified Sketch of Succinct Garbling
Via standard iO

• Idea: Obfuscate the
machine which:

Over-simplified Sketch of Succinct Garbling
Via standard iO

• Idea: Obfuscate the
machine which:

• Expands into a
circuit .

(M, x)
CM,x

Over-simplified Sketch of Succinct Garbling
Via standard iO

M, x

g1 g2 gn
Circuit

description

• Idea: Obfuscate the
machine which:

• Expands into a
circuit .

(M, x)
CM,x

Over-simplified Sketch of Succinct Garbling
Via standard iO

M, x

g1 g2 gn
Circuit

description

• Idea: Obfuscate the
machine which:

• Expands into a
circuit .

(M, x)
CM,x

• Outputs a garbling of
.CM,x

Over-simplified Sketch of Succinct Garbling
Via standard iO

M, x

g1 g2 gn
Circuit

description

• Idea: Obfuscate the
machine which:

• Expands into a
circuit .

(M, x)
CM,x

• Outputs a garbling of
.CM,x

Over-simplified Sketch of Succinct Garbling
Via standard iO

M, x

g1 g2 gn

GC1 GC2 GCn
Garbling of

CM,x

Circuit
description

• Idea: Obfuscate the
machine which:

• Expands into a
circuit .

(M, x)
CM,x

• Outputs a garbling of
.CM,x

Over-simplified Sketch of Succinct Garbling
Via standard iO

M, x

g1 g2 gn

GC1 GC2 GCn
Garbling of

CM,x

Circuit
description

• Idea: Obfuscate the
machine which:

• Expands into a
circuit .

(M, x)
CM,x

• Outputs a garbling of
.CM,x

Garbling =  
Obfuscation of  
this program!

Succinct Garbling from PRO

Succinct Garbling from PRO

PRO of F

GC1 GC2 GCn

Succinct Garbling from PRO

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

Succinct Garbling from PRO

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

r

Succinct Garbling from PRO

• Pick a garbling scheme
with pseudorandom
garbling [BLSV ’18].

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

r

Succinct Garbling from PRO

• Pick a garbling scheme
with pseudorandom
garbling [BLSV ’18].

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

r
Truth-table is

pseudorandom!

Succinct Garbling from PRO

• Pick a garbling scheme
with pseudorandom
garbling [BLSV ’18].

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

r

Succinct Garbling from PRO

• Pick a garbling scheme
with pseudorandom
garbling [BLSV ’18].

• 𝖦𝖢 . 𝖦𝖺𝗋𝖻 = (r, PRO(F))

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

r

Succinct Garbling from PRO

• Pick a garbling scheme
with pseudorandom
garbling [BLSV ’18].

• 𝖦𝖢 . 𝖦𝖺𝗋𝖻 = (r, PRO(F))

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

r

Succinct Garbling from PRO

• Pick a garbling scheme
with pseudorandom
garbling [BLSV ’18].

• 𝖦𝖢 . 𝖦𝖺𝗋𝖻 = (r, PRO(F))

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

r

Simulator:

Succinct Garbling from PRO

• Pick a garbling scheme
with pseudorandom
garbling [BLSV ’18].

• 𝖦𝖢 . 𝖦𝖺𝗋𝖻 = (r, PRO(F))

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

𝒰

r

Simulator:

Succinct Garbling from PRO

• Pick a garbling scheme
with pseudorandom
garbling [BLSV ’18].

• 𝖦𝖢 . 𝖦𝖺𝗋𝖻 = (r, PRO(F))

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

𝒰

r

Indistinguishable by PRO security!
Simulator:

Succinct Garbling from PRO

• Pick a garbling scheme
with pseudorandom
garbling [BLSV ’18].

• 𝖦𝖢 . 𝖦𝖺𝗋𝖻 = (r, PRO(F))

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

𝒰

r

rsim

Indistinguishable by PRO security!
Simulator:

Succinct Garbling from PRO

• Pick a garbling scheme
with pseudorandom
garbling [BLSV ’18].

