Pseudorandom Obfuscation

And applications

Pedro Branco Bocconi

Nico Döttling CISPA

Abhishek Jain
JHU and NTT Research

Giulio Malavolta Bocconi

Surya Mathialagan MIT → NTT Research

Spencer Peters Cornell → Meta

Vinod Vaikuntanathan MIT

Pseudorandom Obfuscation

And applications

Pedro Branco Bocconi

Nico Döttling CISPA

Abhishek Jain
JHU and NTT Research

Giulio Malavolta Bocconi

Surya Mathialagan MIT → NTT Research

Spencer Peters
Cornell → Meta

Vinod Vaikuntanathan MIT

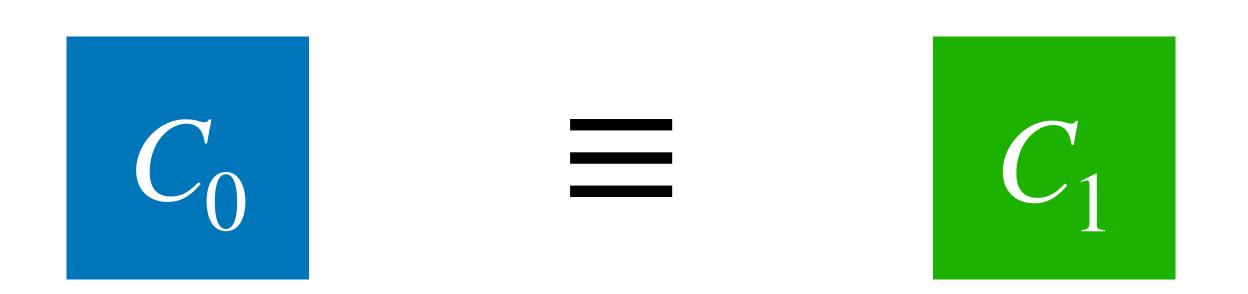
Thank you Nico for many of these slides!

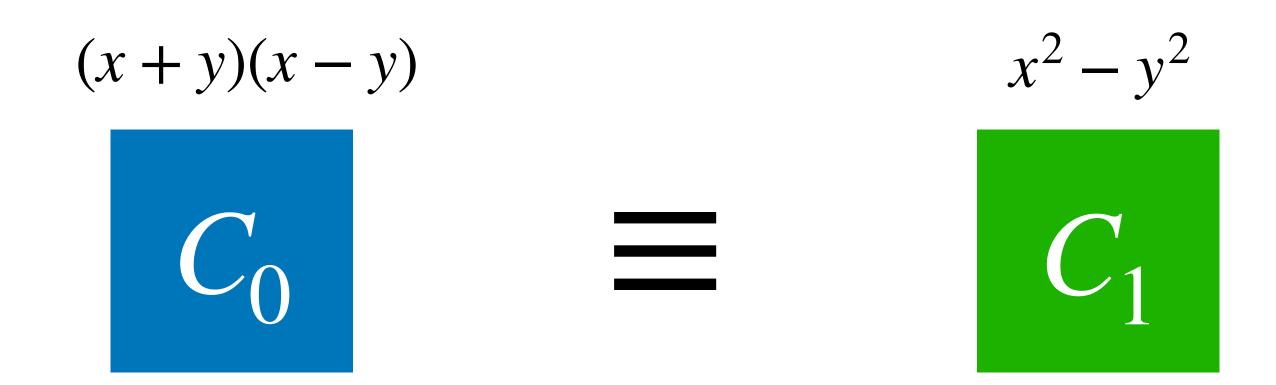
Indistinguishability Obfuscation

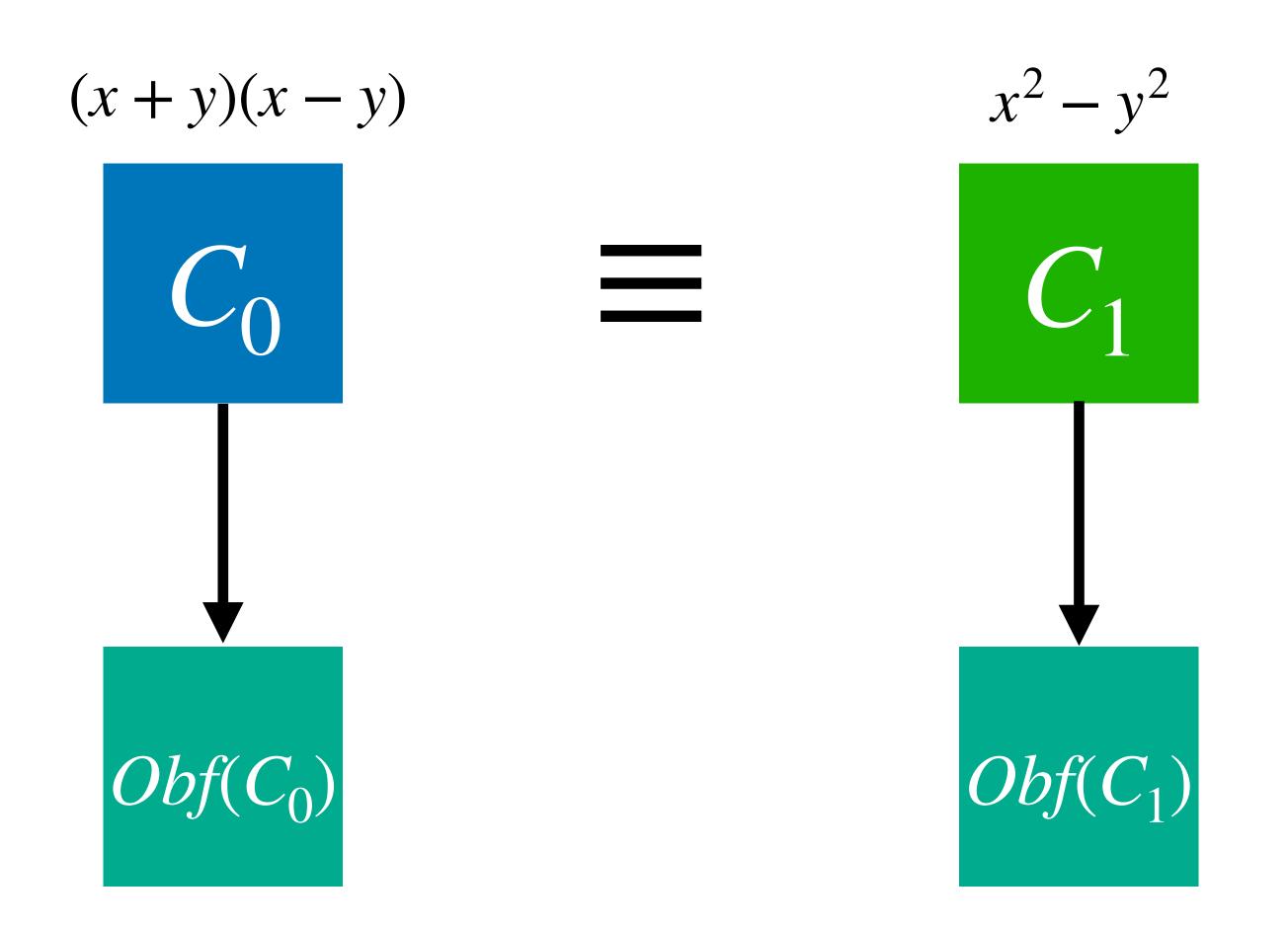
[BGI+01,GGH+13]

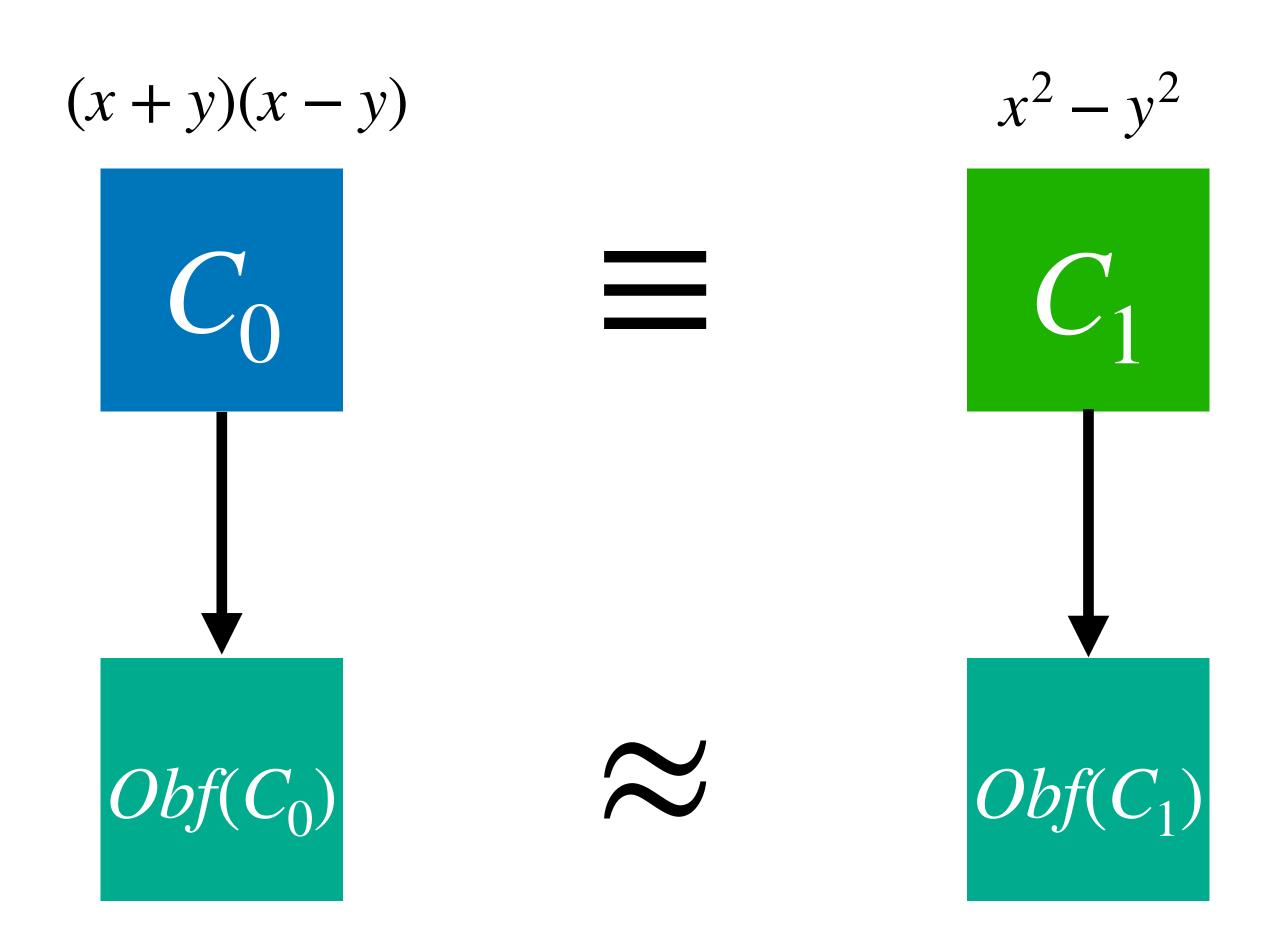
Indistinguishability Obfuscation

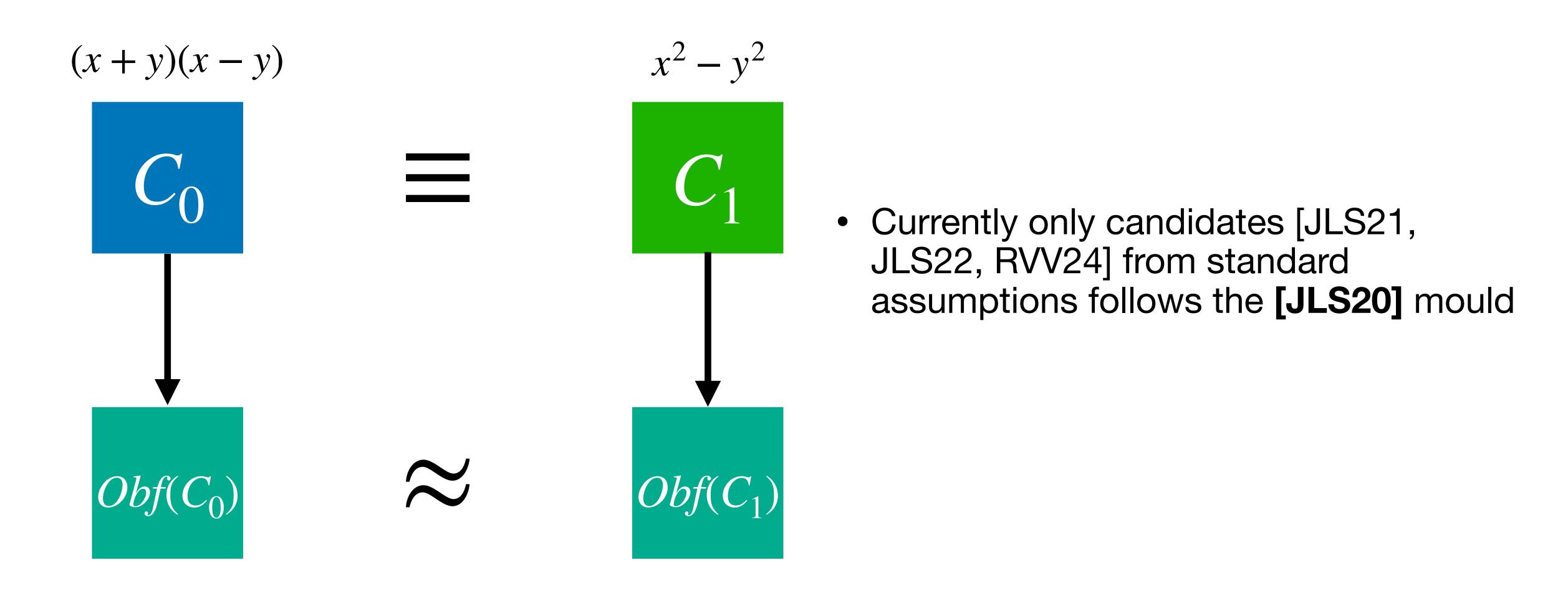
[BGI+01,GGH+13]











(subexponential) iO (+ standard assumptions) is "crypto complete"

 PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable Enc [SW'14]

- PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable Enc [SW'14]
- FHE [CLTV'15]

- PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable Enc [SW'14]
- FHE [CLTV'15]
- WE [GGHRSW'14]

- PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable Enc [SW'14]
- FHE [CLTV'15]
- WE [GGHRSW'14]
- Adaptive SNARGs [WW24, 25, WZ24]

- PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable Enc [SW'14]
- FHE [CLTV'15]
- WE [GGHRSW'14]
- Adaptive SNARGs [WW24, 25, WZ24]
- Succinct Garbling [KLW'15]

(subexponential) iO (+ standard assumptions) is "crypto complete"

- PKE, Short Sigs, Perfect NIZKs (non-adaptive SNARGs), OT, Deniable Enc [SW'14]
- FHE [CLTV'15]
- WE [GGHRSW'14]
- Adaptive SNARGs [WW24, 25, WZ24]
- Succinct Garbling [KLW'15]

Many of these applications involve obfuscating a cryptographic program. Can we leverage this?

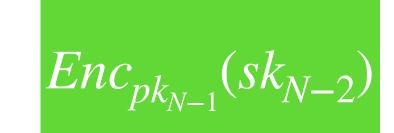
Is there a different notion of obfuscation that suffices for these applications?

Fully Homomorphic Encryption a la [CLTV'15]

a la [CLTV'15]

• Leveled FHE: pk contains key chain of length N to support depth N computation.

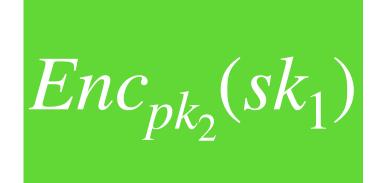
 $Enc_{pk_3}(sk_2)$



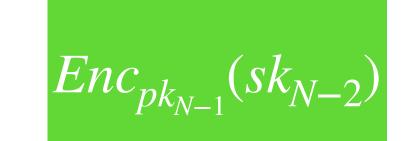
 $Enc_{pk_N}(sk_{N-1})$

a la [CLTV'15]

• Leveled FHE: pk contains key chain of length N to support depth N computation.



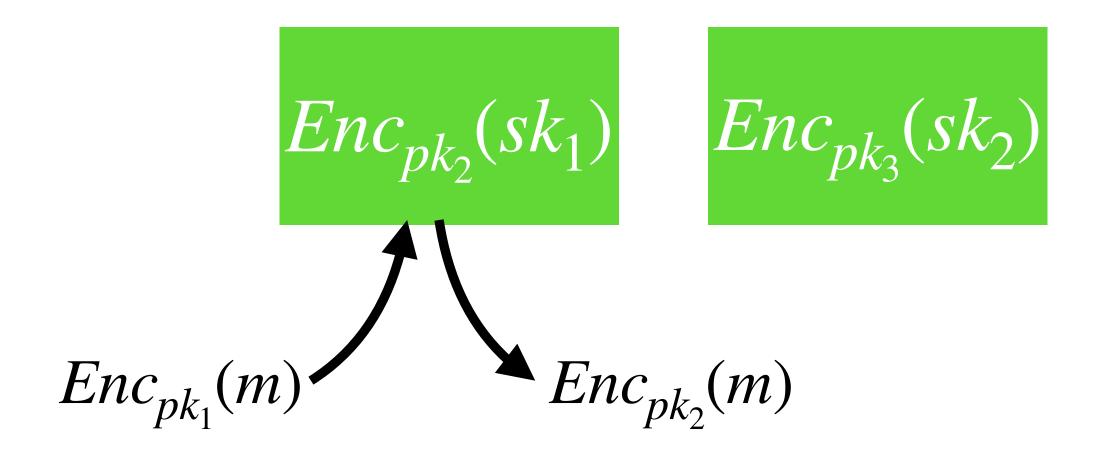
 $Enc_{pk_3}(sk_2)$

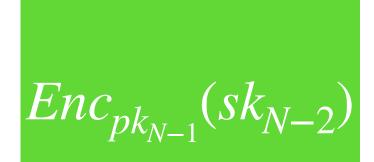


$$Enc_{pk_N}(sk_{N-1})$$

a la [CLTV'15]

• Leveled FHE: pk contains key chain of length N to support depth N computation.





 $Enc_{pk_N}(sk_{N-1})$

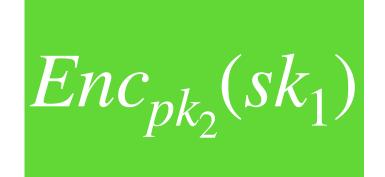
a la [CLTV'15]

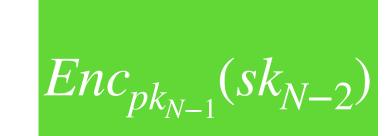
• Leveled FHE: pk contains key chain of length N to support depth N computation.



a la [CLTV'15]

• Leveled FHE: pk contains key chain of length N to support depth N computation.

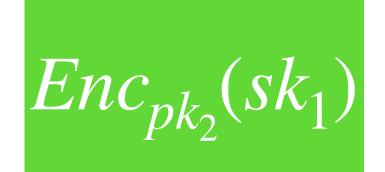




$$Enc_{pk_N}(sk_{N-1})$$

a la [CLTV'15]

- Leveled FHE: pk contains key chain of length N to support depth N computation.
- Consider a small program that computes this chain.



 $Enc_{pk_3}(sk_2)$

 $Enc_{pk_{N-1}}(sk_{N-2})$

 $Enc_{pk_N}(sk_{N-1})$

a la [CLTV'15]

- Leveled FHE: pk contains key chain of length N to support depth N computation.
- Consider a small program that computes this chain.

 $Enc_{pk_2}(sk_1)$

 $Enc_{pk_3}(sk_2)$

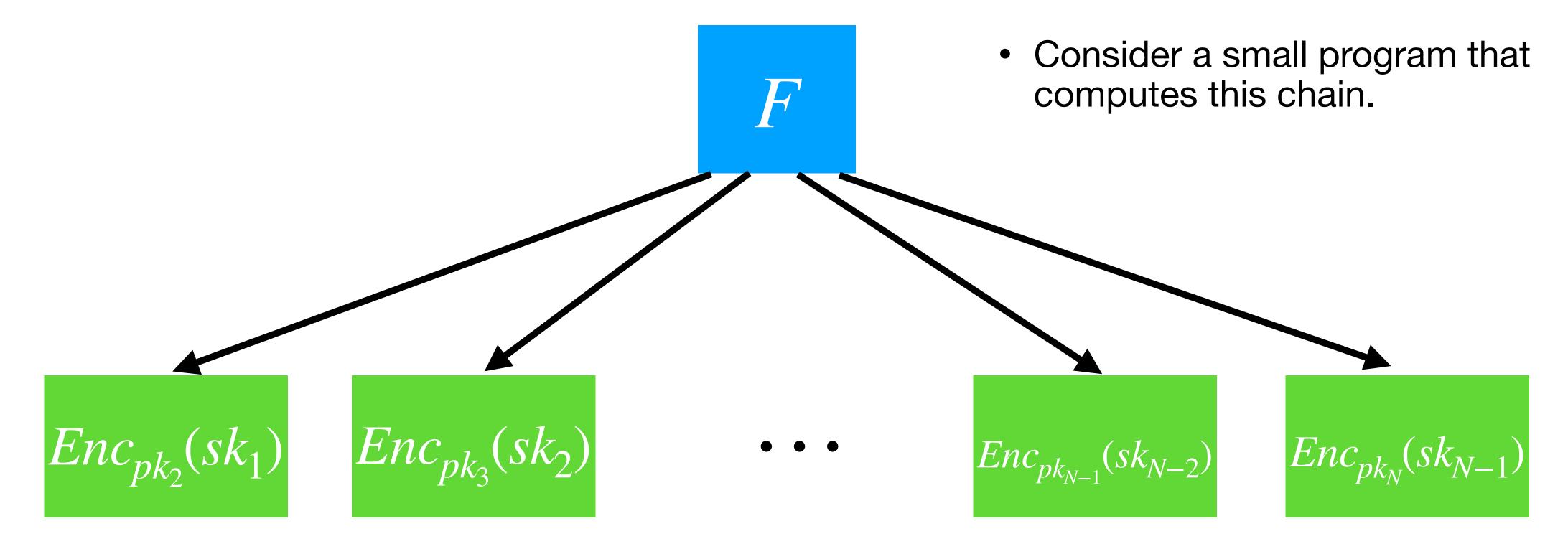
• • •

 $Enc_{pk_{N-1}}(sk_{N-2})$

 $Enc_{pk_N}(sk_{N-1})$

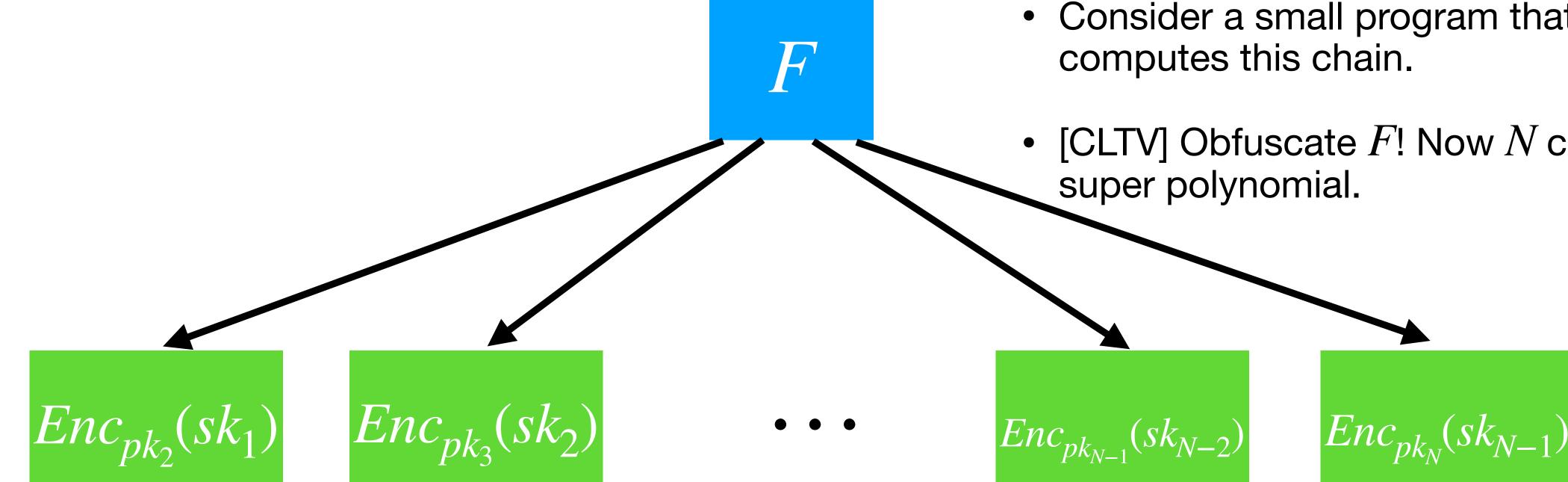
a la [CLTV'15]

• Leveled FHE: pk contains key chain of length N to support depth N computation.



a la [CLTV'15]

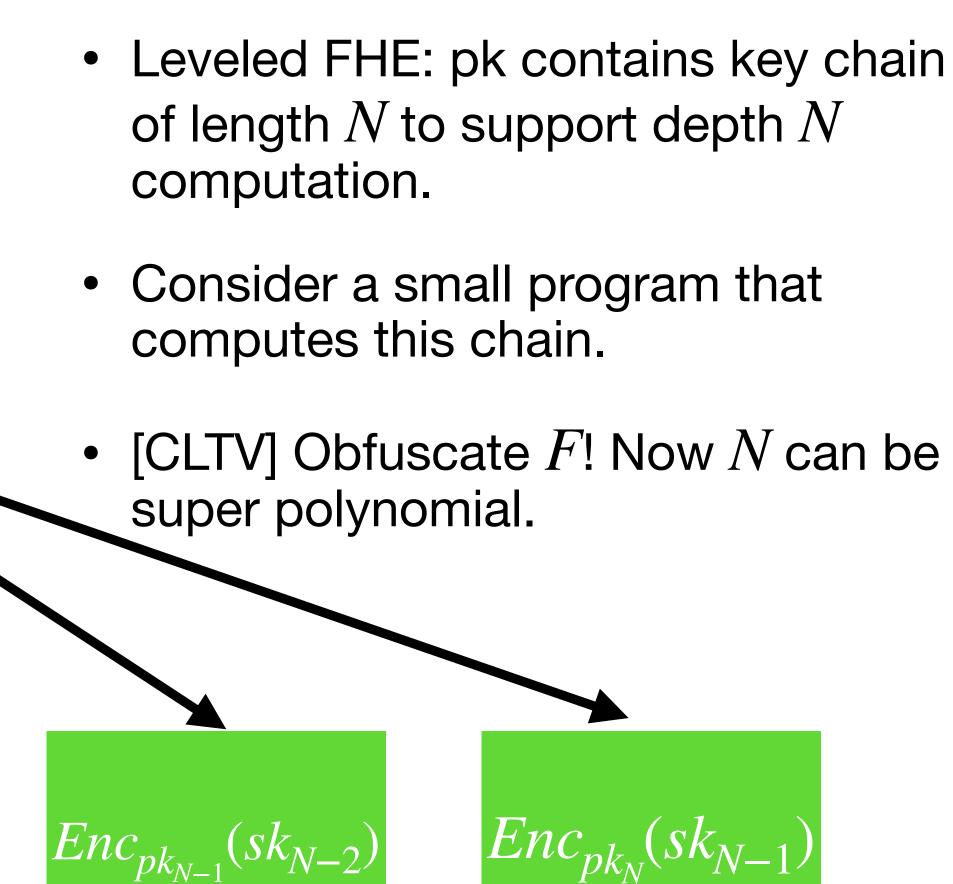
 Leveled FHE: pk contains key chain of length N to support depth Ncomputation. Consider a small program that computes this chain. • [CLTV] Obfuscate F! Now N can be super polynomial.



 $Enc_{pk_3}(sk_2)$

a la [CLTV'15]

 $Enc_{pk_2}(sk_1)$

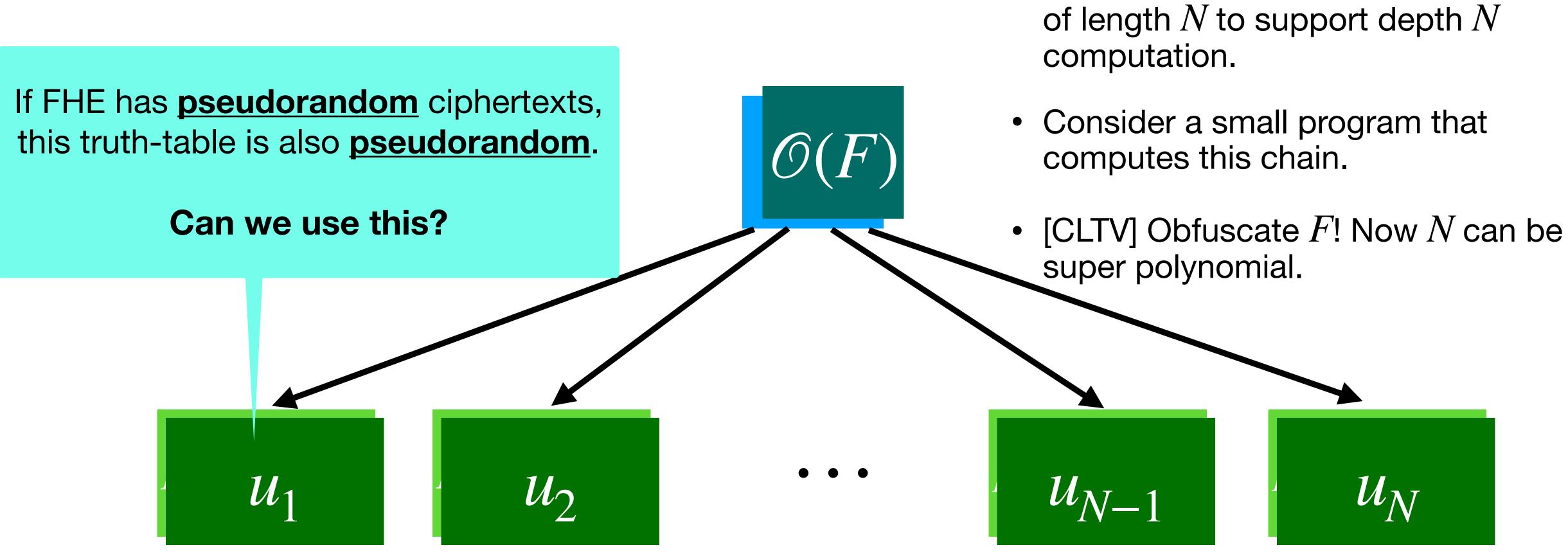


a la [CLTV'15]



Leveled FHE: pk contains key chain

a la [CLTV'15]



Leveled FHE: pk contains key chain

Pseudorandom Obfuscation

 This work is a systematic study of the various notions of pseudorandom obfuscation (PRO).

- This work is a systematic study of the various notions of pseudorandom obfuscation (PRO).
 - 3 notions of PRO

- This work is a **systematic study** of the various notions of pseudorandom obfuscation (PRO).
 - 3 notions of PRO
 - Possibilities and impossibilities

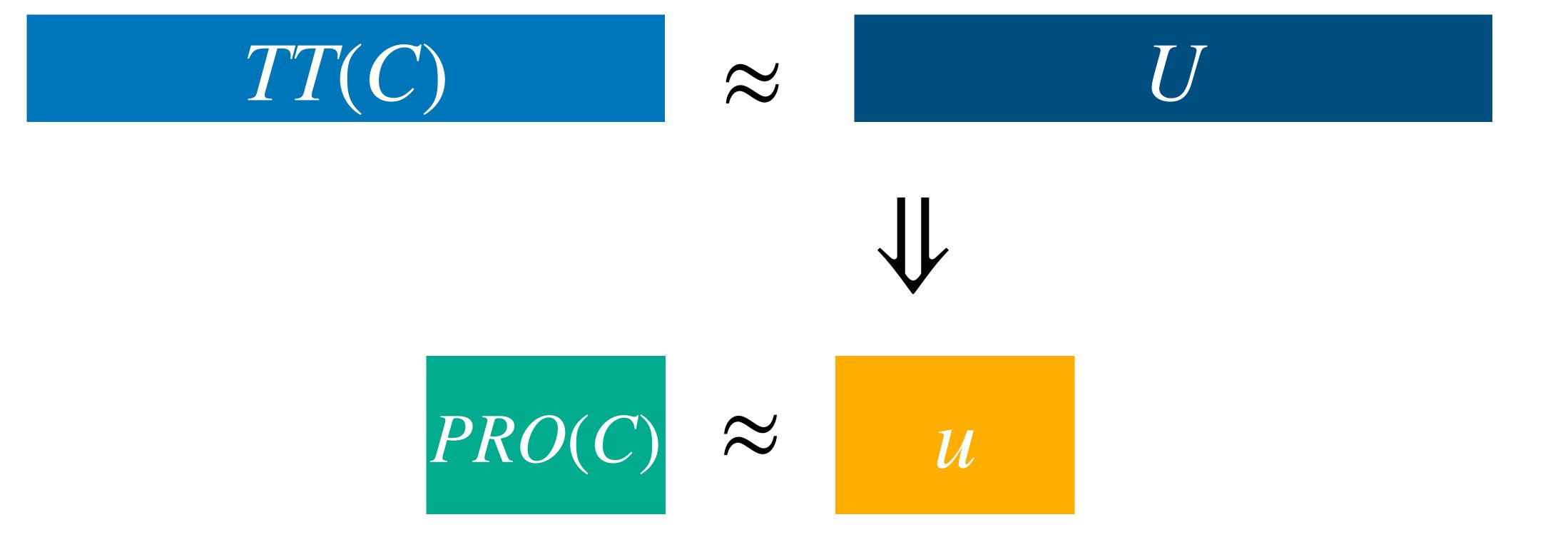
- This work is a systematic study of the various notions of pseudorandom obfuscation (PRO).
 - 3 notions of PRO
 - Possibilities and impossibilities
 - PRO + Bilinear Maps = iO