• 𝖦𝖢 . 𝖦𝖺𝗋𝖻 = (r, PRO(F))

PRO of F

GC1 GC2 GCn
Garbling of
CM,x ⊕ r

𝒰

r

rsim

Set rsim = M(x) ⊕ PRO . Eval(𝒰)

Indistinguishable by PRO security!
Simulator:

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPRO

Null-iO [VWW22] 
SNARK for UP

[MPV24] 
SNARG for NP

[JKLM25] 

This work: 
(+LWE) FHE  

Succinct Garbling 
Succinct witness

encryption

Impossible

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPRO

Null-iO [VWW22] 
SNARK for UP

[MPV24] 
SNARG for NP

[JKLM25] 

This work: 
(+LWE) FHE  

Succinct Garbling 
Succinct witness

encryption

Impossible

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPRO

Null-iO [VWW22] 
SNARK for UP

[MPV24] 
SNARG for NP

[JKLM25] 

This work: 
(+LWE) FHE  

Succinct Garbling 
Succinct witness

encryption

Impossible

Bad news: We show PRO does not exist

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPRO

Null-iO [VWW22] 
SNARK for UP

[MPV24] 
SNARG for NP

[JKLM25] 

This work: 
(+LWE) FHE  

Succinct Garbling 
Succinct witness

encryption

Impossible

Bad news: We show PRO does not exist

Go to bonus slide

A Weaker Notion
Indistinguishability PRO (iPRO)

,FK0
≡ FK1

A Weaker Notion
Indistinguishability PRO (iPRO)

TT(FK),FK0
≡ FK1

A Weaker Notion
Indistinguishability PRO (iPRO)

TT(FK) U≈,FK0
≡ FK1

A Weaker Notion
Indistinguishability PRO (iPRO)

TT(FK) U≈

≈

,FK0
≡ FK1

A Weaker Notion
Indistinguishability PRO (iPRO)

TT(FK) U≈

≈
⇒,FK0

≡ FK1

A Weaker Notion
Indistinguishability PRO (iPRO)

iPRO(FK0
) iPRO(FK1

)

TT(FK) U≈

≈
⇒,FK0

≡ FK1

A Weaker Notion
Indistinguishability PRO (iPRO)

• iO for Pseudorandom Functions

iPRO(FK0
) iPRO(FK1

)

TT(FK) U≈

≈
⇒,FK0

≡ FK1

A Weaker Notion
Indistinguishability PRO (iPRO)

• iO for Pseudorandom Functions

• Implied by iO no counterexamples!⇒

iPRO(FK0
) iPRO(FK1

)

TT(FK) U≈

≈
⇒,FK0

≡ FK1

A Weaker Notion
Indistinguishability PRO (iPRO)

• iO for Pseudorandom Functions

• Implied by iO no counterexamples!⇒

iPRO(FK0
) iPRO(FK1

)

TT(FK) U≈

≈
⇒

xiPRO: | iPRO(C) | = |TT(C) |1−ϵ

,FK0
≡ FK1

The notions and applications

fK ≡ fK′￼

 is
pseudorandom

TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPROImpossible

The notions and applications

fK ≡ fK′￼

 and
pseudorandom

fK ≡ fK′￼
 is

pseudorandom
TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

PRO

dPROImpossible

The notions and applications

fK ≡ fK′￼

 and
pseudorandom

fK ≡ fK′￼
 is

pseudorandom
TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

iPRO PRO

dPROImpossible

The notions and applications

fK ≡ fK′￼

 and
pseudorandom

fK ≡ fK′￼
 is

pseudorandom
TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

iPRO PRO

dPROImpossible Same as dPRO

The notions and applications

fK ≡ fK′￼

 and
pseudorandom

fK ≡ fK′￼
 is

pseudorandom
TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

iPRO PRO

dPRO

Null-iO [VWW22] 
SNARK for UP [MPV24] 

SNARG for NP [JKLM25] 
(+LWE) FHE 

Succinct garbling

Impossible Same as dPRO

The notions and applications

fK ≡ fK′￼

 and
pseudorandom

fK ≡ fK′￼
 is

pseudorandom
TT(fK)

𝒪(fK) ≈c 𝒪(fK′￼
)

𝒪(fK) ≈c 𝒰

iO

iPRO PRO

dPRO

Null-iO [VWW22] 
SNARK for UP [MPV24] 

SNARG for NP [JKLM25] 
(+LWE) FHE 

Succinct garbling

Succinct WE (This work) 
iO for TMs [JJMP25]

Impossible Same as dPRO

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T)