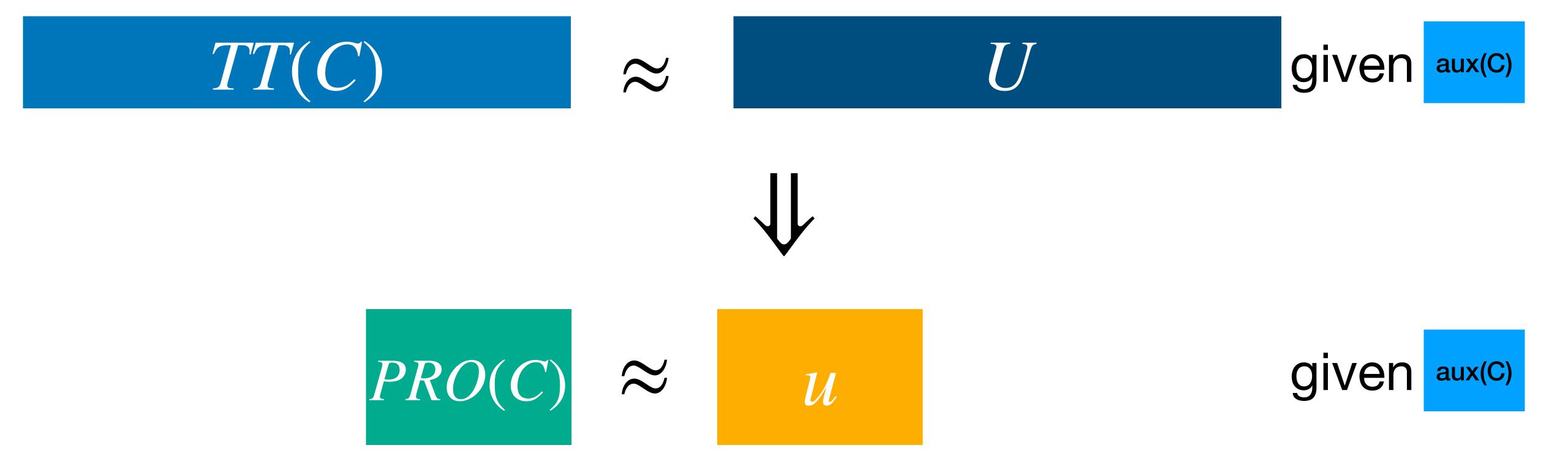
TLDR

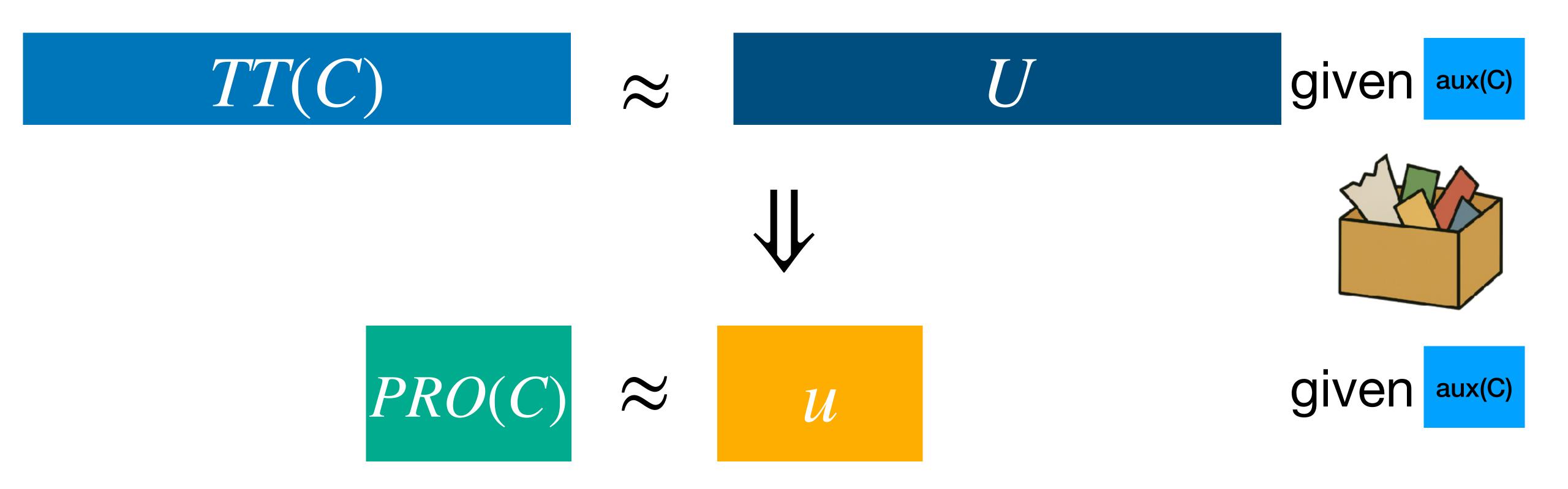
- This work is a systematic study of the various notions of pseudorandom obfuscation (PRO).
 - 3 notions of PRO
 - Possibilities and impossibilities
 - PRO + Bilinear Maps = iO
- (Not in talk) The full version of this paper additionally includes a candidate construction of pseudorandom obfuscation from the evasive LWE heuristic.

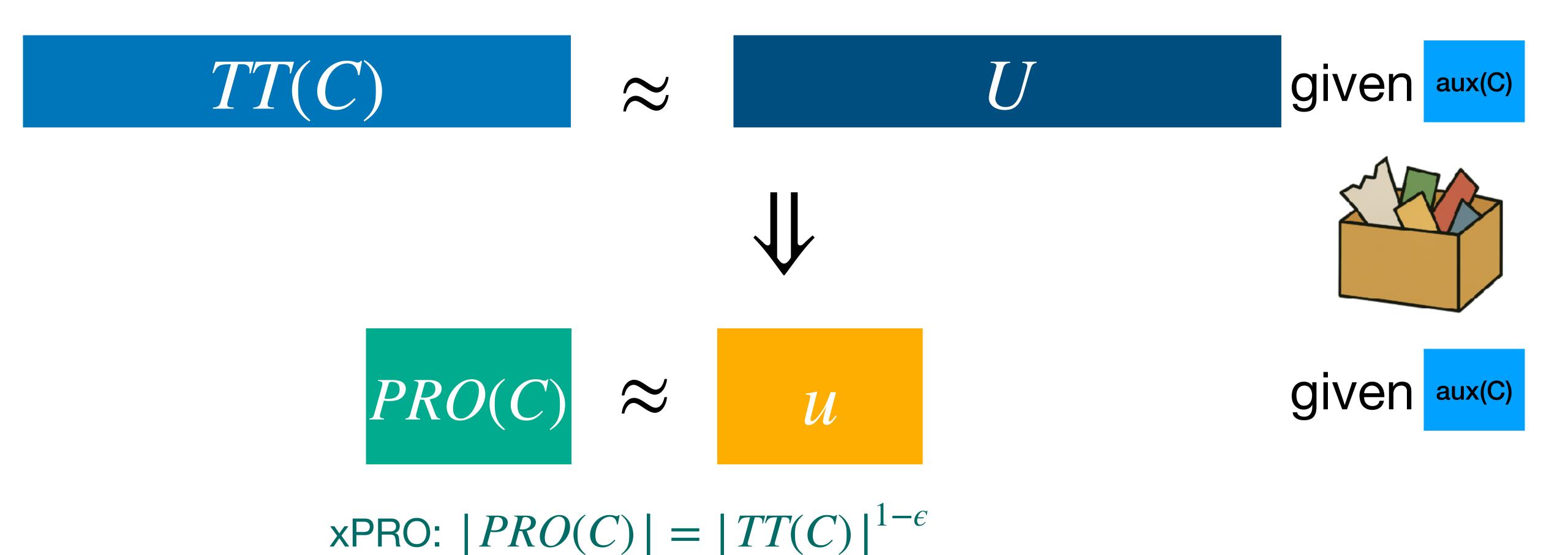
Strongest Notion: <u>Double</u> Pseudorandomness (dPRO)

TT(C)



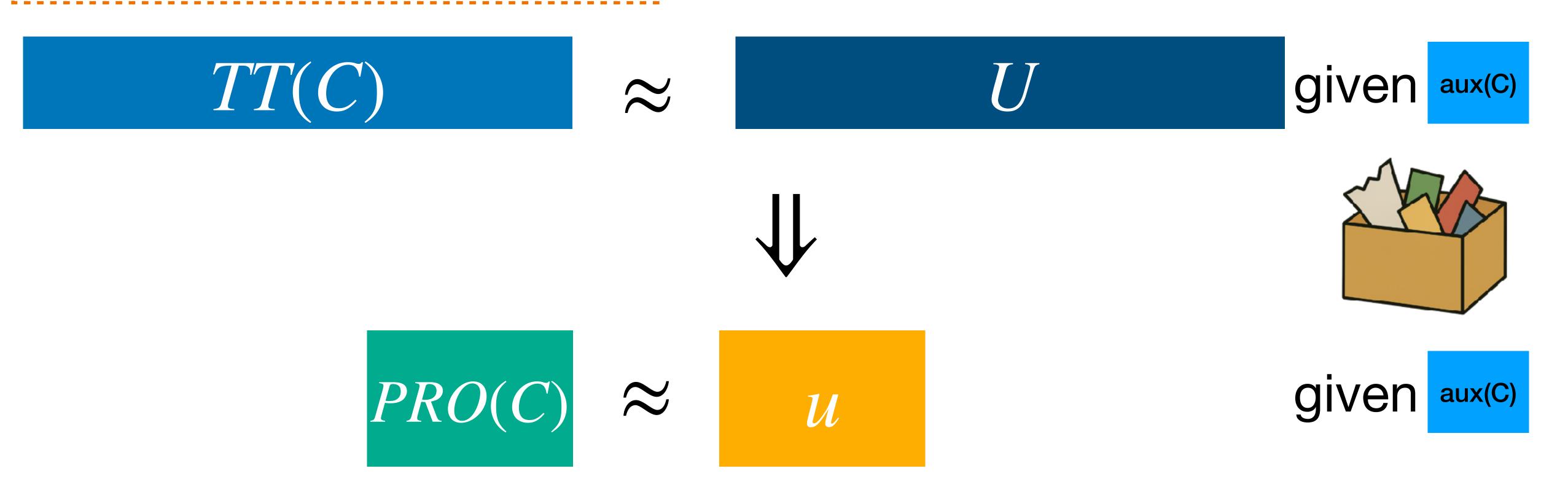






Strongest Notion: <u>Double</u> Pseudorandomness (dPRO)

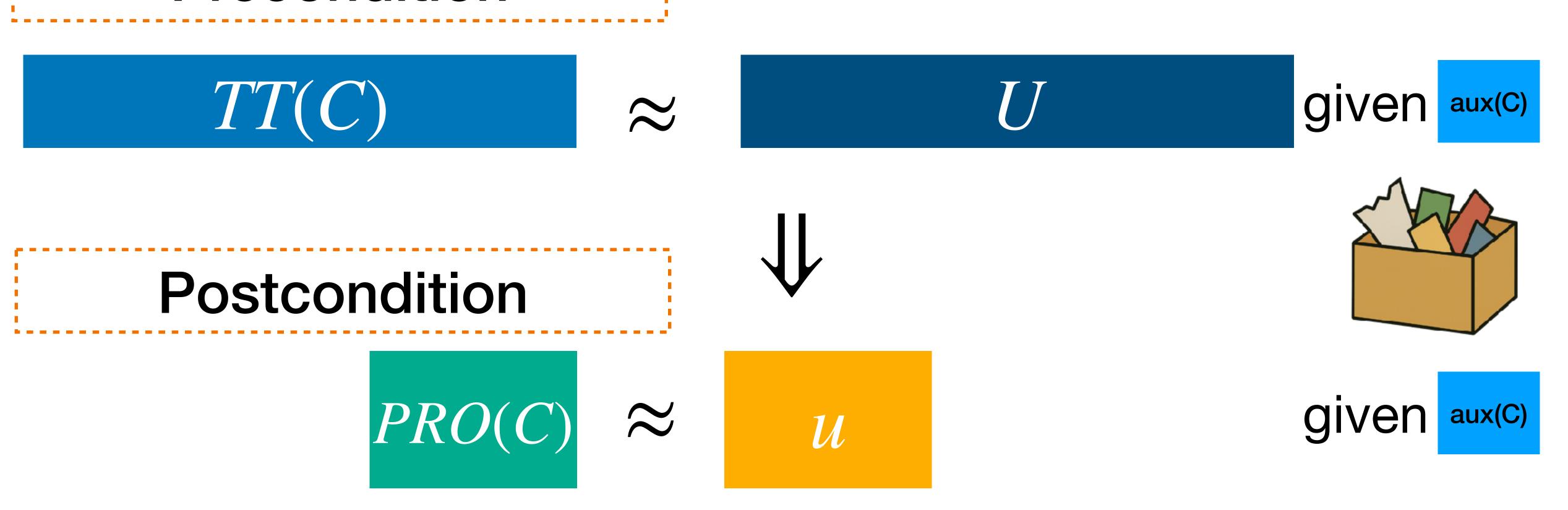
Precondition



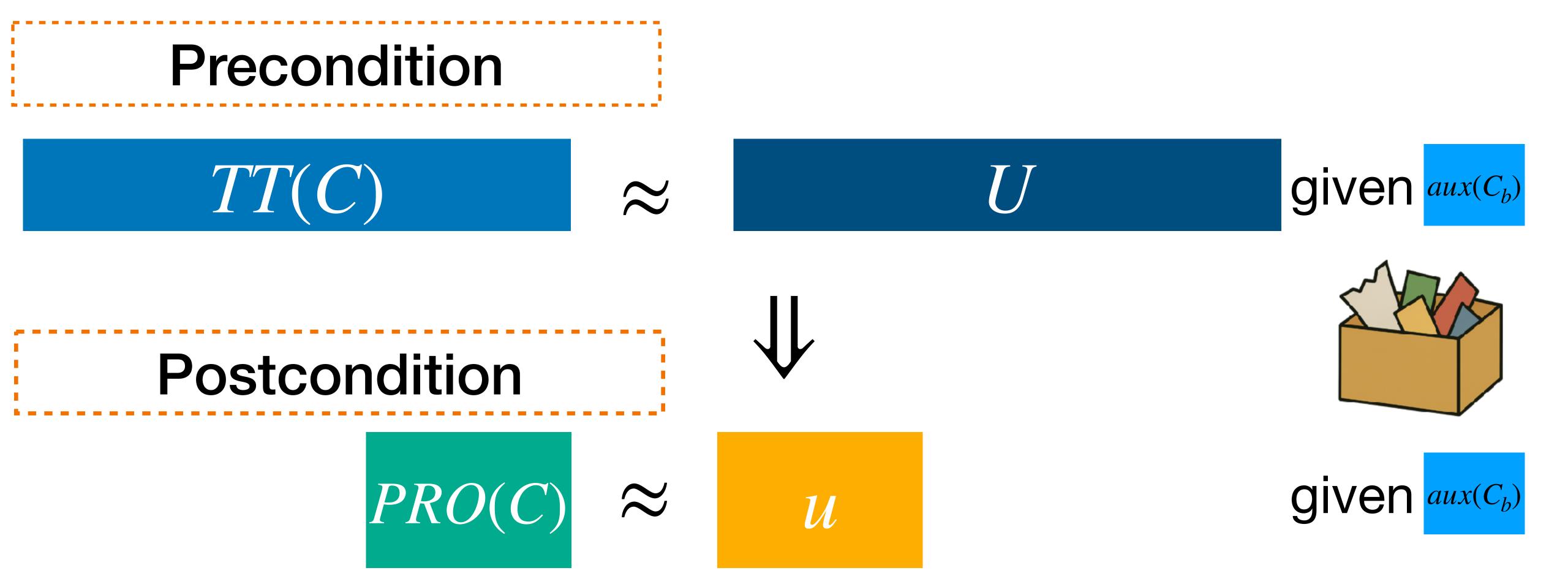
xPRO: $|PRO(C)| = |TT(C)|^{1-\epsilon}$

Strongest Notion: <u>Double</u> Pseudorandomness (dPRO)

Precondition



xPRO: $|PRO(C)| = |TT(C)|^{1-\epsilon}$



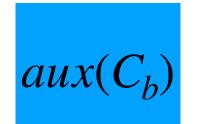
Medium notion

Precondition

given

Medium notion

Precondition



Medium notion

Precondition

given

Medium notion

Precondition

 $TT(C_b)$

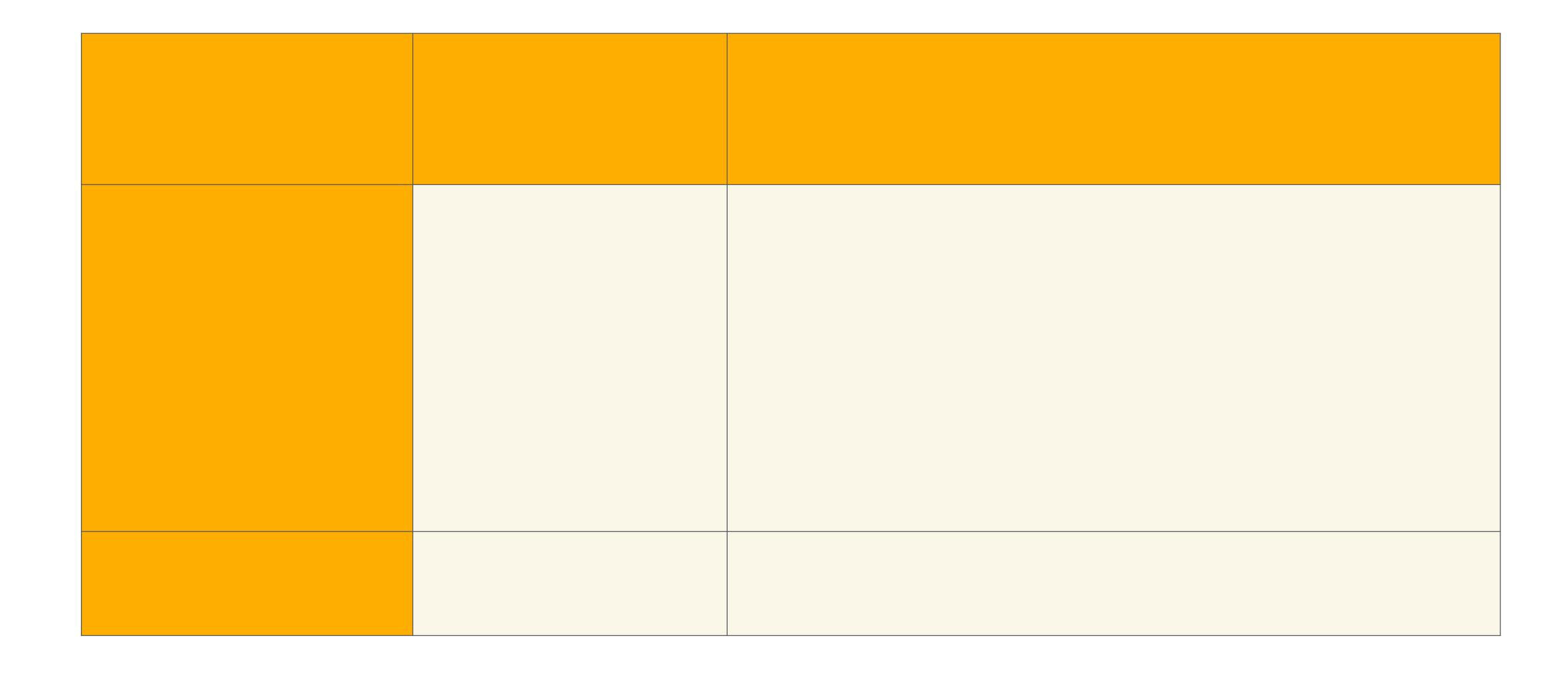
U

given

Postcondition

Obfuscation itself doesn't have to be pseudorandom

 $PRO(C_1)$



		$TT(f_K)$ is pseudorandom

	$TT(f_K)$ is pseudorandom
$\mathcal{O}(f_K) \approx_{\mathcal{C}} \mathcal{U}$	

$\mathcal{O}(f_K) \approx_{\mathcal{C}} \mathcal{U}$	dPRO

	$TT(f_K)$ is pseudorandom
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	dPRO