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

• Hide the , using wrapper of quadratic FE [Wee’20]gxi
1 gxj

2

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

via QFE . Enc((xi)i, (yj)j)
and {ski,j}i,j

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

• Hide the , using wrapper of quadratic FE [Wee’20]gxi
1 gxj

2

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

via QFE . Enc((xi)i, (yj)j)
and {ski,j}i,j

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

• Hide the , using wrapper of quadratic FE [Wee’20]gxi
1 gxj

2

• Layer of amortisation of quadratic FE keys

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

via QFE . Enc((xi)i, (yj)j)
and {ski,j}i,j

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

• Hide the , using wrapper of quadratic FE [Wee’20]gxi
1 gxj

2

• Layer of amortisation of quadratic FE keys

• Does not go through local PRGs, LPN: “Coding
Hardness”

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

via QFE . Enc((xi)i, (yj)j)
and {ski,j}i,j

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

• Hide the , using wrapper of quadratic FE [Wee’20]gxi
1 gxj

2

• Layer of amortisation of quadratic FE keys

• Does not go through local PRGs, LPN: “Coding
Hardness”

• Nice way to “factor” existing iO constructions.

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

via QFE . Enc((xi)i, (yj)j)
and {ski,j}i,j

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

• Hide the , using wrapper of quadratic FE [Wee’20]gxi
1 gxj

2

• Layer of amortisation of quadratic FE keys

• Does not go through local PRGs, LPN: “Coding
Hardness”

• Nice way to “factor” existing iO constructions.

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

via QFE . Enc((xi)i, (yj)j)
and {ski,j}i,j

xiO =

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

• Hide the , using wrapper of quadratic FE [Wee’20]gxi
1 gxj

2

• Layer of amortisation of quadratic FE keys

• Does not go through local PRGs, LPN: “Coding
Hardness”

• Nice way to “factor” existing iO constructions.

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

via QFE . Enc((xi)i, (yj)j)
and {ski,j}i,j

xiO = QFE

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

• Hide the , using wrapper of quadratic FE [Wee’20]gxi
1 gxj

2

• Layer of amortisation of quadratic FE keys

• Does not go through local PRGs, LPN: “Coding
Hardness”

• Nice way to “factor” existing iO constructions.

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

via QFE . Enc((xi)i, (yj)j)
and {ski,j}i,j

xiO = QFE
LPN/
PRG  

in NC0

x-iPRO + Bilinear Maps = x-iO!
(x- refers to “slightly” compressing such that)𝒪 𝒪 𝒪(|C |) = |TT(C) |1−ϵ

• Hide the , using wrapper of quadratic FE [Wee’20]gxi
1 gxj

2

• Layer of amortisation of quadratic FE keys

• Does not go through local PRGs, LPN: “Coding
Hardness”

• Nice way to “factor” existing iO constructions.

xiPRO(PRFK(⋅) + C(⋅)) xiPRO(PRFK(x))

e(gxi
1 , gxj

2)xiPRO((i, j) ↦ e(gxi
1 , gxj

2) ⋅ gC(i,j)
T) via , (gxi

1)i (gyj
2)j

via QFE . Enc((xi)i, (yj)j)
and {ski,j}i,j

xiO = QFE
LPN/
PRG  

in NC0xPRO

Summary

Summary

• We study varying notions of pseudorandom obfuscation.

Summary

• We study varying notions of pseudorandom obfuscation.

• Strongest notions are impossible.

Summary

• We study varying notions of pseudorandom obfuscation.

• Strongest notions are impossible.

• We show that iPRO is sufficient for many applications, including FHE and succinct garbling.

Summary

• We study varying notions of pseudorandom obfuscation.

• Strongest notions are impossible.

• We show that iPRO is sufficient for many applications, including FHE and succinct garbling.

• Implied by iO No impossibility!→

Summary

• We study varying notions of pseudorandom obfuscation.

• Strongest notions are impossible.

• We show that iPRO is sufficient for many applications, including FHE and succinct garbling.

• Implied by iO No impossibility!→

• iPRO + Bilinear maps = iO

Summary

• We study varying notions of pseudorandom obfuscation.

• Strongest notions are impossible.

• We show that iPRO is sufficient for many applications, including FHE and succinct garbling.

• Implied by iO No impossibility!→

• iPRO + Bilinear maps = iO

• Gives a “modular” approach to iO.

Summary

• We study varying notions of pseudorandom obfuscation.