	$TT(f_K)$ is pseudorandom
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	PRO
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	dPRO

	$f_K \equiv f_{K'}$	$TT(f_K)$ is pseudorandom
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	PRO
$\mathcal{O}(f_K) \approx_c \mathcal{U}$		dPRO

$f_K \equiv f_{K'}$		$TT(f_K)$ is pseudorandom	
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	PRO Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25]	
$\mathcal{O}(f_K) \approx_c \mathcal{U}$		dPRO	

	$f_K \equiv f_{K'}$	$TT(f_K)$ is pseudorandom	
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25]	This work: (+LWE) FHE Succinct Garbling Succinct witness encryption
$\mathcal{O}(f_K) \approx_c \mathcal{U}$		dPRO	

	$f_K \equiv f_{K'}$	$TT(f_K)$ is pseudorandom	
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25]	This work: (+LWE) FHE Succinct Garbling Succinct witness encryption
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	dPRO	

	$f_K \equiv f_{K'}$	$TT(f_K)$ is pseudorandom	
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25]	This work: (+LWE) FHE Succinct Garbling Succinct witness encryption
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	dPRO	

	$f_K \equiv f_{K'}$	$TT(f_K)$ is pseudorandom	
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25]	This work: (+LWE) FHE Succinct Garbling Succinct witness encryption
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	dPRO	

Via standard iO

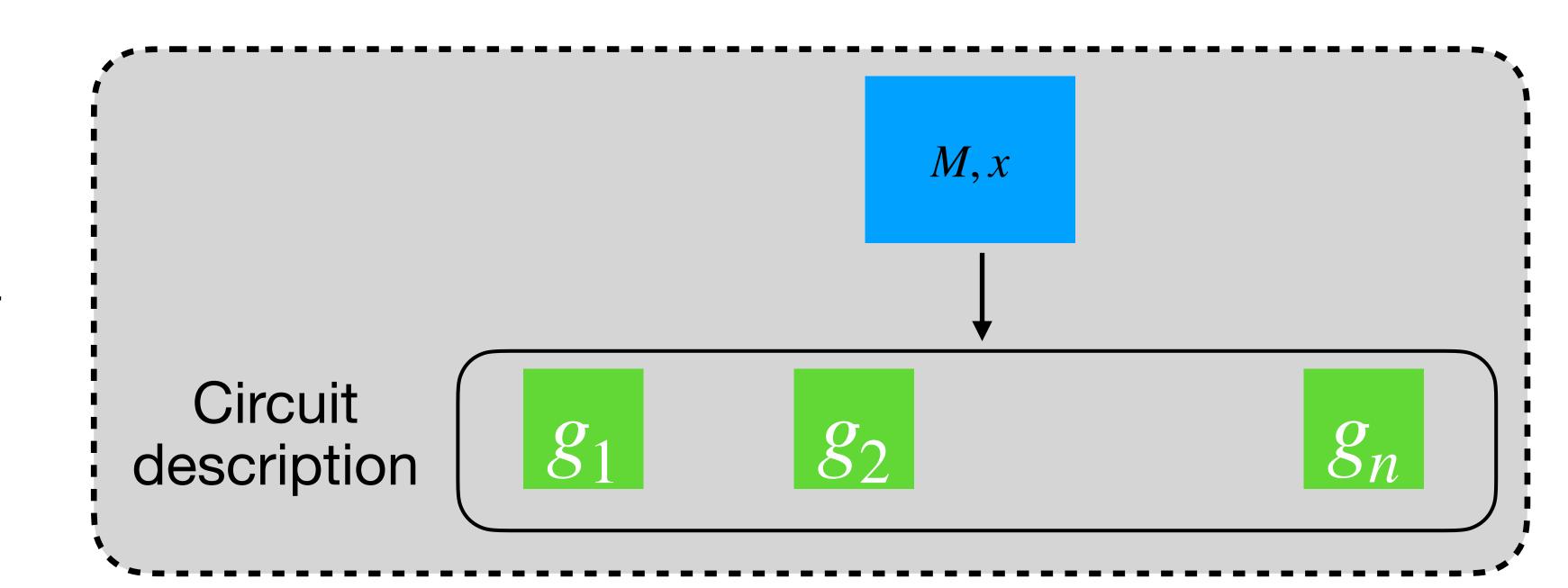
Size of program is independent of runtime of TM

Over-simplified Sketch of Succinct Garbling Via standard iO

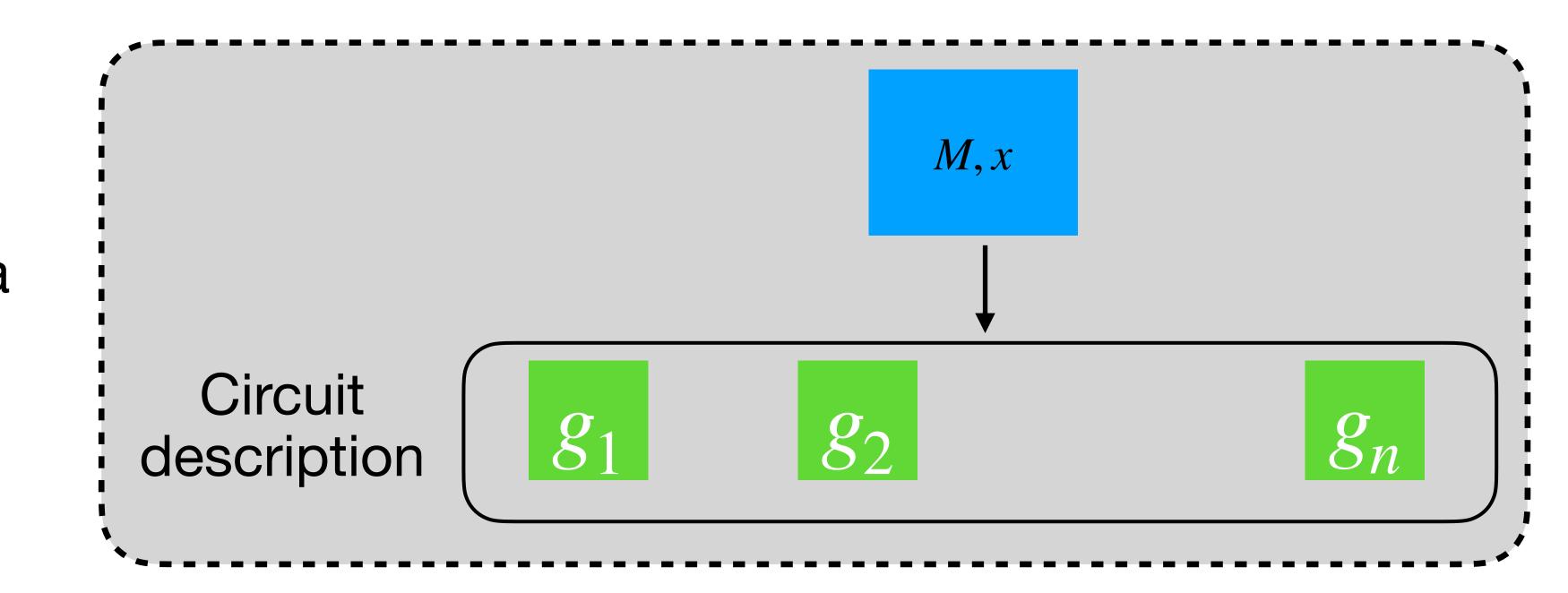
• Idea: Obfuscate the machine which:

- Idea: Obfuscate the machine which:
 - Expands (M, x) into a circuit $C_{M,x}$.

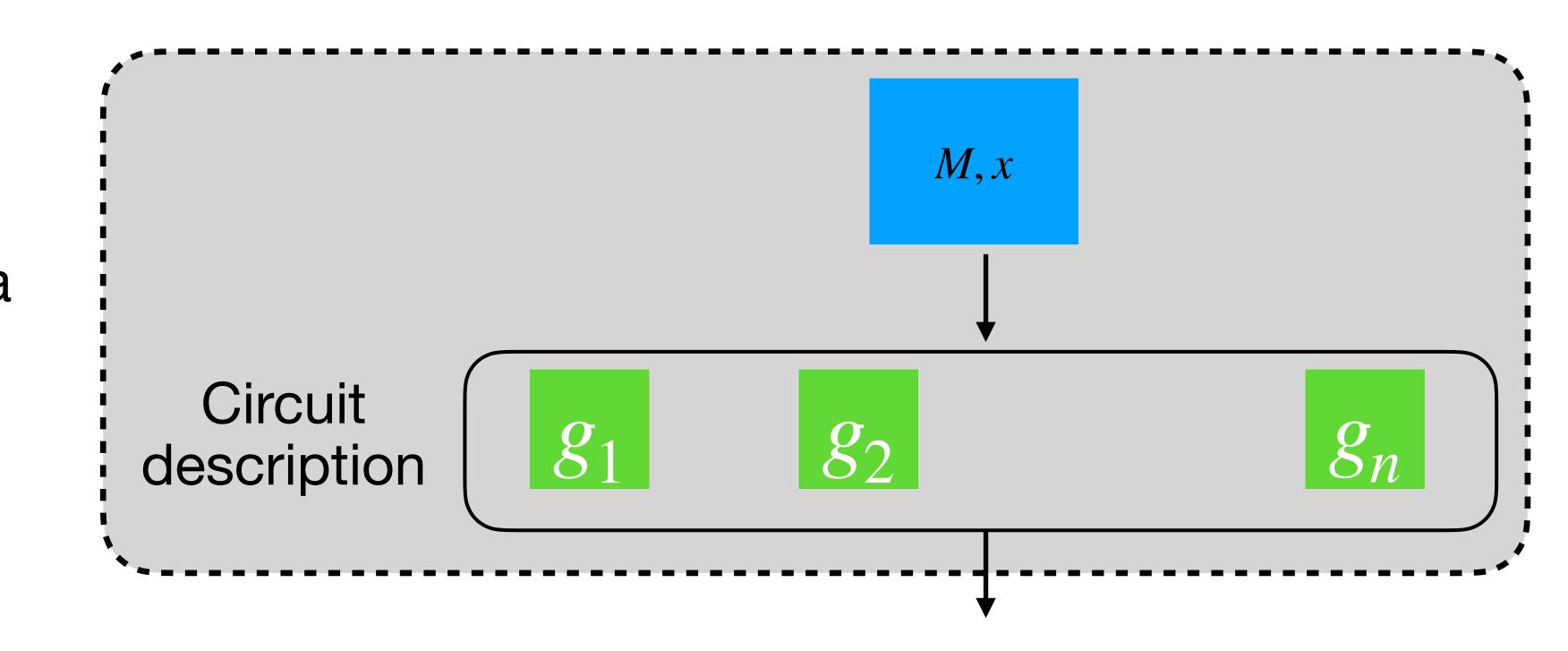
- Idea: Obfuscate the machine which:
 - Expands (M, x) into a circuit $C_{M,x}$.



- Idea: Obfuscate the machine which:
 - Expands (M, x) into a circuit $C_{M,x}$.
 - Outputs a garbling of $C_{M,x}$.



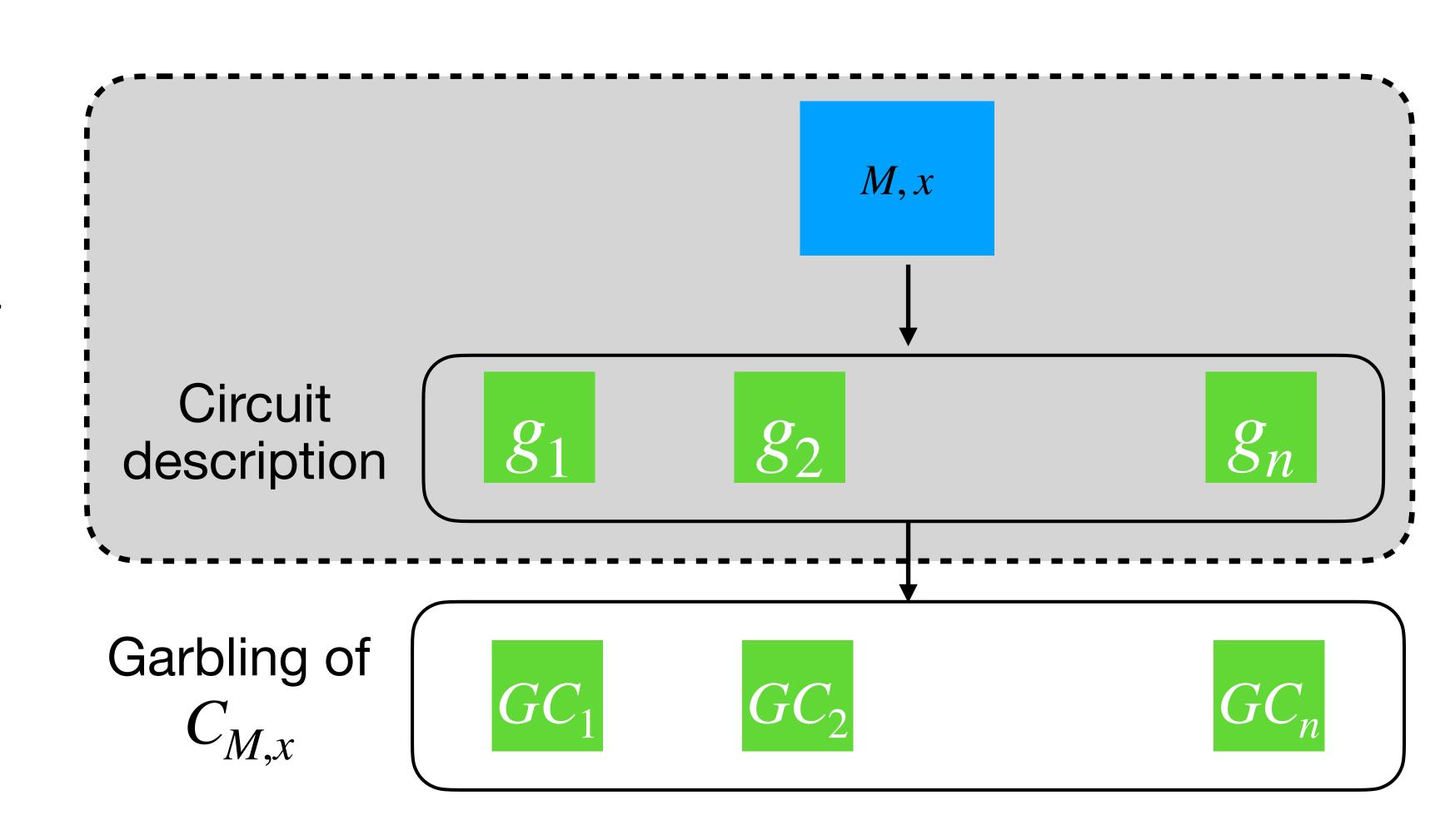
- Idea: Obfuscate the machine which:
 - Expands (M, x) into a circuit $C_{M,x}$.
 - Outputs a garbling of $C_{M,x}$.



Over-simplified Sketch of Succinct Garbling

Via standard iO

- Idea: Obfuscate the machine which:
 - Expands (M, x) into a circuit $C_{M,x}$.
 - Outputs a garbling of $C_{M,x}$.

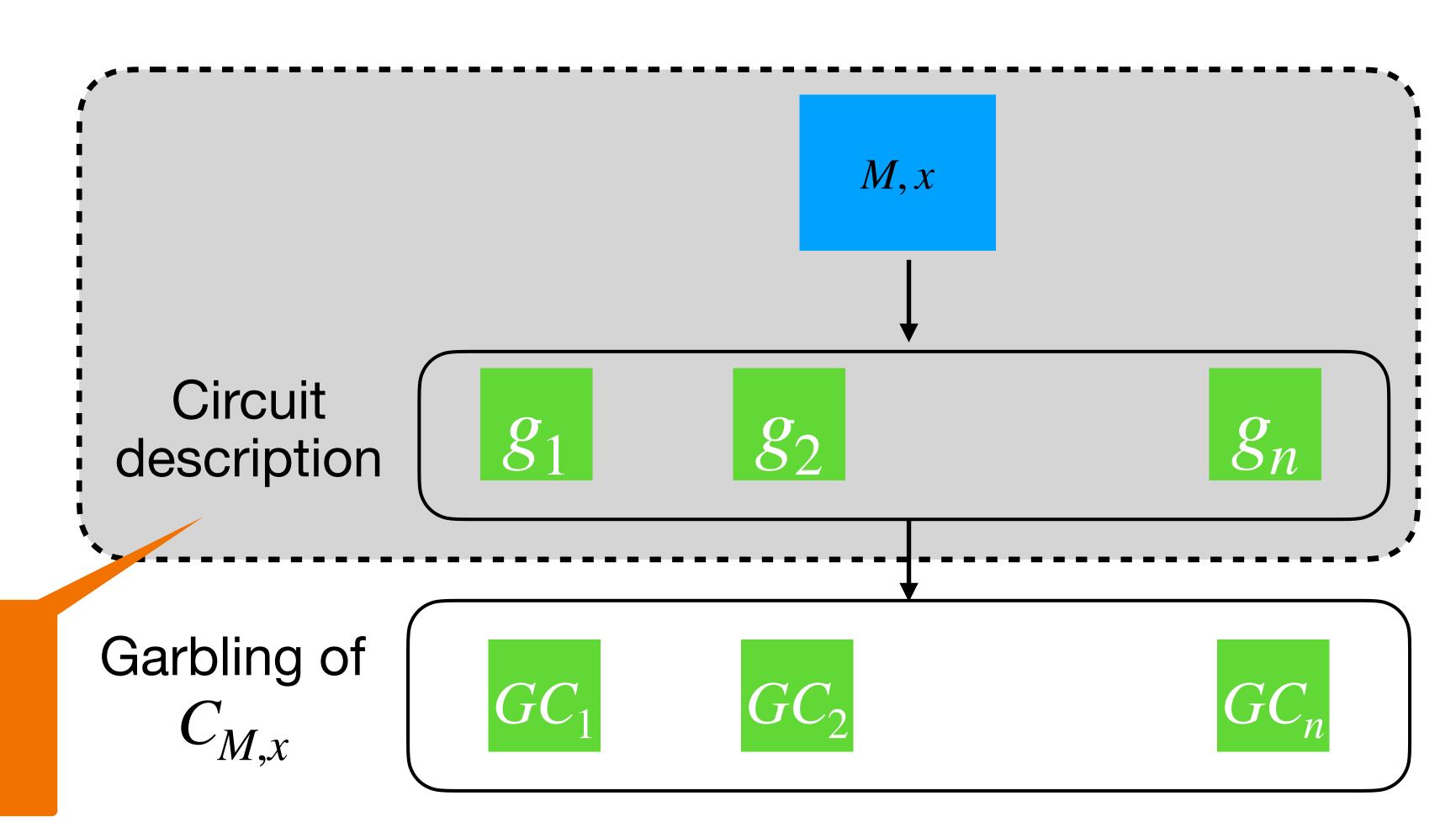


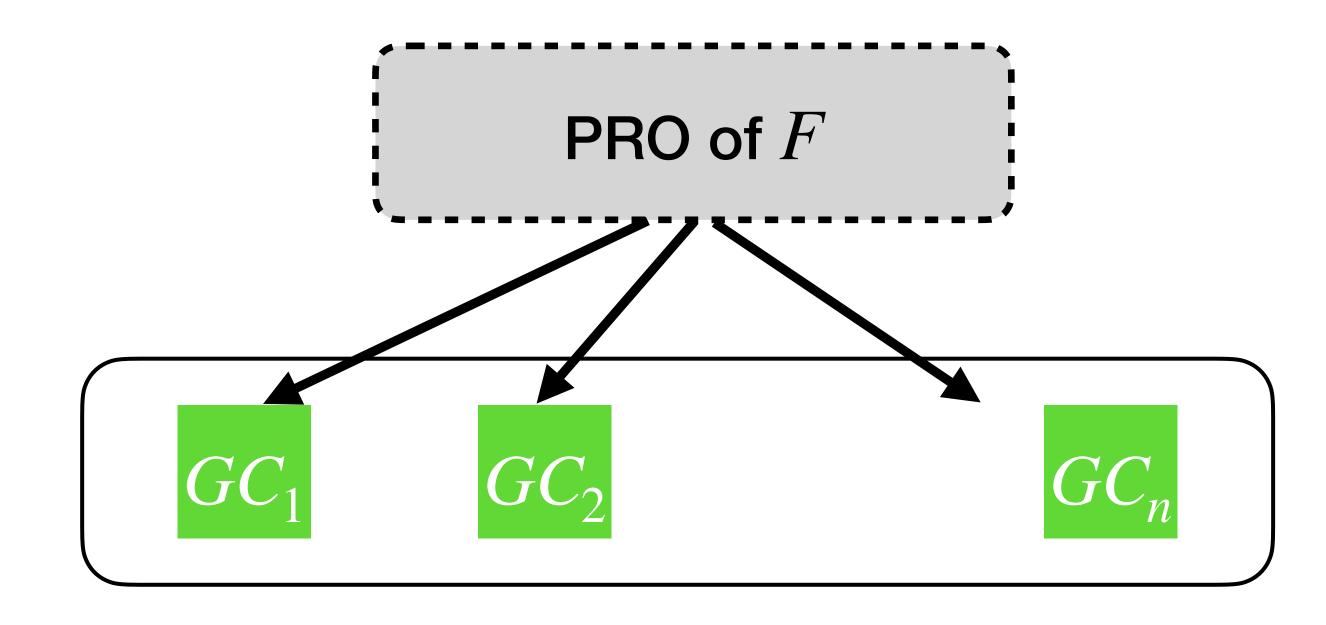
Over-simplified Sketch of Succinct Garbling

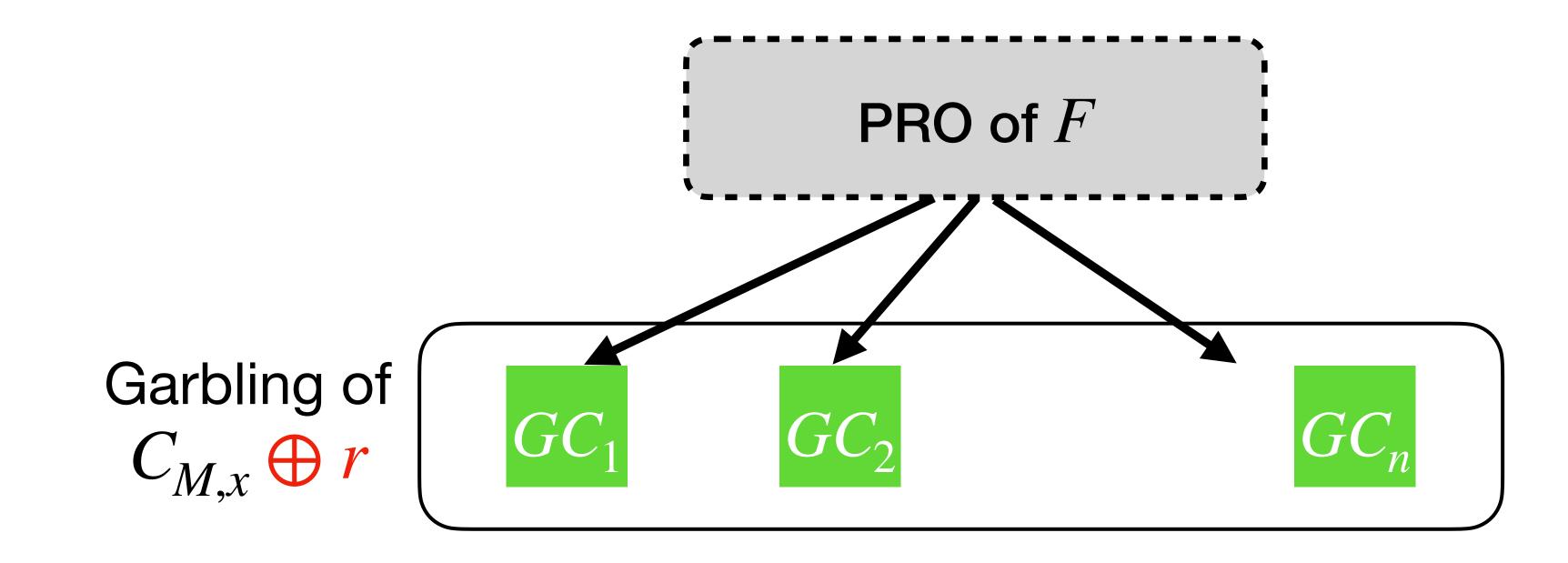
Via standard iO

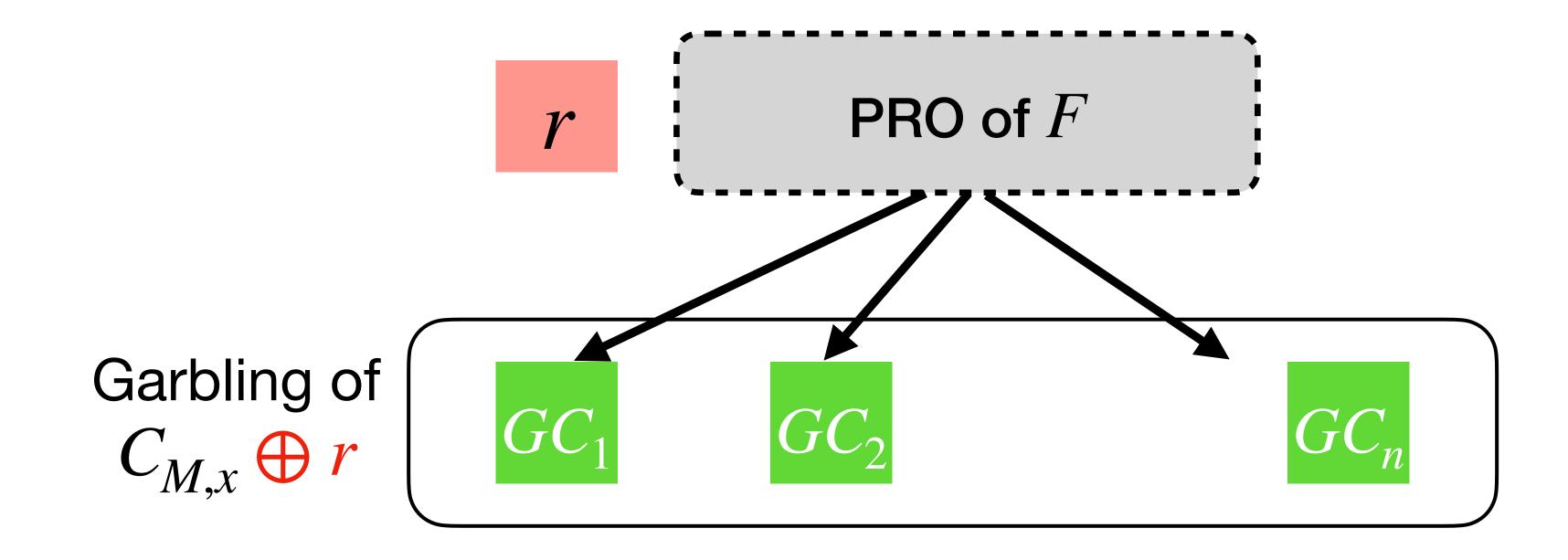
- Idea: Obfuscate the machine which:
 - Expands (M, x) into a circuit $C_{M,x}$.
 - Outputs a garbling of $C_{M,x}$.

Garbling =
Obfuscation of
this program!

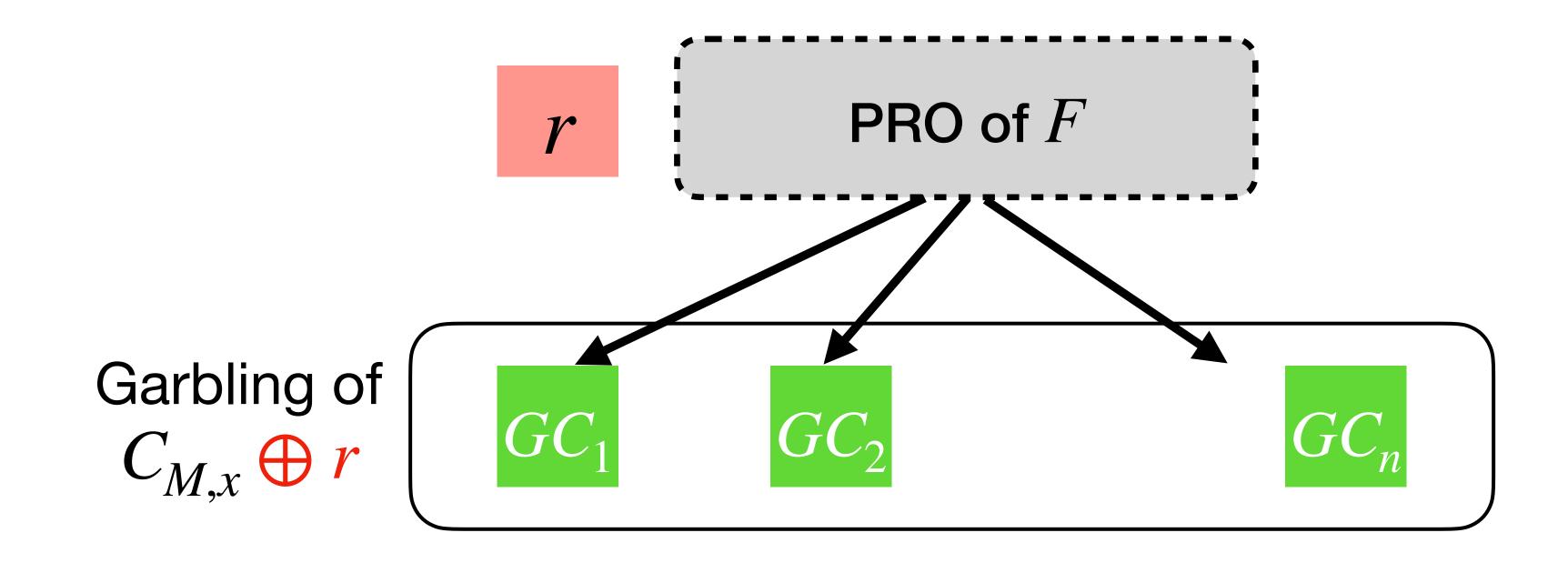




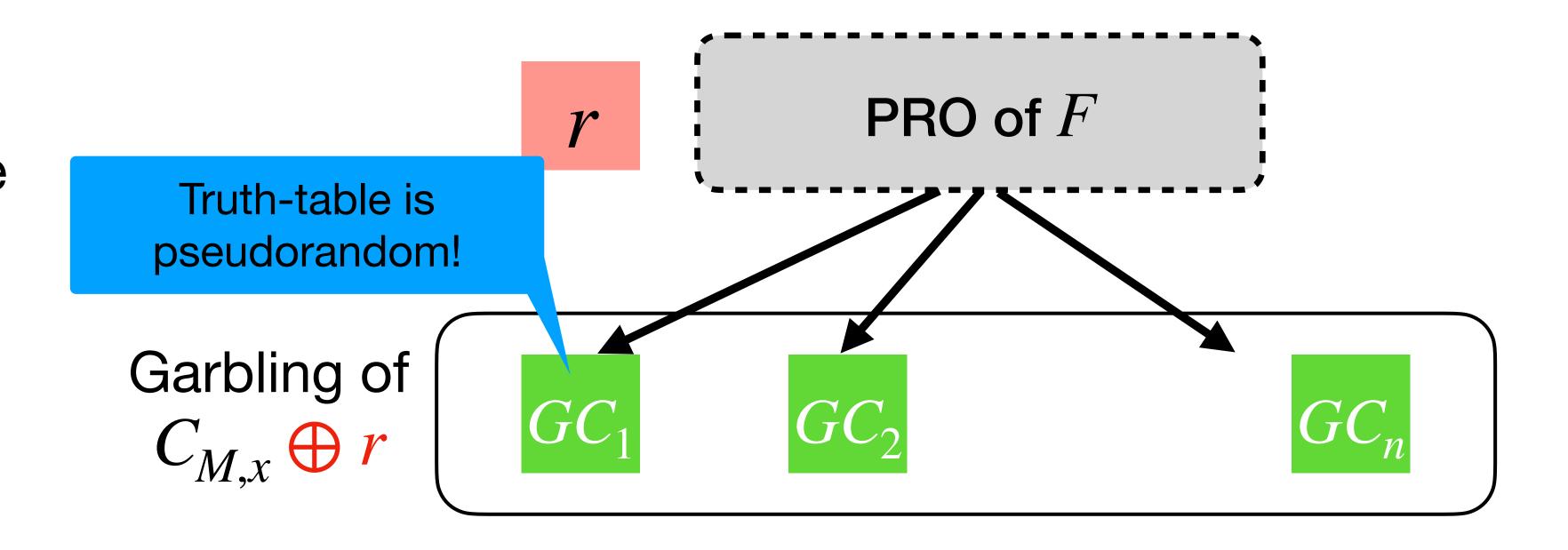




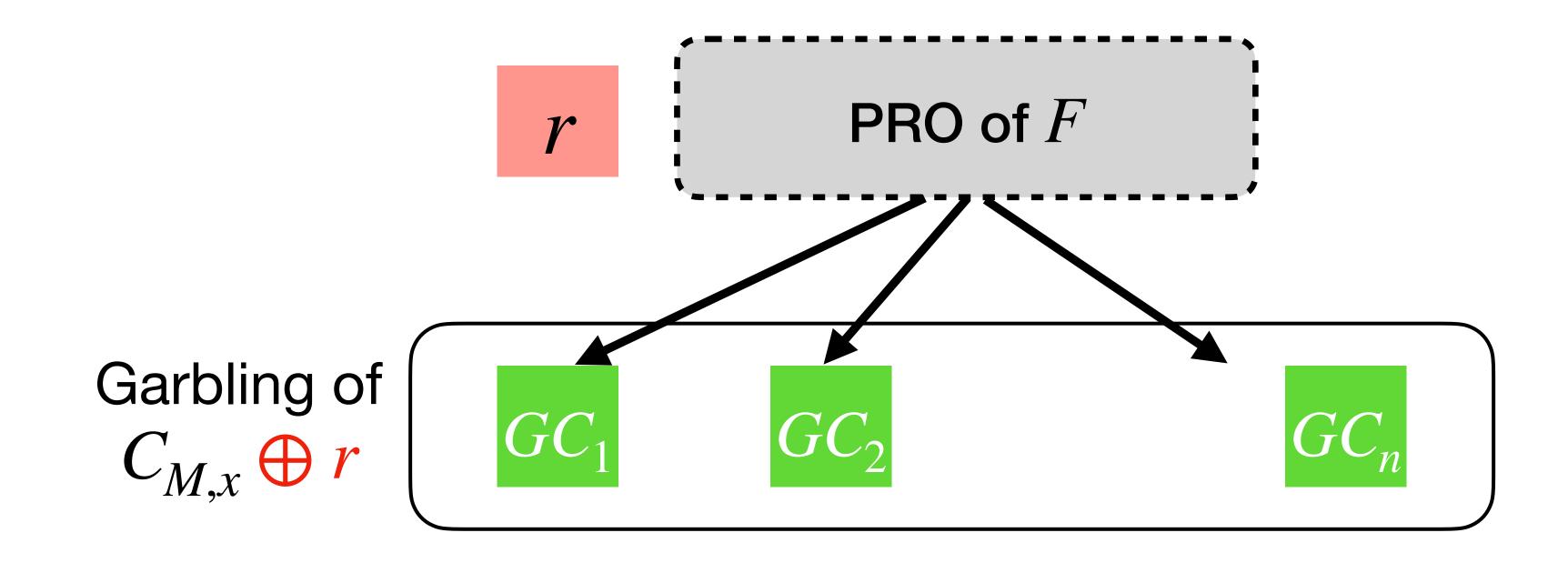
• Pick a garbling scheme with *pseudorandom* garbling [BLSV '18].