• Strongest notions are impossible.

• We show that iPRO is sufficient for many applications, including FHE and succinct garbling.

• Implied by iO No impossibility!→

• iPRO + Bilinear maps = iO

• Gives a “modular” approach to iO.

• Open: Can we construct iPRO from LPN variants/PRGs in NC0? Or even LWE?

Summary

• We study varying notions of pseudorandom obfuscation.

• Strongest notions are impossible.

• We show that iPRO is sufficient for many applications, including FHE and succinct garbling.

• Implied by iO No impossibility!→

• iPRO + Bilinear maps = iO

• Gives a “modular” approach to iO.

• Open: Can we construct iPRO from LPN variants/PRGs in NC0? Or even LWE?

• (Not in talk) We give a candidate construction via the evasive LWE heuristic (more on this in the
next talk!)

Thank you for your attention!

Bonus slides

Counterexample to PRO
Precondition

Counterexample to PRO
Precondition

x = TT(PRFK) WE(“x is TT of small ”,)C 0λ

aux

Counterexample to PRO
Precondition

x = TT(PRFK) WE(“x is TT of small ”,)C 0λ

aux

Pick a witness encryption  
which is instance-hiding

Counterexample to PRO
Precondition

x = TT(PRFK) WE(“x is TT of small ”,)C 0λ

aux

u WE(“u is TT of small ”,)C 0λ

≈

Pick a witness encryption  
which is instance-hiding

Counterexample to PRO
Precondition

x = TT(PRFK) WE(“x is TT of small ”,)C 0λ

aux

u WE(“u is TT of small ”,)C 0λ

≈

Pick a witness encryption  
which is instance-hiding

Counterexample to PRO
Precondition

x = TT(PRFK) WE(“x is TT of small ”,)C 0λ

aux

u WE(“u is TT of small ”,)C 0λ

≈

WE(“u’ is TT of small ”,)C 0λu

≈

Pick a witness encryption  
which is instance-hiding

Counterexample to PRO
Precondition

x = TT(PRFK) WE(“x is TT of small ”,)C 0λ

aux

u WE(“u is TT of small ”,)C 0λ

≈

WE(“u’ is TT of small ”,)C 0λu

≈

WE(“x is TT of small ”,)C 0λu

≈

Pick a witness encryption  
which is instance-hiding

Counterexample to PRO
Postcondition

Back to main body

Counterexample to PRO
Postcondition

x = TT(PRFK) = TT(PRO(PRFK))

Back to main body

Counterexample to PRO
Postcondition

x = TT(PRFK) = TT(PRO(PRFK))

PRO(PRFK)

Back to main body

Counterexample to PRO
Postcondition

x = TT(PRFK) = TT(PRO(PRFK))

PRO(PRFK)

aux

WE(“x is TT of small ”,)C 0λ

Back to main body

Counterexample to PRO
Postcondition

x = TT(PRFK) = TT(PRO(PRFK))

PRO(PRFK)

aux

WE(“x is TT of small ”,)C 0λ

u′￼ WE(“x is TT of small ”,)C 0λ

Back to main body

Counterexample to PRO
Postcondition

x = TT(PRFK) = TT(PRO(PRFK))

PRO(PRFK)

aux

WE(“x is TT of small ”,)C 0λw =

u′￼ WE(“x is TT of small ”,)C 0λ

Back to main body

Counterexample to PRO
Postcondition

x = TT(PRFK) = TT(PRO(PRFK))

PRO(PRFK)

aux

WE(“x is TT of small ”,)C 0λw =
WE . Dec

0λ

u′￼ WE(“x is TT of small ”,)C 0λ

Back to main body

Counterexample to PRO
Postcondition

x = TT(PRFK) = TT(PRO(PRFK))

PRO(PRFK)

aux

WE(“x is TT of small ”,)C 0λw =
WE . Dec

0λ

u′￼ WE(“x is TT of small ”,)C 0λ

WE . Dec

⊥
Back to main body

Counterexample to PRO
Postcondition

x = TT(PRFK) = TT(PRO(PRFK))

PRO(PRFK)

aux

WE(“x is TT of small ”,)C 0λw =
WE . Dec

0λ

u′￼ WE(“x is TT of small ”,)C 0λ

WE . Dec

⊥

Distinguisher!

Back to main body