 Pick a garbling scheme with *pseudorandom* garbling [BLSV '18].

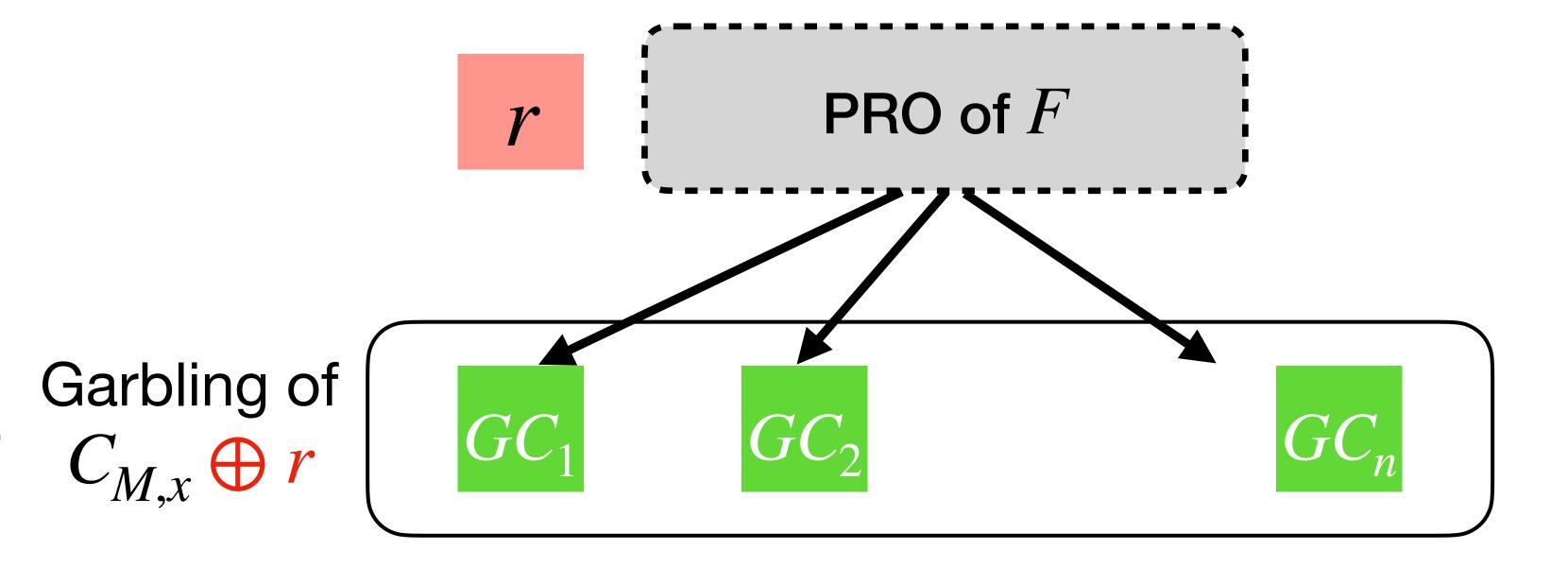


• Pick a garbling scheme with *pseudorandom* garbling [BLSV '18].



• Pick a garbling scheme with *pseudorandom* garbling [BLSV '18].

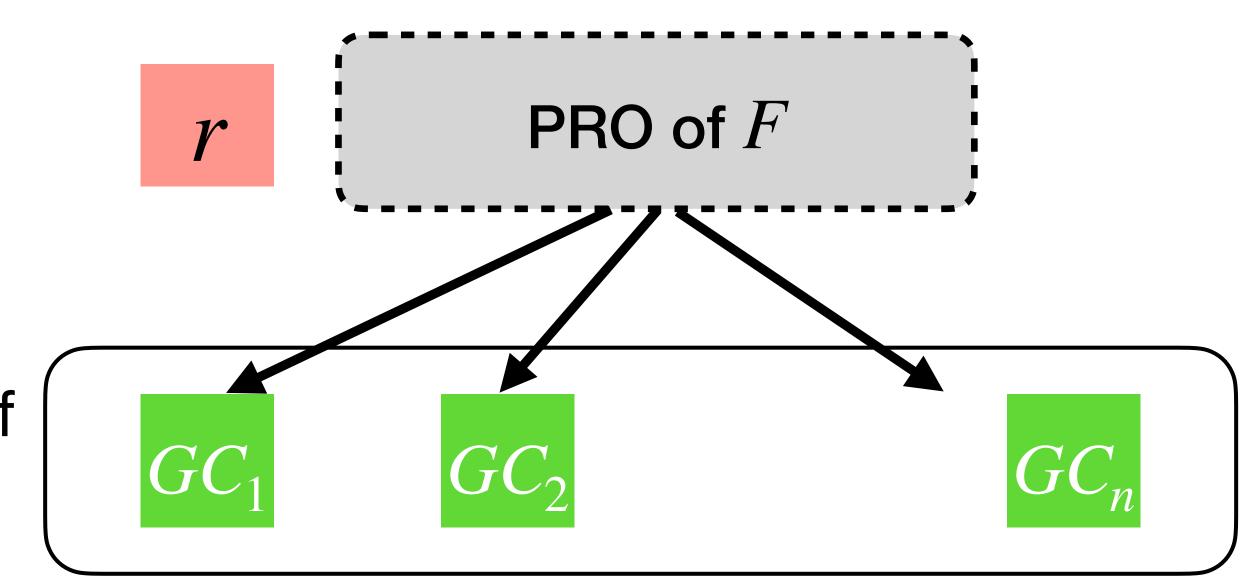
• GC. Garb = (r, PRO(F))



 Pick a garbling scheme with *pseudorandom* garbling [BLSV '18].

• GC. Garb = (r, PRO(F))

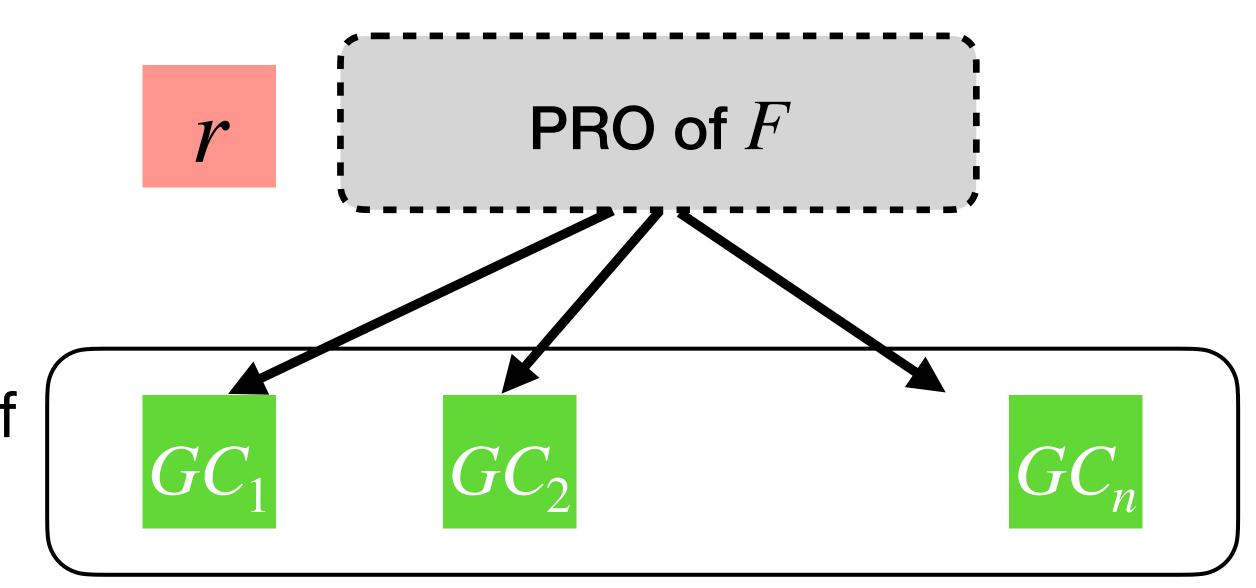
Garbling of $C_{M,x} \oplus r$



 Pick a garbling scheme with *pseudorandom* garbling [BLSV '18].

• GC. Garb = (r, PRO(F))

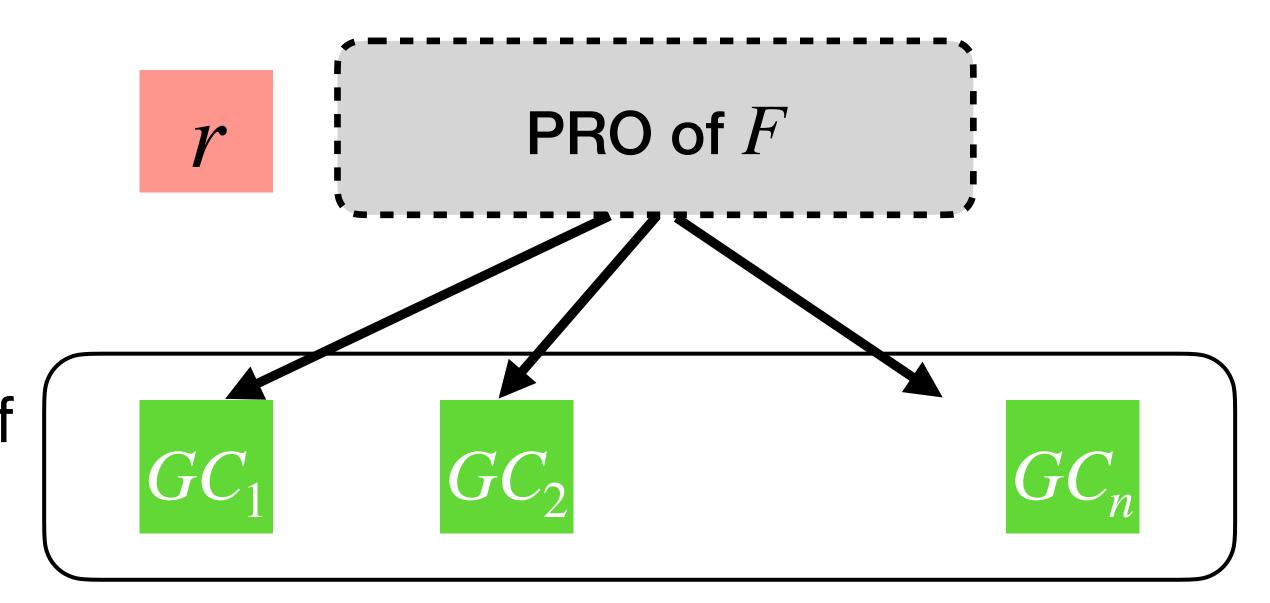
Garbling of $C_{M,x} \oplus r$

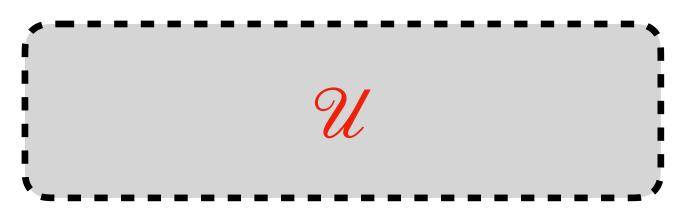


 Pick a garbling scheme with *pseudorandom* garbling [BLSV '18].

• GC. Garb = (r, PRO(F))

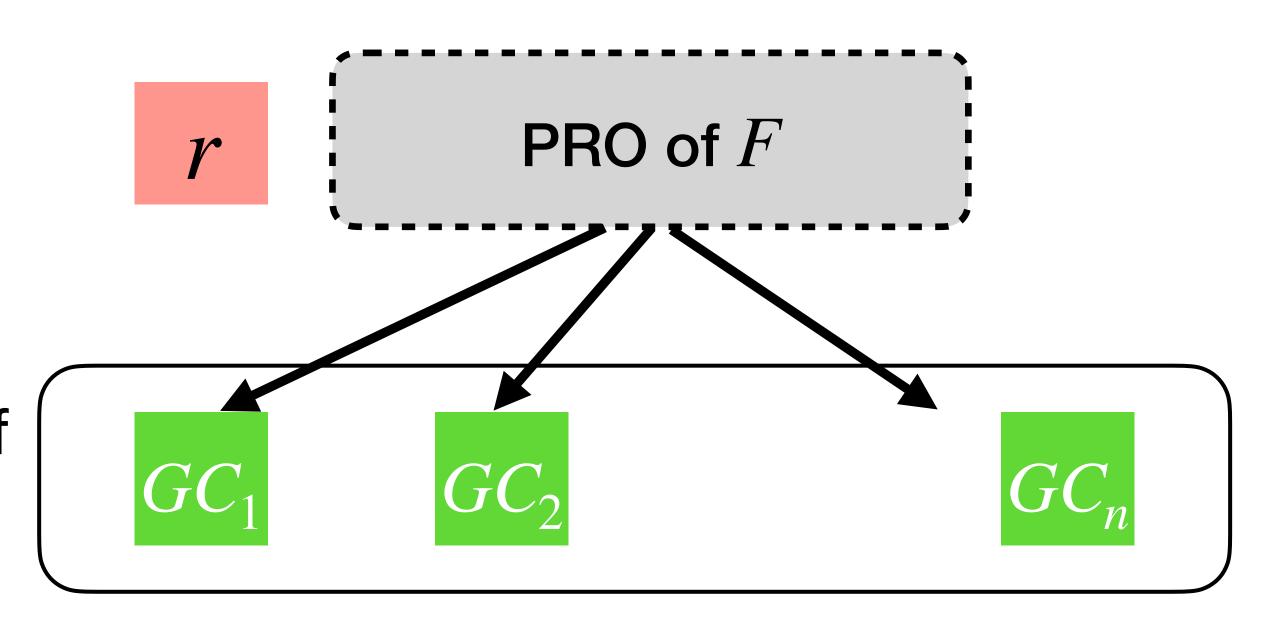
Garbling of $C_{M,x} \oplus r$

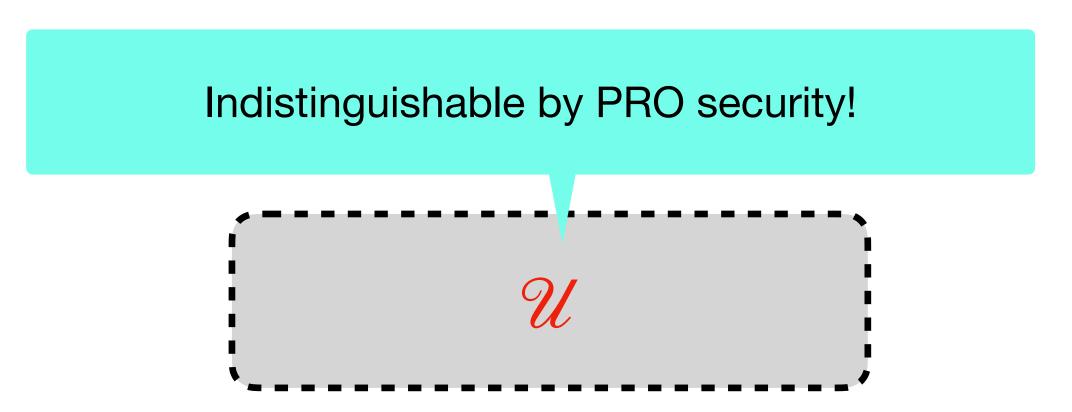




- Pick a garbling scheme with *pseudorandom* garbling [BLSV '18].
- GC. Garb = (r, PRO(F))

Garbling of $C_{M,x} \oplus r$

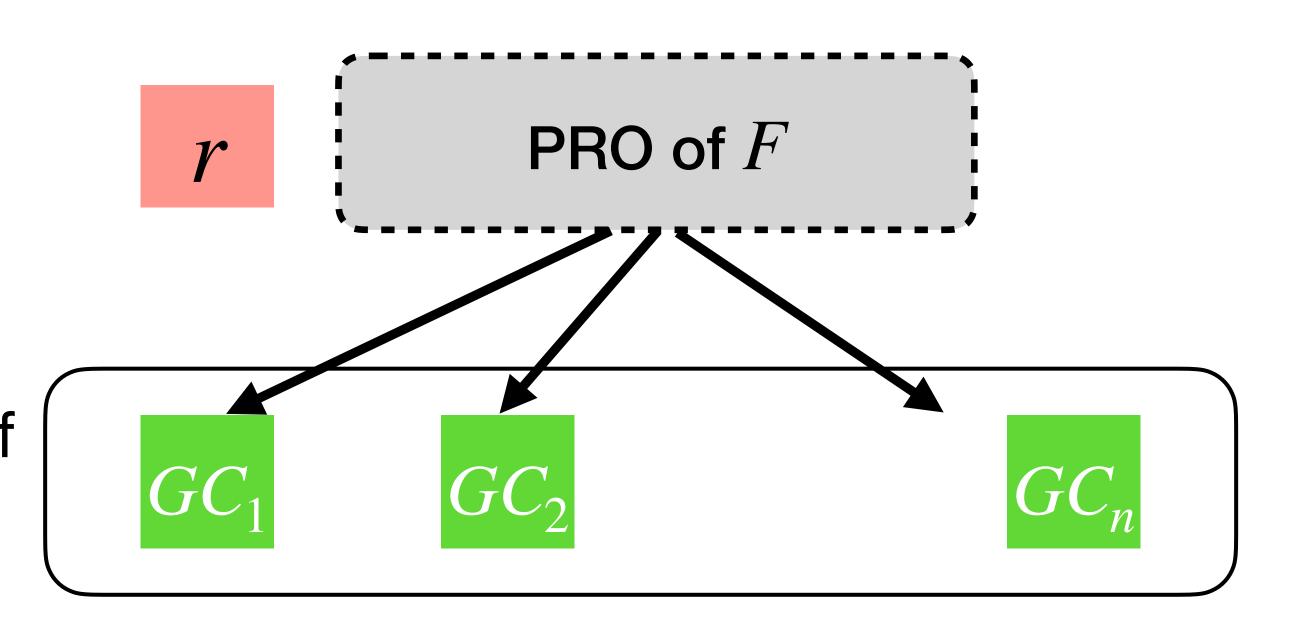


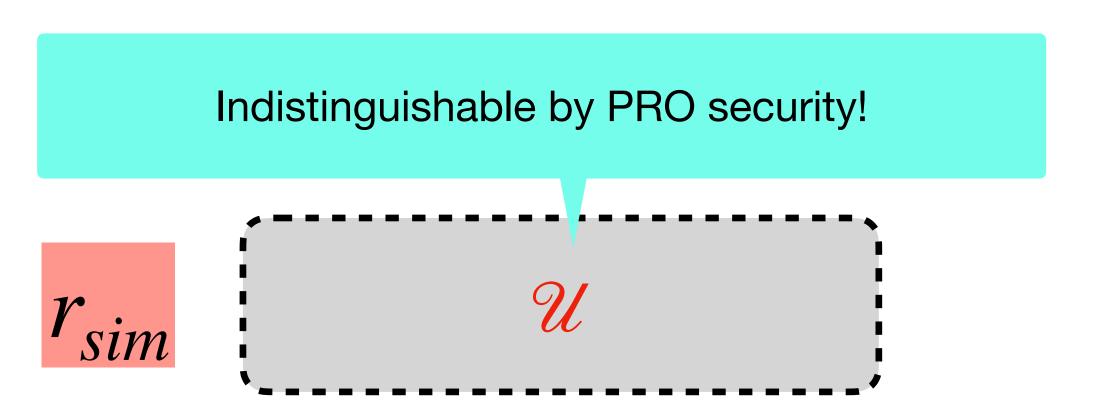


 Pick a garbling scheme with *pseudorandom* garbling [BLSV '18].

• GC. Garb = (r, PRO(F))

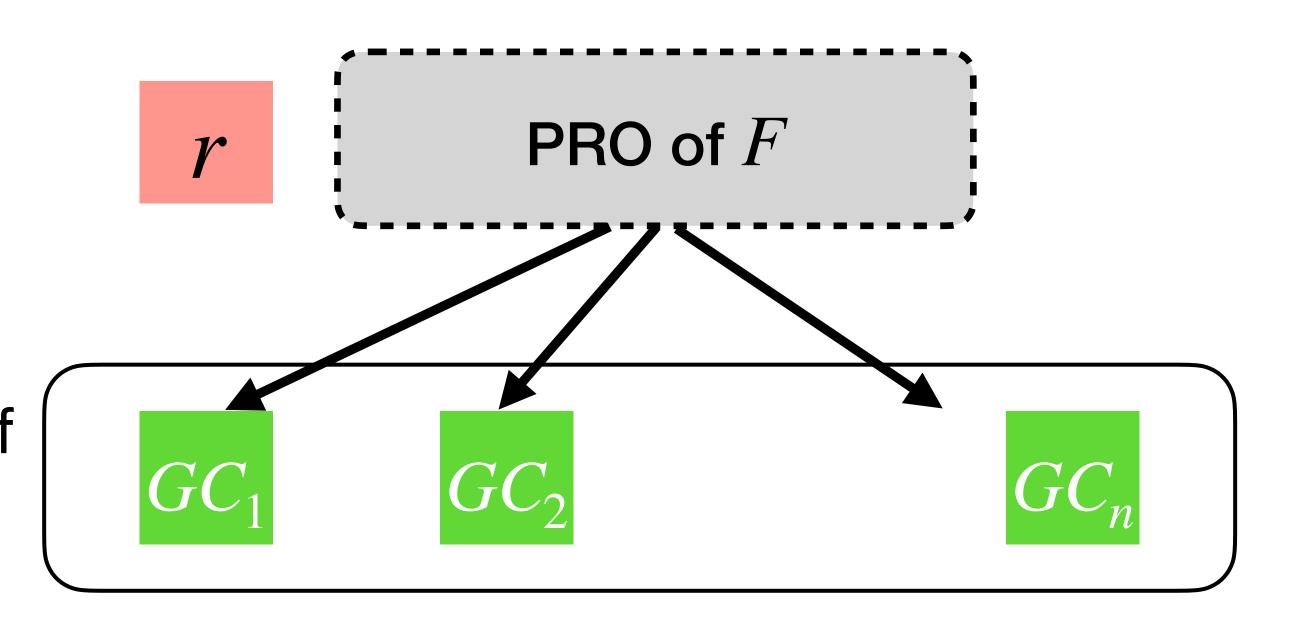
Garbling of $C_{M,x} \oplus r$





- Pick a garbling scheme with *pseudorandom* garbling [BLSV '18].
- GC. Garb = (r, PRO(F))

Garbling of $C_{M,x} \oplus r$



Simulator:

Set
$$r_{sim} = M(x) \oplus PRO . Eval(\mathcal{U})$$

Indistinguishable by PRO security!

	$f_K \equiv f_{K'}$	$TT(f_K)$ is pseudorandom	
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25]	This work: (+LWE) FHE Succinct Garbling Succinct witness encryption
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	d	PRO

	$f_K \equiv f_{K'}$	$TT(f_K)$ is pseudorandom	
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25]	This work: (+LWE) FHE Succinct Garbling Succinct witness encryption
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	d	PRO

Bad news: We show PRO does not exist

$f_K \equiv f_{K'}$		$TT(f_K)$ is pseudorandom	
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25]	This work: (+LWE) FHE Succinct Garbling Succinct witness encryption
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	d	PRO

Bad news: We show PRO does not exist

	$f_K \equiv f_{K'}$	$TT(f_K)$ is pseudorandom	
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25]	This work: (+LWE) FHE Succinct Garbling Succinct witness encryption
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	dF	PRO

Indistinguishability PRO (iPRO)

$$F_{K_0} \equiv F_{K_1},$$

Indistinguishability PRO (iPRO)

$$F_{K_0} \equiv F_{K_1},$$

 $TT(F_K)$

Indistinguishability PRO (iPRO)

$$F_{K_0} \equiv F_{K_1}$$
, $TT(F_K)$ \approx

Indistinguishability PRO (iPRO)

$$F_{K_0} \equiv F_{K_1}$$
, $TT(F_K)$ \approx

Indistinguishability PRO (iPRO)

$$F_{K_0} \equiv F_{K_1}$$
, $TT(F_K)$ \approx U

 \approx

Indistinguishability PRO (iPRO)

Indistinguishability PRO (iPRO)

$$F_{K_0} \equiv F_{K_1}, \hspace{1cm} TT(F_K) \hspace{1cm} pprox \hspace{1cm} U$$
 $\downarrow \hspace{1cm} \downarrow \hspace{1$

iO for Pseudorandom Functions

Indistinguishability PRO (iPRO)

- iO for Pseudorandom Functions
- Implied by iO ⇒ no counterexamples!

Indistinguishability PRO (iPRO)

- iO for Pseudorandom Functions
- Implied by iO ⇒ no counterexamples!

xiPRO:
$$|iPRO(C)| = |TT(C)|^{1-\epsilon}$$

	$f_K \equiv f_{K'}$	$TT(f_K)$ is pseudorandom
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	PRO
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	dPRO

	$f_K \equiv f_{K'}$	$f_K \equiv f_{K'}$ and pseudorandom	$TT(f_K)$ is pseudorandom
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO		PRO
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible		dPRO

	$f_K \equiv f_{K'}$	$f_K \equiv f_{K'}$ and pseudorandom	$TT(f_K)$ is pseudorandom
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	io	iPRO	PRO
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible		dPRO

	$f_K \equiv f_{K'}$	$f_K \equiv f_{K'}$ and pseudorandom	$TT(f_K)$ is pseudorandom
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	iPRO	PRO
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	Same as dPRO	dPRO

	$f_K \equiv f_{K'}$	$f_K \equiv f_{K'}$ and pseudorandom	$TT(f_K)$ is pseudorandom
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	iO	iPRO Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25] (+LWE) FHE Succinct garbling	PRO
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	Same as dPRO	dPRO

	$f_K \equiv f_{K'}$	$f_K \equiv f_{K'}$ and pseudorandom	$TT(f_K)$ is pseudorandom
$\mathcal{O}(f_K) \approx_c \mathcal{O}(f_{K'})$	io	iPRO Null-iO [VWW22] SNARK for UP [MPV24] SNARG for NP [JKLM25] (+LWE) FHE Succinct garbling	PRO Succinct WE (This work) iO for TMs [JJMP25]
$\mathcal{O}(f_K) \approx_c \mathcal{U}$	Impossible	Same as dPRO	dPRO

x-iPRO + Bilinear Maps = x-iO!

 $(x-\emptyset)$ refers to "slightly" compressing \emptyset such that $\emptyset(|C|) = |TT(C)|^{1-\epsilon}$

$$xiPRO(PRF_K(\cdot) + C(\cdot))$$
 $xiPRO(PRF_K(x))$

$$xiPRO(PRF_K(\cdot) + C(\cdot))$$
 $xiPRO(PRF_K(x))$

$$xiPRO(PRF_K(\cdot) + C(\cdot)) \qquad xiPRO(PRF_K(x))$$
$$xiPRO((i,j) \mapsto e(g_1^{x_i}, g_2^{x_j}) \cdot g_T^{C(i,j)}) \qquad e(g_1^{x_i}, g_2^{x_j})$$

$$xiPRO(PRF_K(\cdot) + C(\cdot)) \qquad xiPRO(PRF_K(x))$$

$$xiPRO((i,j) \mapsto e(g_1^{x_i}, g_2^{x_j}) \cdot g_T^{C(i,j)}) \qquad e(g_1^{x_i}, g_2^{x_j}) \qquad \text{via } (g_1^{x_i})_i, (g_2^{y_j})_i$$

$$xiPRO(PRF_K(\cdot) + C(\cdot)) \qquad xiPRO(FRF_K(x))$$

$$xiPRO((i,j) \mapsto e(g_1^{x_i}, g_2^{x_j}) \cdot g_T^{C(i,j)}) \qquad e(g_1^{x_i}, g_2^{x_j}) \qquad \text{wis } (g_1^{x_i})_i, (g_2^{x_j})_i$$

 $(x-\emptyset)$ refers to "slightly" compressing \emptyset such that $\emptyset(|C|) = |TT(C)|^{1-\epsilon}$

$$xiPRO(PRF_{K}(\cdot) + C(\cdot)) \qquad xiPRO(PRF_{K}(x))$$

$$xiPRO((i,j) \mapsto e(g_{1}^{x_{i}}, g_{2}^{x_{j}}) \cdot g_{T}^{C(i,j)}) \qquad e(g_{1}^{x_{i}}, g_{2}^{x_{j}}) \qquad \text{via } (g_{1}^{x_{i}})_{i}, (g_{2}^{x_{j}})_{j}$$

$$\text{via } QFE \cdot Enc((x_{i})_{i}, (y_{j})_{j})$$

- Hide the $g_1^{x_i}$, $g_2^{x_j}$ using wrapper of quadratic FE [Wee'20] and $\{sk_{i,j}\}_{i,j}$

(x- \mathcal{O} refers to "slightly" compressing \mathcal{O} such that $\mathcal{O}(|C|) = |TT(C)|^{1-\epsilon}$)

$$xiPRO(PRF_K(\cdot) + C(\cdot)) \qquad xiPRO(PRF_K(x))$$

$$xiPRO((i,j) \mapsto e(g_1^{x_i}, g_2^{x_j}) \cdot g_T^{C(i,j)}) \qquad e(g_1^{x_i}, g_2^{x_j}) \qquad \text{wis } (g_1^{x_i})_i, (g_2^{x_j})_j$$

via QFE . $Enc((x_i)_i, (y_j)_j)$ • Hide the $g_1^{x_i}$, $g_2^{x_j}$ using wrapper of quadratic FE **[Wee'20]** and $\{sk_{i,j}\}_{i,j}$

via
$$QFE$$
 . $Enc((x_i)_i, (y_j)_j)$ and $\{sk_{i,j}\}_{i,j}$

 $(x-\emptyset)$ refers to "slightly" compressing \emptyset such that $\emptyset(|C|) = |TT(C)|^{1-\epsilon}$

$$xiPRO(PRF_K(\cdot) + C(\cdot)) \qquad xiPRO(PRF_K(x))$$

$$xiPRO((i,j) \mapsto e(g_1^{x_i}, g_2^{x_j}) \cdot g_T^{C(i,j)}) \qquad e(g_1^{x_i}, g_2^{x_j}) \qquad \text{via} (g_1^{x_i})_i, (g_2^{y_j})_i$$

- Hide the $g_1^{x_i}$, $g_2^{x_j}$ using wrapper of quadratic FE [Wee'20]
- Layer of amortisation of quadratic FE keys

via QFE . $Enc((x_i)_i, (y_j)_j)$ and $\{sk_{i,j}\}_{i,j}$

$$xiPRO(PRF_{K}(\cdot) + C(\cdot)) \qquad xiPRO(PRF_{K}(x))$$

$$xiPRO((i \cdot i) + x \cdot e^{(x_{i} \cdot x_{i})} - e^{(i \cdot i)}) \qquad e^{(x_{i} \cdot x_{i})} - e^{(x_{i} \cdot x_{i})} - e^{(x_{i} \cdot x_{i})} - e^{(x_{i} \cdot x_{i})} = e^{(x_{i} \cdot x_{i})} - e^{($$

$$xiPRO((i,j)\mapsto e(g_1^{x_i},g_2^{x_j})\cdot g_T^{C(i,j)})$$
 $e(g_1^{x_i},g_2^{x_j})$ $yia\ (g_1^{x_j})_i,\ (g_2^{x_j})_j$ $via\ QFE\ .Enc((x_i)_i,(y_j)_j)$ $e(g_1^{x_i},g_2^{x_j})$ using wrapper of quadratic FE **[Wee'20]** and $\{sk_{i,j}\}_{i,j}$

- Hide the $g_1^{x_i}$, $g_2^{x_j}$ using wrapper of quadratic FE [Wee'20]
- Layer of amortisation of quadratic FE keys
- Does not go through local PRGs, LPN: "Coding Hardness"

$$xiPRO(PRF_{K}(\cdot) + C(\cdot)) \qquad xiPRO(PRF_{K}(x))$$

$$PRO((\cdot; \cdot) = (x_{i}, x_{i}), C(i, i) \qquad (x_{i}, x_{i}) \qquad (x_$$

$$xiPRO((i,j)\mapsto e(g_1^{x_i},g_2^{x_j})\cdot g_T^{C(i,j)})$$
 $e(g_1^{x_i},g_2^{x_j})$ $yia (g_1^{x_i})_i, (g_2^{x_j})_j$ $via QFE \cdot Enc((x_i)_i, (y_j)_j)$ $e(g_1^{x_i},g_2^{x_j})$ using wrapper of quadratic FE **[Wee'20]** and $\{sk_{i,j}\}_{i,j}$

- Hide the $g_1^{x_i}$, $g_2^{x_j}$ using wrapper of quadratic FE [Wee'20]
- Layer of amortisation of quadratic FE keys
- Does not go through local PRGs, LPN: "Coding Hardness"
- Nice way to "factor" existing iO constructions.

 $(x-\emptyset)$ refers to "slightly" compressing \emptyset such that $\emptyset(|C|) = |TT(C)|^{1-\epsilon}$

$$xiPRO(PRF_K(\cdot) + C(\cdot))$$
 $xiPRO(PRF_K(x))$

$$xiPRO((i,j) \mapsto e(g_1^{x_i}, g_2^{x_j}) \cdot g_T^{C(i,j)}) \qquad e(g_1^{x_i}, g_2^{x_j}) \qquad \text{via} (g_1^{x_i})_i, (g_2^{x_j})_j$$

$$e(g_1^{x_i},g_2^{x_j})$$

$$v_{1}^{i}$$
 $(s_{1}^{x_{1}})_{i}$, $(s_{2}^{y_{j}})_{j}$

• Hide the $g_1^{x_i}$, $g_2^{x_j}$ using wrapper of quadratic FE [Wee'20]

via QFE . $Enc((x_i)_i, (y_j)_j)$ and $\{sk_{i,j}\}_{i,j}$

- Layer of amortisation of quadratic FE keys
- Does not go through local PRGs, LPN: "Coding Hardness"

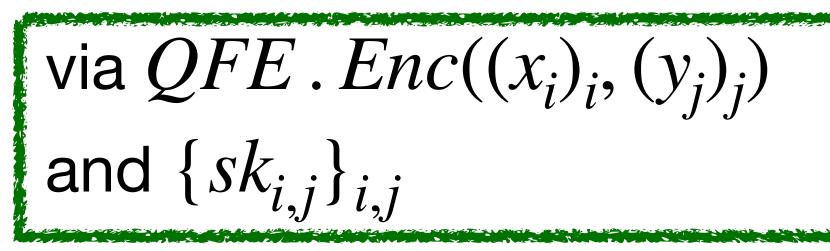
$$xiO =$$

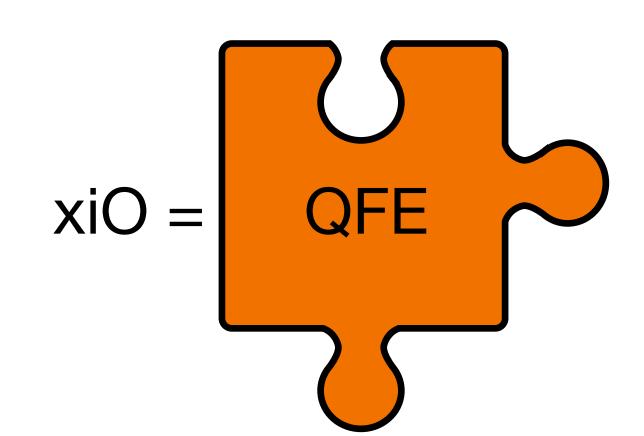
Nice way to "factor" existing iO constructions.

$$xiPRO(PRF_K(\cdot) + C(\cdot))$$
 $xiPRO(PRF_K(x))$

$$xiPRO((i,j) \mapsto e(g_1^{x_i}, g_2^{x_j}) \cdot g_T^{C(i,j)}) \qquad e(g_1^{x_i}, g_2^{x_j}) \qquad \text{via} (g_1^{x_i})_i, (g_2^{x_j})_j$$

- Hide the $g_1^{x_i}$, $g_2^{x_j}$ using wrapper of quadratic FE [Wee'20]
- Layer of amortisation of quadratic FE keys
- Does not go through local PRGs, LPN: "Coding Hardness"
- Nice way to "factor" existing iO constructions.





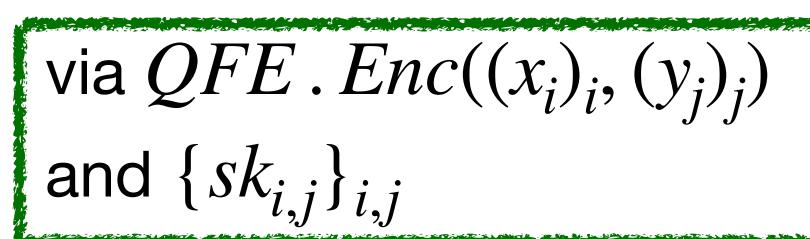
$$xiPRO(PRF_K(\cdot) + C(\cdot))$$
 $xiPRO(PRF_K(x))$

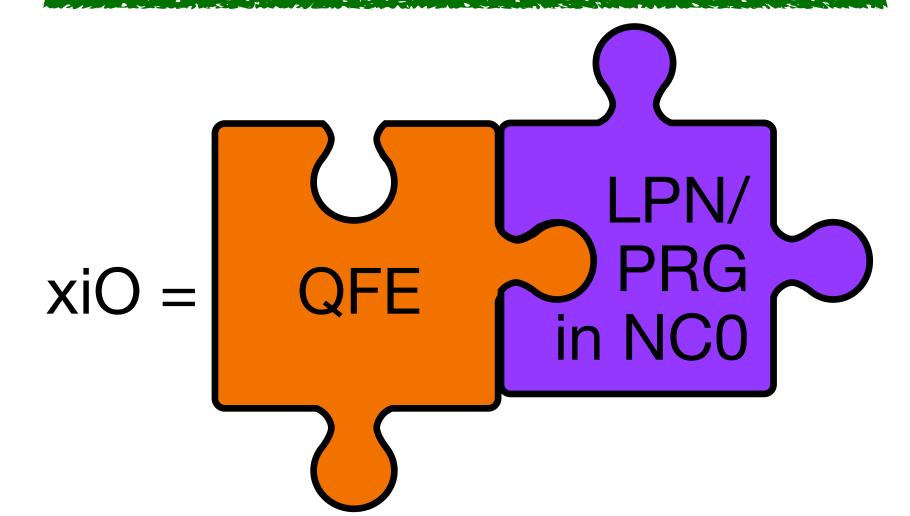
$$xiPRO((i,j) \mapsto e(g_1^{x_i}, g_2^{x_j}) \cdot g_T^{C(i,j)})$$
 $e(g_1^{x_i}, g_2^{x_j})$ $via(g_1^{x_i})_i, (g_2^{y_j})_j$

$$e(g_1^{x_i},g_2^{x_j})$$

$$v_1 = (s_1^{x_1})_i, (s_2^{y_j})_j$$

- Hide the $g_1^{x_i}$, $g_2^{x_j}$ using wrapper of quadratic FE [Wee'20]
- Layer of amortisation of quadratic FE keys
- Does not go through local PRGs, LPN: "Coding Hardness"
- Nice way to "factor" existing iO constructions.





 $(x-\emptyset)$ refers to "slightly" compressing \emptyset such that $\emptyset(|C|) = |TT(C)|^{1-\epsilon}$

$$xiPRO(PRF_K(\cdot) + C(\cdot))$$
 $xiPRO(PRF_K(x))$

$$xiPRO((i,j) \mapsto e(g_1^{x_i}, g_2^{x_j}) \cdot g_T^{C(i,j)}) \qquad e(g_1^{x_i}, g_2^{x_j}) \qquad \text{via} (g_1^{x_i})_i, (g_2^{y_j})_j$$

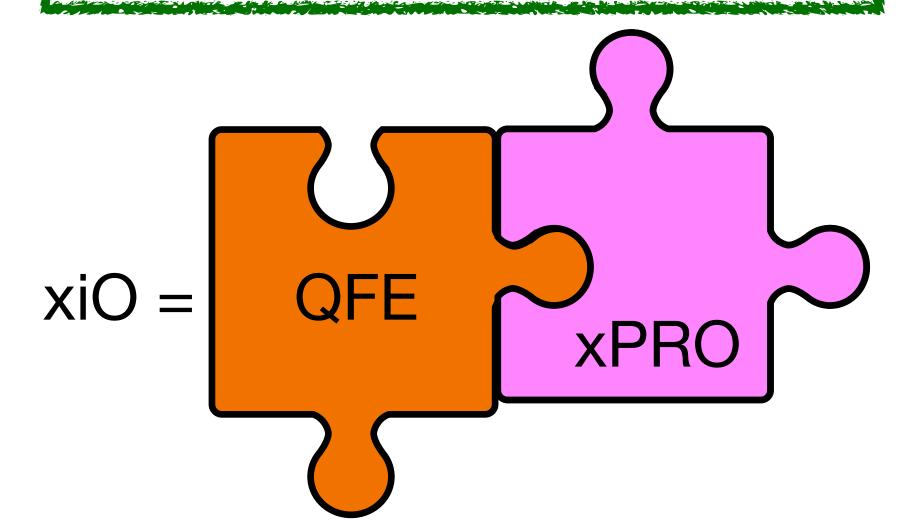
$$e(g_1^{x_i},g_2^{x_j})$$

$$v_{1}^{i}$$
 $(s_{1}^{i})_{i}$, $(s_{2}^{i})_{j}$

• Hide the $g_1^{x_i}$, $g_2^{x_j}$ using wrapper of quadratic FE [Wee'20]

via QFE . $Enc((x_i)_i, (y_j)_j)$ and $\{sk_{i,j}\}_{i,j}$

- Layer of amortisation of quadratic FE keys
- Does not go through local PRGs, LPN: "Coding Hardness"
- Nice way to "factor" existing iO constructions.



We study varying notions of pseudorandom obfuscation.

- We study varying notions of pseudorandom obfuscation.
 - Strongest notions are impossible.

- We study varying notions of pseudorandom obfuscation.
 - Strongest notions are impossible.
 - We show that iPRO is sufficient for many applications, including FHE and succinct garbling.

- We study varying notions of pseudorandom obfuscation.
 - Strongest notions are impossible.
 - We show that iPRO is sufficient for many applications, including FHE and succinct garbling.
 - Implied by iO → No impossibility!

- We study varying notions of pseudorandom obfuscation.
 - Strongest notions are impossible.
 - We show that iPRO is sufficient for many applications, including FHE and succinct garbling.
 - Implied by iO → No impossibility!
 - iPRO + Bilinear maps = iO

- We study varying notions of pseudorandom obfuscation.
 - Strongest notions are impossible.
 - We show that iPRO is sufficient for many applications, including FHE and succinct garbling.
 - Implied by iO → No impossibility!
 - iPRO + Bilinear maps = iO
 - Gives a "modular" approach to iO.

- We study varying notions of pseudorandom obfuscation.
 - Strongest notions are impossible.
 - We show that iPRO is sufficient for many applications, including FHE and succinct garbling.
 - Implied by iO → No impossibility!
 - iPRO + Bilinear maps = iO
 - Gives a "modular" approach to iO.
 - Open: Can we construct iPRO from LPN variants/PRGs in NC0? Or even LWE?

- We study varying notions of pseudorandom obfuscation.
 - Strongest notions are impossible.
 - We show that iPRO is sufficient for many applications, including FHE and succinct garbling.
 - Implied by iO → No impossibility!
 - iPRO + Bilinear maps = iO
 - Gives a "modular" approach to iO.
 - Open: Can we construct iPRO from LPN variants/PRGs in NC0? Or even LWE?
- (Not in talk) We give a candidate construction via the evasive LWE heuristic (more on this in the next talk!)

Thank you for your attention!

Bonus slides

Precondition

Precondition

aux

 $x = TT(PRF_K)$

Counterexample to PRO Precondition

Pick a witness encryption which is instance-hiding

aux

WE("x is TT of small C", 0^{λ})

 $x = TT(PRF_K)$

Precondition

Pick a witness encryption which is instance-hiding

aux

WE("x is TT of small C", 0^{λ})

 \approx

u

 $x = TT(PRF_K)$

Precondition

Pick a witness encryption which is instance-hiding

aux

WE("x is TT of small C", 0^{λ})

 \approx

u

 $x = TT(PRF_K)$

Precondition

Pick a witness encryption which is instance-hiding

aux

WE("x is TT of small C", 0^{λ})

WE("u is TT small C", 0^{λ})

WE("u" is TT of small C", 0^{λ})

 $x = TT(PRF_K)$

 \sim

u

11

Precondition

Pick a witness encryption which is instance-hiding

aux

WE("x is TT of small C", 0^{λ})

 \approx

WE("u is TT small C", 0^{λ})

 \approx

11

 $x = TT(PRF_K)$

u

WE("u" is TT of small C", 0^{λ})

 \sim

 \mathcal{U}

Counterexample to PRO Postcondition

Postcondition

 $x = TT(PRF_K) = TT(PRO(PRF_K))$

Postcondition

 $x = TT(PRF_K) = TT(PRO(PRF_K))$

 $PRO(PRF_K)$

Postcondition

 $x = TT(PRF_K) = TT(PRO(PRF_K))$

 $PRO(PRF_K)$

aux

Postcondition

 $x = TT(PRF_K) = TT(PRO(PRF_K))$

 $PRO(PRF_K)$

aux

WE("x is TT of small C", 0^{λ})

u'

Postcondition

$$x = TT(PRF_K) = TT(PRO(PRF_K))$$

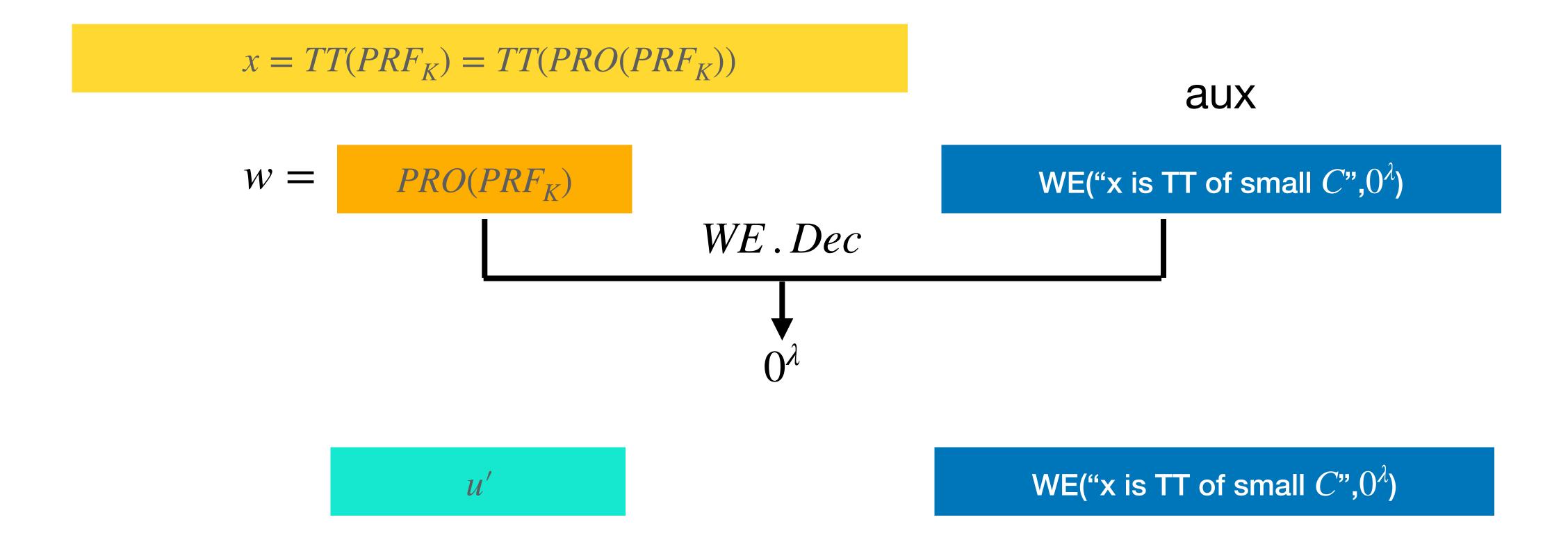
 $w = \frac{PRO(PRF_K)}{PRO(PRF_K)}$

aux

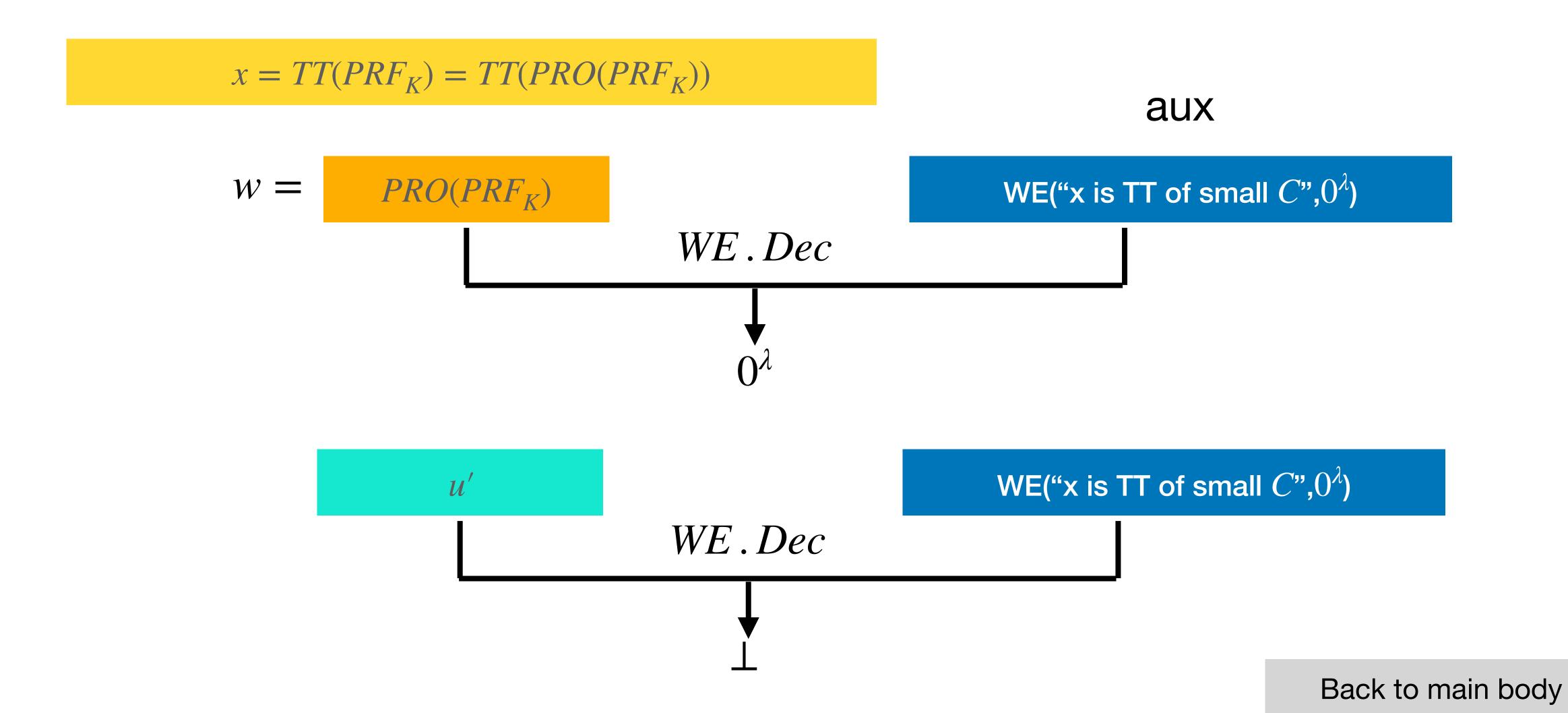
WE("x is TT of small C", 0^{λ})

u'

Postcondition



Postcondition



Postcondition

